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INTRODUCTION

There is a debate whether Geobacter sulfurreducens produces electrically conductive pili (e-pili)
from its pilin monomer, PilA, a protein encoded by gene GSU 1496. G. sulfurreducens assembly
of the PilA into e-pili was proposed over a decade ago (Reguera et al., 2005). As detailed below,
many subsequent studies have provided additional data consistent with this concept (Figure 1).
However, Gu et al. have recently concluded that G. sulfurreducens does not express e-pili from
PilA (Gu et al., 2021).

This is not a controversy over small details of the physiology of one microbe. Geobacter species
play an important role in natural environments and biotechnologies. For example, Geobacter
species are typically abundant in soils and sediments in which Fe(III) oxide reduction has
a significant impact on the biogeochemical cycling of carbon, nutrients, and trace metals as
well as in bioremediation (Lovley et al., 2011; Reguera and Kashefi, 2019; Lovley and Holmes,
2022). Geobacter species are also often abundant in soils and anaerobic digesters in which
direct interspecies electron transfer (DIET) appears to be an important mechanism for methane
production (Zhao et al., 2020; Lovley and Holmes, 2022). Geobacter and closely related species
are often enriched on the anodes of electrodes harvesting electricity from organic matter and
G. sulfurreducens generates the highest current densities of all known electroactive isolates (Lovley
et al., 2011; Logan et al., 2019). Although other microbes, most notably Shewanella species, have
been helpful for developing an understanding of key extracellular electron transfer mechanisms
(Shi et al., 2016; Lovley and Holmes, 2022), there are no pure cultures that are as effective in
Fe(III) oxide reduction, DIET, and current production as G. sulfurreducens and its close relative
G. metallireducens.

Furthermore, if it were true that PilA cannot be assembled into conductive filaments, this
would mean that attempts to develop new protein-based electronic materials based on concepts
for electron transport along e-pili (Creasey et al., 2018; Dorval Courchesne et al., 2018; Gutermann
and Gazit, 2018; Cosert et al., 2019; Roy et al., 2020) may be misguided. The reported heterologous
expression of e-pili from PilA in Pseudomonas aeruginosa (Liu et al., 2019) or Escherichia coli
(Ueki et al., 2020) for mass production of e-pili for the fabrication of electronics would require
new, non-obvious explanations to describe how introducing G. sulfurreducens PilA confers the
capacity for conductive filament expression. Other apparent accomplishments for electronics
applications, also achieved simply by modifying the structure of PilA, such as tuning of the
conductivity of G. sulfurreducens filaments or the introduction of novel binding sites on filaments
to enhance sensor selectivity (Lovley and Yao, 2021), would also need reevaluation. The function
of electronic devices for electricity generation (Liu et al., 2020b), sensing (Liu et al., 2020a; Smith
et al., 2020), and neuromorphic memory (Fu et al., 2020, 2021) would need to be reconsidered.
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FIGURE 1 | Evidence consistent with the hypothesis that Geobacter sulfurreducens expresses e-pili comprised of the pilin monomer, PilA and that PilA can be

assembled into conductive filaments.

THE CLAIM THAT WILD-TYPE G.

sulfurreducens DOES NOT EXPRESS
FILAMENTS COMPRISED OF PilA

Gu et al. (2021) conclude thatG. sulfurreducens does not assemble
PilA into pili because “Purified filament preparations from wild-
type cells grown under these nanowire-producing conditions did
not show either PilA-N or PilA-C using immunoblotting” (in
Gu et al. the term PilA-N refers to the PilA protein encoded
by gene GSU 1496). Yet just 2 years earlier the same lab
reported that “we confirmed the presence of both PilA and OmcS
with expected molecular weights of ∼6.5 kDa and ∼45 kDa,
respectively, in our filament preparations using poly-acrylamide
gel electrophoresis (SDS-PAGE), peptide mass spectrometry, and
western immunoblotting” (Wang et al., 2019). Furthermore, the
senior author of Gu et al. had also reported the recovery of
PilA and OmcS from G. sulfurreducens filament preparations
in another publication (Tan et al., 2016). It is important to
recognize that these prior findings from some of the same
investigators directly refute the Gu et al. hypothesis that wild-type
G. sulfurreducens does not express filaments comprised of PilA.
As detailed in the next section, there is also additional abundant
evidence that wild-type G. sulfurreducens displays conductive
filaments comprised of PilA.

Gu et al. did recover PilA-containing filaments from a mutant
strain in which the gene for the outer-surface cytochrome

OmcS was deleted (Gu et al., 2021). However, these filaments
also contained another protein, and the filaments were poorly
conductive. Gu et al. acknowledged that these hybrid filaments,
which had a diameter of 6.5. nm, were an artifact produced
only in the mutant strain; they were not expressed in wild-
type G. sulfurreducens. As detailed below, no other study of
G. sulfurreducens has observed 6.5 nm filaments emanating
from G. sulfurreducens or in purified filament preparations.
Such filaments were not even observed in other omcS-deletion
mutants of G. sulfurreducens (Leang et al., 2010; Liu et al.,
2022). Thus, the 6.5 nm PilA-containing filaments that Gu et al.
report are an artifact, not replicated in other studies, and
clearly have no relevance to the filament expression of wild-type
G. sulfurreducens.

THE EVIDENCE FOR E-PILI COMPRISED
OF PilA

Many studies have provided substantial evidence that wild-
type G. sulfurreducens expresses filaments comprised of
PilA (Figure 1). For example, the Reguera lab eloquently
demonstrated that: (1) the PilA pilin monomer was the only
protein recovered from purified G. sulfurreducens filaments
sheared from cells and (2) that intact filaments harvested from
the cells reacted with a PilA-specific antibody (Cologgi et al.,
2011). Several other laboratories subsequently demonstrated
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that PilA was a major protein in filaments recovered from G.
sulfurreducens (Tan et al., 2016; Ing et al., 2017).

G. sulfurreducens PilA is assembled into conductive filaments,
not only in G. sulfurreducens, but also in other microbes.
Expression of the G. sulfurreducens PilA pilin monomer gene
in P. aeruginosa (Liu et al., 2019) or E. coli (Ueki et al., 2020)
yielded filaments with the same morphology and conductance as
G. sulfurreducens e-pili.

Another observation that only seems explicable if e-pili are
comprised of PilA is the dynamic tuning of pili conductivity by
more than one million-fold that is possible simply by modifying
the abundance of aromatic amino acids in the pilin monomer
protein. For example, replacing the G. sulfurreducens PilA gene
with the G. metallireducens PilA gene yielded filaments with
the same 3 nm diameter of the wild-type G. sulfurreducens pili,
but with a conductivity that was 5,000-fold higher than wild-
type (Tan et al., 2017). The higher conductivity was attributed
to a higher abundance of aromatic amino acids in the G.
metallireducens pilin. Conversely decreasing the abundance of
aromatic amino acids in the pilin, still yielded 3 nm diameter
filaments, but with a conductivity 1,000-fold lower than wild-type
(Adhikari et al., 2016).

Not only is there substantial evidence that G. sulfurreducens
expresses conductive filaments comprised of the PilA pilin
monomer, but also direct examination of filaments emanating
from cells revealed that e-pili are the primary filaments that
G. sulfurreducens produces. In one approach, synthetic pilin
monomer genes that yield pilin monomers with peptide tags
were expressed in G. sulfurreducens (Ueki et al., 2019). All the
pili that these strains of G. sulfurreducens displayed reacted with
antibodies that specifically bind to the peptide tags that were
incorporated in PilA. The stoichiometry of antibody binding
to pili could be tuned by controlling the relative quantity of
synthetic pilin with tags vs. wild-type pilin expressed in strains
containing genes for both pilin types (Ueki et al., 2019).

In an alternative approach, atomic force microscopy revealed
that 90% of the filaments that G. sulfurreducens displayed
had the same 3 nm diameter, morphology, and conductance as
the conductive filaments produced when E. coli heterologously
expressed G. sulfurreducens PilA (Liu et al., 2021). The other 10%
of the filaments had a morphology and diameter consistent with
filaments comprised of the c-type cytochrome OmcS. Replacing
the PilA gene in G. sulfurreducens with a gene for a pilin
monomer with reduced aromatic amino acid content yielded
a strain in which over 90 % of the filaments emanating from
the cells were 3 nm diameter pili, morphologically similar to
the pili of the strain expressing PilA, but with 1,000-fold less
conductance. The abundance and conductance of the filaments
comprised of OmcS was unchanged. A similar predominance
of 3 nm diameter conductive pili and then decreased pili
conductance when PilAwas replaced with a gene for an aromatic-
poor pilin was observed in studies conducted in a strain of G.
sulfurreducens in which the gene for OmcS was deleted (Liu
et al., 2022). The finding that changing the aromatic abundance
of the pilin protein specifically and dramatically changed the
conductance of the 3 nm diameter filaments indicated that these
filaments were comprised of pilin (Liu et al., 2021, 2022). Thus,

multiple lines of evidence suggest that G. sulfurreducens displays
conductive pili comprised of PilA and that these are the most
abundant filaments emanating from cells.

IMPORTANCE OF E-PILI IN
EXTRACELLULAR ELECTRON TRANSFER

G. sulfurreducens requires its abundant e-pili for effective
long-range extracellular electron transfer. The phenotypes of
Geobacter strains that express poorly conductive pili provide
the most direct evidence. Simply deleting the gene for PilA to
prevent e-pili expression is not an appropriate approach because
outer-surface c-type cytochromes that are also important for
extracellular electron transfer are not properly localized to the
outer surface in pilA-deletion mutants (Izallalen et al., 2008;
Steidl et al., 2016; Liu et al., 2018). However, as noted above, G.
sulfurreducens strains that express poorly conductive pili can be
constructed by replacing the PilA gene with genes for pilins with
a lower abundance of aromatic amino acids. These strains, which
include G. sulfurreducens strains Aro-5, G. sulfurreducens strain
Tyr3, G. sulfurreducens strain PA, and G. metallireducens strain
Aro-5 express poorly conductive pili, while properly positioning
outer-surface cytochromes on the outer cell surface (Vargas et al.,
2013; Liu et al., 2014, 2021; Adhikari et al., 2016; Steidl et al., 2016;
Ueki et al., 2018). None of these strains effectively reduce Fe(III)
oxides or produce high current densities. G. metallireducens
strain Aro-5 is an ineffective electron-donating partner for DIET
(Ueki et al., 2018; Holmes et al., 2021).

The simplest explanation for these results is that the intrinsic
conductivity of the wild-type e-pili is essential for effective
extracellular electron transfer to Fe(III) oxides, other microbes,
and through thick current-producing biofilms. G. sulfurreducens
extracellular electron exchange is likely to rely on complex
interactions between a suite of outer-surface c-type cytochromes,
e-pili, and possibly other components (Lovley and Holmes,
2022). The phenotypes of strains expressing poorly conductive
pili and cytochrome-deficient mutant strain phenotypes, as well
as observations of cytochrome localization, demonstrate that
cytochrome-based filaments alone cannot be the primary route
for G. sulfurreducens long-range electron transfer (Lovley and
Holmes, 2020, 2022).

CONCLUSIONS

In conclusion, many studies have provided evidence that G.
sulfurreducens expresses e-pili comprised of the pilin monomer
PilA. It remains a mystery as to why Gu et al. (2021) did not
recover filaments comprised of PilA from their strain of ‘wild-
type’ G. sulfurreducens when so many other studies, including
several by the senior author of Gu et al., had previously found
PilA in filament preparations. Furthermore, e-pili comprised of
PilA can clearly be seen emanating from cells ofG. sulfurreducens.
Other microbes can heterologously express the G. sulfurreducens
PilA and assemble it into the same type of e-pili found
in G. sulfurreducens. Consistent with these observations, G.
sulfurreducens nanowire conductivity is readily tuned simply by
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changing the abundance of aromatic amino acids in the pilin
expressed. Expression of poorly conductive pili has demonstrated
the importance of e-pili in Fe(III) oxide reduction, electron
transfer to other microbial species, and for generating high
current densities in bioelectrochemical systems. Therefore, at
present the preponderance of evidence is that e-pili, comprised
of PilA, not only exist, but are an important feature in Geobacter
extracellular electron exchange. The pilins and archaellins of
phylogenetically distinct bacteria and archaea are assembled into

conductive filaments and it seems likely that e-pili and e-archaella
are spread throughout the microbial world (Walker et al., 2018,
2019, 2020; Bray et al., 2020; Lovley and Holmes, 2020).
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