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Abstract: Wounds have become one of the causes of death worldwide. The metabolic disorder of
the wound microenvironment can lead to a series of serious symptoms, especially chronic wounds
that bring great pain to patients, and there is currently no effective and widely used wound dressing.
Therefore, it is important to develop new multifunctional wound dressings. Hydrogel is an ideal
dressing candidate because of its 3D structure, good permeability, excellent biocompatibility, and
ability to provide a moist environment for wound repair, which overcomes the shortcomings of
traditional dressings. This article first briefly introduces the skin wound healing process, then the
preparation methods of hydrogel dressings and the characteristics of hydrogel wound dressings
made of natural biomaterials and synthetic materials are introduced. Finally, the development
prospects and challenges of hydrogel wound dressings are discussed.
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1. Introduction

The skin is the main defense system of the human body, which can protect the human
body from microbial infection and external environmental damage [1,2]. However, due
to various internal and external factors, such as physical, chemical, thermal, mechanical,
pressure, infection, disease, etc., people often encounter various injuries that cause skin
defects. Various wounds of different sizes, depths, and shapes have been formed. They
can be divided into acute wounds and chronic wounds according to the injury time [3,4].
Acute wounds refer to wounds that form suddenly and heal quickly. They usually heal by
primary healing in cases such as elective surgical incisions, superficial epidermal trauma,
and second-degree scalds. Chronic wounds refer to skin tissue injuries caused by vari-
ous reasons and the healing process takes a long time, such as ulcerative wounds, deep
burns, stage III-IV pressure ulcers, diabetic foot ulcers, ulcers caused by radiotherapy
and chemotherapy, etc., which are generally more than eight weeks and are easy to re-
peat [5–7]. Wounds have become one of the main causes of death worldwide, causing great
inconvenience to human health and economic development [8]. Wound healing generally
includes four highly integrated stages which are hemostasis, inflammation, proliferation,
and remodeling [3,9,10]. These four stages start in a definite order and last for a period of
time, and there may be a partial overlap in time and space between these stages. Creating
a clean, moist environment for the wound can accelerate the healing of the wound with-
out inflammation. The ideal wound dressing should have the following characteristics:
maintain high humidity; remove excess wound exudate; allow heat insulation; allow gas
exchange; fit the wound surface; antibacterial; no fiber shedding/non-toxic, non-adhesive,
comfortable, and compliant [11–13].
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Wound dressings are essential for wound healing as they provide a physical barrier
between the wound and the external environment to prevent further injury or infection [3].
Traditional dressings such as gauze may adhere to the newly grown granulation tissue and
cause pain when removed. In addition, it has no antibacterial, antioxidant, or other active
functions [14]. Therefore, there is a need for biodegradable wound dressings based on
bioactive materials that can induce wound healing and promote the deposition of extracel-
lular matrix (ECM). Hydrogels, as hydrophilic gels with 3D network structures, generally
have good biodegradability, biocompatibility, adhesion, air permeability, and maintain a
moist environment for cell migration, which can effectively promote cell proliferation and
facilitate wound healing [15]. These characteristics described above make hydrogels an
ideal candidate product for wound dressings [16]. The multifunctional hydrogel wound
dressings (such as antioxidative, antimicrobial, and injectable) currently developed can
not only provide physical protection and maintain moisture in the microenvironment, but
also improve the healing process by affecting the stage of wound repair [17]. For example,
antioxidant hydrogels can remove excessive reactive oxygen species in chronic wounds to
reduce oxidative stress, thus improving the wound microenvironment, promoting collagen
synthesis and re-epithelialization, and reducing the pH value of the wound to accelerate
healing and reduce infection [18]. Hydrogels fall into two categories: chemical (permanent)
hydrogels that are cross-linked by covalent bonds and physical (reversible) hydrogels that
are cross-linked by secondary bonds. Hydrogels can be prepared from natural biomaterials,
such as alginate, chitosan, hyaluronic acid, etc.; or synthetic materials, such as polyvinyl
alcohol, polyacrylamide, polyethylene glycol, etc. [19,20]. Therefore, this article reviews
the physiological process of wound healing, and it focuses on the preparation methods of
hydrogel dressings and the characteristics of hydrogel wound dressings made of natural
biomaterials and synthetic materials. Finally, the development prospects and challenges of
hydrogels are discussed.

2. The Physiological Process of Wound Healing

The skin is the main external defense system, which protects the body from microbial
invasion and the influence of the external environment. Therefore, skin damage can pose
a serious threat to human health [12]. The skin is composed of three tissue layers: the
epidermis, dermis, and hypodermis [21]. The most important function of the epidermis is
to form the external barrier of the body, as well as having absorption and immune functions.
The dermis contains fibroblasts, mast cells, lymphocytes, and so on. Fibroblasts can produce
collagen fibers, elastic fibers, reticular fibers, and matrices. At the same time, it is the main
tissue repair cell after the deep damage of skin tissue. The hypodermis has loose tissue and
rich blood vessels, which have the functions of connecting, buffering mechanical pressure,
storing energy, and maintaining heat preservation. Knowing the composition of normal
skin is helpful to our understanding of wound healing. Globally, chronic wounds impose a
significant burden on patients and healthcare systems. Chronic wounds are susceptible to
bacterial invasion, which can form biofilms at the wound site and inhibit the proliferation
of endothelial and epidermal cells. Serious cases can be life-threatening [22,23].

The wound includes the surface, the base, the cavity, and the wound margin, which
is collectively called the wound bed [24]. After the body is injured, various coagulation
factors play a role to achieve the purpose of hemostasis; cells near the wound secrete growth
factors and cytokines to attract fibroblasts, immune cells, and endothelial cells to activate
the healing cascade [25]. In the stage of inflammation, the blood vessels relax, thereby
increasing the permeability of the blood vessels, and various inflammatory cells gather
near the wound bed. Many inflammatory factors, such as IL-1, TNF-α, TGF-β, etc., activate
lymphocytes, monocytes, and macrophages to clear pathogens and debris, and prepare
for the formation of granulation tissue. A large number of growth factors and cytokines
are released to promote cell proliferation and migration [15]. During the proliferation
phase, many growth factors, such as FGF, VEGF, EGF, play an important role in promoting
cell proliferation. The endothelial cells grow rapidly and induce the formation of blood
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vessels in the granulation tissue, the damaged tissue is gradually replaced by epithelial
cells and fibroblasts, and the wound surface is gradually filled with granulation tissue.
Maturation is the final stage in which connective tissue is formed and the new epithelium
is strengthened [26,27]. Figure 1 shows the physiological process of wound healing.
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3. Preparation Method of Hydrogels with a Promising Treatment for Wound Healing

Different hydrogel wound dressings are selected according to different wound con-
ditions. An ideal hydrogel wound dressing should have the following characteristics:
(i) it should have biocompatibility and blood compatibility, and hydrogels should be able
to stop bleeding immediately and stimulate hemostasis-related factors to act to promote
wound healing [28]; (ii) hydrogels should have sufficient adhesion and excellent mechanical
properties, even under humid and dynamic conditions they can adhere to and completely
seal wounds to prevent bacterial infections [29]; (iii) good moisture retention, providing
moisture to the wound site, maintaining a moist environment for cell migration, and
promoting cell proliferation [30]; (iv) it can be completely degraded after a period of time,
and no by-products are produced [31]. At present, the preparation of hydrogels is mainly
divided into physical cross-linking and chemical cross-linking. The effect of cross-linking
determines the physical and chemical properties and functions of the hydrogel dressing.
Figure 2 shows some preparation methods. The wound microenvironment is affected by
many factors, and hydrogel characteristics play a major role in maintaining a favorable
microenvironment. According to the required conditions, different preparation methods
are selected [32].

3.1. Physical Cross-Linking

Most hydrogel dressings with toughness and a high self-healing ability are generally
formed by non-covalent bond polymerization. The 3D network structure of the hydrogel
dressing formed by physical cross-linking is mainly formed by the interaction between
molecules.

3.1.1. Ionic Interaction

Based on the dynamic interaction between oppositely charged groups or metal-ligand
interaction is an effective way to carry out ionic interactions [33]. The hydrogels formed by
ionic interaction have good ionic conductivity, fatigue resistance, environmental response,
and self-healing ability. However, the poor mechanical properties and complex preparation
process of hydrogels formed by ionic interactions are still the main problems that prevent
their further application [31]. At present, more and more researchers are focusing on de-
signing new hydrogels to solve these problems. For example, negatively charged monomer
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acrylic acid (AAC) and positively charged 2-hydroxypropyl trimethylammonium chloride
chitosan (HACC) through ion interaction to form a high-density dynamic ionic bond of
the compact structure of PAAC/HACC hydrogel. The structure endows the hydrogels
with good mechanical properties, ionic conductivity, and good self-healing properties, the
ionic conductivity is adequate to transfer bioelectrical signals and electrical stimulation
on the cell proliferation and differentiation in the human body [34]. Liu et al. prepared
CNF/G/Ag0.5 interpenetrating polymer network hydrogels (IPN) through dynamic ionic
bond cross-linking. The hydrogels adhered to the surface of the wound and led to platelet
aggregation. Gelatin can promote the erythropoiesis, and increase the number of platelets
and white blood cells to blockade bleeding and the moderate cross-linked hydrogels
could increase water absorption efficiency and decrease the water vapor diffusion, and
as a consequence, decreased the WVTR to keep an appropriate balance of fluids on the
wound bed [35].
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3.1.2. Hydrogen Bond

The use of hydrogen bonds is often indispensable, and the self-repair and self-recovery
capabilities of hydrogels can be greatly improved through hydrogen bonds [36]. However,
because hydrogen bonds are often unstable in aqueous environments, the resulting hydro-
gels often have low utilization rates. Currently, researchers have improved the effect of
hydrogen bonding by preparing DN hydrogels or IPN hydrogels [37]. Bi et al. constructed
physically cross-linked chitosan-polyvinyl alcohol DN hydrogels based on multiple hydro-
gen bond interactions. Since the hydrogen bond interaction is a dynamic interaction, the
hydrogels can be spontaneously rebuilt after being destroyed. In addition, the hydrogels
prepared by physical cross-linking have good cell compatibility and biodegradability [38].
Zhao et al. used hydrogen bonds to promote the self-assembly of SA in the PAM porous
matrix. PAM-SA semi-interpenetrating polymer network hydrogels not only have good
mechanical properties but also have good self-healing efficiency at room temperature based
on hydrogen bond interaction. This property can prolong the hydrogels’ lifespan during
their applications, especially in a severe environment [39].

3.1.3. Crystallization

The freeze–thaw method is one of the commonly used methods of physical cross-
linking. In the freezing part of the cycle, the formed ice crystals arrange the polymer
chains around themselves. Then, during the thawing process of the cycle, the ice crystals
melt to form a microporous structure [40]. The time, temperature, number of cycles, and
the content of polymer components can be controlled during the freeze-thaw process for
different pore sizes, mechanical strengths, morphology, or other characteristics [41,42]. The
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soft, flexible, and variable pore hydrogels prepared by the freeze-thaw method can simulate
ECM, and the stem cells mounted on it can sense and respond to the dynamic changes of
ECM stiffness, and respond and move in a directional manner, which is crucial for recruiting
cells for wound healing [43]. By changing freeze-thaw conditions, PVA/HA hydrogels
with a wide range of stiffness spectrums can be useful dressings for basic research related
to stem cell differentiation, reprogramming, cell migration, and tissue regeneration [44].
The study of Bor et al. showed that increasing the number of F/T cycles will cause the PVA
hydrogels to become hard, thus facilitating the release of drugs, which in turn accelerates
wound healing [45].

3.1.4. Hydrophobic Interaction

Hydrophobic interaction is a strong and stable physical interaction, which is a method
of cross-linking hydrogels in water-soluble polymers with hydrophobic end groups, hy-
drophobic side chains, or hydrophobic monomers [46]. The mechanical properties of
hydrogels can be improved by incorporating hydrophobic units into hydrogels by chemical
or physical methods [47]. Su et al. introduced hydrophobic alkyl groups into PAAm and
PAAc hydrogels to enhance the adhesion of hydrogels so that the hydrogels will not easily
fall off from the wound due to sweating and rubbing [48]. The use of hydrophobically
modified gelatin (HMG) as a hydrogel material has great potential as a carrier for charged
hydrophilic therapeutic drugs (bFGF) and hydrophobic drugs (fluorescein sodium). As
hydrophobic adsorption is reversible, drugs should be gradually released from HMG
hydrogels in vivo to satisfy the adsorption equilibrium because released drugs diffuse out
into the body fluid, thereby promoting angiogenesis [49]. The mechanical properties of
hydrogels significantly affect cell spreading, proliferation, and differentiation. However,
the method of adding hydrophobic units to increase the mechanical strength usually sacri-
fices the ductility of the hydrogels. Therefore, the development of mechanically enhanced
hydrogels with coordinated elongation and toughness is still a topic worthy of attention.

3.1.5. Protein Interaction

In the preparation of hydrogels with natural polymers as the main raw materials,
more and more proteins are used, such as gelatin, collagen, silk fibroin, matrix glue, and
so on [12,50]. Through non-covalent bond interactions between proteins or polypeptides,
conditions such as temperature and phase transition are changed to form protein or
polypeptide hydrogels. Spider silk utilizes the sequence differences between eADF3-CTD
and eADF4-CTD to self-assemble into β-sheet-rich silk. The precise molecular abundance
and composition allow fine-tuning of the solution-gel transition process [51]. With the
continuous development of protein engineering, the application range of protein-based
hydrogels has become wider and wider, especially the application of recombinant proteins,
such as recombinant human collagen (RHC). Deng et al. used RHC conjugated with
chitosan to form thermally responsive hydrogels. Experimental results showed that the
hydrogels combined with RHC exhibited greater cell infiltration capacity, and could induce
more blood vessel formation and accelerate wound healing [52]. Interestingly, both the cell
proliferation rate and cell morphologies were found to depend on the hydrogel composition.
Increasing the RHC fraction of the hydrogels gradually enhanced the cell spreading and
proliferation rate [53].

3.2. Chemical Cross-Linking

At present, most of the hydrogel materials are prepared by chemical cross-linking.
Chemically cross-linked hydrogels often have good mechanical properties and stronger
stability [54]. They are dominated by the conjugation reaction, free radical polymerization
reaction, and the enzymatic reaction.
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3.2.1. Conjugation Reaction

The hydrogels cross-linked by the conjugation reaction have become a hot spot. The
conjugation reaction can be carried out under relatively mild conditions, including the
Michael addition reaction, the Schiff’s base reaction, and the Diels–Alder addition re-
action [55]. The Schiff’s base reaction (the condensation of amine and active carbonyl
group) is a simple green method in the conjugate reaction [56]. Many polysaccharide
molecules contain adjacent hydroxyl groups, such as alginate, starch, hyaluronic acid, and
cellulose, which can be oxidized by periodate to form hydrogels through Schiff’s base reac-
tions [29,57,58]. Using oxidized hydroxyethyl starch (O-HES) and modified carboxymethyl
chitosan (M-CMCS) as raw materials, an injectable in-situ hydrogel with excellent self-
recovery, biocompatibility, biodegradability, and transparency was prepared by the Schiff’s
base reaction, which can be injected into irregular-shaped skin defects and formed in situ to
shape the contour of different dimensions. The excellent compliance made hydrogels easy
to adapt to the wound under different conditions of skin movement, and full-thickness
skin defects treated with M-CMCS/O-HES hydrogels demonstrated a higher wound clo-
sure percentage, more granulation tissue formation, faster epithelialization, and decreased
collagen deposition. It is a promising therapeutic strategy for wound healing [59]. In
addition, a novel bioadhesive hydrogel with intrinsic antibacterial properties was prepared
by mixing modified hyaluronic acid (HA) and ε -polylysine (EPL) using the Schiff’s base
reaction, which can effectively kill bacteria on the surface of wounds, promote angiogenesis,
and accelerate wound healing [60]. The QCS/PF hydrogel prepared by the Schiff’s base
reaction has antibacterial, antioxidant, hemostatic, adhesion, and mechanical adjustable
properties. The gel promotes blood coagulation and the synthesis of ECM components
by simultaneously down-regulating TNF-α and up-regulating VEGF, promotes cell signal
transduction through electrical stimulation, clears ROS through curcumin, and prevents
infection through its antibacterial properties. So as to promote the progress of wound
hemostasis, inflammation, and remodeling stages [13].

3.2.2. Free Radical Polymerization

Free radicals can be produced by heating, ultraviolet radiation, high energy radiation,
electrolysis, and plasma initiation [61]. The radical polymerization reaction of thermally
initiated polymerization and light-initiated polymerization utilizes unsaturated functional
groups or photosensitive functional groups to undergo free radical polymerization or
cross-linking under the action of heat or light to form covalent bonds [60,62]. Most of
the hydrogels prepared by thermally induced cross-linking reactions can be used for a
deep wound healing treatment, and the structure is stable and highly controllable [60].
In the photo-initiated polymerization reaction, the precursor containing the photosensi-
tive functional group can be directly polymerized under UV radiation, and the precursor
containing the double bond functional group can be polymerized under UV radiation
by adding a photo initiator [63]. At present, gelatin, starch, chitosan, sodium alginate,
heparin, hyaluronic acid, and other natural polymers are prepared into hydrogel dressings
through free radical polymerization, which is widely used in wound dressings. A versatile
poly(acrylamide) cellulose nanocrystal/tannic acid–silver nanocomposite (NC) hydrogel
integrated with excellent stretchability, repeatable self-adhesion, high strain sensitivity,
and antibacterial property, was synthesized via radical polymerization at an ambient tem-
perature. These were merited for the hydrogels to be assembled into a flexible epidermal
sensor for long-term human–machine interfacial contact without concerns about the use
of external adhesive tapes and bacterial breeding [64]. In situ, PAM/SA/Ag hydrogels
were prepared by using silver ions in the presence of ammonium persulfate to catalyze free
radical polymerization. Histocompatibility experiment results showed that the hydrogels
showed higher expression of CD31 and VEGF, which are related to angiogenesis in wound
healing [65].
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3.2.3. Enzymatic Reaction

The enzymatic reaction is the cross-linking of natural polymers catalyzed by enzymes
such as transglutaminase, tyrosinase, urease, and horseradish peroxidase (HRP) [60,66].
Enzymatic reactions occur under mild conditions, which can prevent the loss of biological
activity and rapid gelation, and no harmful substances are produced. At present, the
use of enzymatic rapid gelation to prepare antibacterial hydrogels is promising [67,68].
Using HRP and H2O2 to explore the immobilization of low molecular weight hyaluronic
acid (LMWHA) derivatives within gelatin-based hydrogels to stimulate the migration of
ECs. The result shows that the enzymatic immobilization of LMWHA-Ph within gelatin-
based hydrogels represents a promising approach to promote ECs’ motility and further
exploitation for vascular tissue engineering applications [69]. Scientists are paying more
and more attention to the 3D cell culture of hydrogels, creating a hydrogel network with
reversible stiffening/softening capability is important, enzymatic reactions can afford
substrate specificity and mild/predictable reaction kinetics [70]. Using transglutaminase
to mediate the covalent attachment of HA and PEG macromers, the hyaluronic acid
hydrogels formed in situ can specifically regulate the cell phenotype by adjusting their
own mechanical and biochemical properties [71].

4. Biomaterials for Preparing Hydrogels

Biomaterials used in tissue engineering or regenerative medicine are generally divided
into two categories: natural biomaterials and synthetic materials [72]. Regardless of the
source of materials, hydrogel dressings should have low toxicity, good biocompatibility,
and facilitate the growth of cells near the wound. In addition, synthetic hydrogel dressings
should also have good mechanical properties, biodegradability, moisture retention, antibac-
terial, antioxidant, non-adhesion, and good air permeability, etc., [73] as shown in Figure 3.
Recently, the hydrogel dressings synthesized by natural biomaterials have become the
focus of research [74]. Natural biomaterials such as chitosan, collagen, starch, cellulose,
sodium alginate, and hyaluronic acid are widely used in the synthesis of hydrogel wound
dressings. However, there are some problems such as low mechanical properties, high
acquisition cost, small output, and difficult modification. Synthetic materials have specific
functions, good mechanical properties, large output, low cost, and rich variety. However,
synthetic polymers often lack biological and biodegradable activity and may produce toxic
by-products during the reaction, which lead to tissue necrosis. Therefore, researchers
are committed to continuously optimizing the performance of synthetic materials and
developing hydrogels with different functions.

4.1. Natural Biomaterials
4.1.1. Sodium Alginate

Sodium alginate (SA) is a linear anionic polysaccharide polymer [75]. Because SA
contains a large amount of -COO−, SA has obvious pH sensitivity and can quickly form a
gel under extremely mild conditions, which can avoid the inactivation of active substances
such as sensitive drugs, proteins, cells, and enzymes. Many wound care products take
advantage of the structural similarity between alginate and ECM [20,75,76]. Chen et al.
obtained the OSA-DA-PAM hydrogels through the cross-linking of hydrogen bond and
dynamic Schiff’s base reaction between dopamine grafting oxidized SA (OSA-DA) and
polyacrylamide (PAM) chains. Excellent cell affinity and tissue adhesiveness are necessary
for the hydrogels to integrate with the wound tissue in applications. Due to lots of catechol
groups on the OSA chains, the hydrogels had unique cell affinity which promoted the
propagation of fibroblasts, and tissue adhesiveness, benefiting its further application in
wound dressing [29]. In addition, anti-inflammatory and angiogenesis play an important
role in wound healing. The emergence of antibiotic-resistant pathogens has made the prob-
lem of wound treatment more difficult [77]. In vivo evaluation of the prepared PVA-SA
membrane in a mouse burn wound model induced by methicillin-resistant staphylococ-
cus aureus (MRSA) confirmed that the coated PVA-SA membrane had the potential to
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control drug-resistant bacterial infections and promoted wound healing [78]. Currently,
green synthesis inspired by proteins has attracted much attention. SA/SE-AgNPs semi-
interpenetrating network hydrogels not only have good antibacterial activity but also
overcome the shortcoming of SA lacking cell adhesion ability [79]. At an early stage of
wound healing, IL-6 and IL-10 are responsible for the recruitment of fibroblast as well
as the removal of extracellular matrix debris, production of pro-inflammatory molecules
should subside after the inflammatory phase. The synergistic effect of each component of
HG-Ag-EGCG hydrogels dressing not only accelerated the synthesis of various cytokines
at the wound site, but also inhibited the survival of bacteria and excessive ROS and RNS
molecules, so that the wound can transition smoothly to the proliferation and remodeling
phase, thereby enhancing the repair process [80]. SA hydrogels are used as the main ingre-
dient, embedded AgNPs, anti-inflammatory drugs, etc. to promote wound angiogenesis
and inhibit bacterial production. However, the ensuing problems of the controlled release
of drugs and toxicity are still major obstacles, and the preparation of hydrogel dressings
still needs to be further optimized.
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4.1.2. Collagen

Collagen (COL), as the main component of ECM in animals, has good biological activ-
ity, biocompatibility, and biodegradability. When used as the basic component of wound
dressings, it has weak antigenicity, promotes cell growth and proliferation, promotes coag-
ulation and avoids scar formation, etc. [81]. Col-HA hydrogels prepared by HRP covalent
cross-linking not only showed good biocompatibility and biodegradability but also sponta-
neously promoted angiogenesis and played a positive role in the formation of epithelium
and collagen fiber [82]. The hydrogels with self-healing ability as a wound dressing can
extend the use time of the material, especially in critical situations to provide better wound
protection. Therefore, the development of high-grade collagen hydrogels with good self-
healing ability, injection ability, antibacterial, and hemostatic functions as a wound dressing
have great application potential [83]. Natural collagen has poor mechanical properties
and weak resistance to biodegradation. Moreover, pure collagen is easy to deteriorate
due to bacterial erosion in a humid environment [84]. Therefore, researchers are currently
investigating a variety of cross-linking methods to improve the ability of collagen-based
hydrogels. The hemostasis effect of EDC/NHS cross-linked collagen sponge was better
than slow hemostasis [85]. Based on HLC and CS, HCD hydrogels were synthesized by
cross-linking dialdehyde starch. Various in vitro and in vivo evaluations show that HCD
hydrogels have good biocompatibility and biodegradability, indicating that HCD may be
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a useful cosmetic dermal filler [80]. The antibacterial hydrogel dressing was prepared
from marine fish scales made of aminated collagen with low immunogenicity and high
biocompatibility, OSA, and antimicrobial peptides. The developed hydrogel dressing not
only exhibited a similar strain to the human skin but also can significantly inhibit the
growth of S. aureus and E. coli, promote cell proliferation and migration, and accelerate
angiogenesis. Moreover, the findings of the work suggested that the fish scale collagen can
be represented as a promising candidate for biomedical materials, which are eco-friendly,
low-cost, and sustainable [86].

4.1.3. Starch

Starch is widely used in the preparation of biodegradable hydrogels [87]. It has
the advantages of low cost, wide sources, renewable, biocompatibility, and non-toxicity,
etc. [88,89]. Due to the shortcomings such as lack of hydrophilicity and low mechanical
strength, starch is generally not used alone in the preparation of hydrogels [90]. Oxidized
starch is one of the important modified starches. Oxidized starch has the characteristics
of low viscosity, high stability, transparency, film formation, and viscosity, and is widely
used in the pharmaceutical industry [91]. Using oxidized starch as a cross-linking agent,
the gelation time and pore size of porous collagen-based hydrogels can be controlled by
adjusting the degree of oxidation of starch, which is conducive to the aggregation and
growth of adipose stem cells (ASCs), thereby inducing the secretion of VEGF and FGF-2
and promoting angiogenesis [92]. The oxidized starch/ZnO nanocomposite hydrogels
prepared by Hassan et al. show good swelling ability and antibacterial properties and have
the potential to be used in biomedicine [93]. However, the current research on hydrogel
dressings with starch is not deep enough, and the low mechanical strength of starch is the
main reason that restricts its further development.

4.1.4. Cellulose

Natural cellulose is the most widely distributed and abundant polysaccharide in
nature, and its source is very rich. It can be produced by plants, fungi, algae, and bac-
teria [94,95]. Carboxymethyl cellulose (CMC) has received special attention due to its
high abundance, good transparency, and low cost. CMC is highly hydrophilic, which
makes the CMC hydrogels highly absorbable to wound exudate and also provides a moist
environment around the wound to prevent tissue loss of moisture, which is important
for burns and diabetes wounds [96]. Relatively poor cell adhesion, antibacterial activity,
and water stability of CMC hydrogels have limited the practical application as wound
dressings [97]. In order to make up for this defect, the blending of CMC with other
polymers is the key to solving the problem. Chen et al. used Schiff’s base reactions to
produce injectable hydrogel composites based on cellulose and pH sensitivity. This resul-
tant injectable hydrogel composite system may meet clinical needs by offering localized
delivery of hydrophobic compounds in a precisely controlled and environment-triggered
release [98]. Compared with plant cellulose, bacterial cellulose (BC) has better properties,
such as good biocompatibility, high porosity, good air permeability, moisture absorption,
water retention, excellent mechanical properties, and flexibility [99–101]. However, BC
does not have antibacterial activity. Researchers are very interested in using antibacterial
agents to functionally modify them to develop new BC-based functional biomaterials for
wound healing applications [102]. The thymol-rich bacterial cellulose hydrogels can be
used as an effective material for third-degree burn wound repair. It not only showed excel-
lent antibacterial activity but also had remarkable moisturizing properties that provided
an apt moist environment for a smooth transition between inflammatory-proliferation-
remodeling phases [103]. Compared with pure BC hydrogels, the amine-grafted BC/SPG
DN hydrogels can inhibit the growth of S. aureus and E. coli, stimulate the proliferation of
human fibroblasts, create favorable conditions for different stages of wound healing and
promote rapid wound healing [104]. The ability of BC can be improved by compounding
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with other polymers to form composite hydrogels or modifying BC. Therefore, BC has
great potential in the application of wound dressings in the future.

4.1.5. Chitosan

Chitosan (CS) is the only natural cationic polymer with biocompatibility, biodegrad-
ability, non-toxic, antibacterial, antifungal, and anti-tumor properties. It is widely used
as a biomedical material. CS is also beneficial to wound healing because it promotes
hemostasis and accelerates tissue formation. CS-based hydrogels play an important role
in wound healing [3,105,106]. Ding, et al. developed self-healing hydrogels based on
COL and CS through dynamic imine bonding. The addition of COL makes the COL-CS
hydrogels injectable have rapid self-healing ability and good moldability. In addition, the
pH sensitivity of the COL-CS hydrogels are helpful for the design of smart materials [107].
The HLC/HA/CCS hydrogels prepared by using transglutaminase as a cross-linking agent
greatly improves the ability of the hydrogels to act as a bacterial barrier [16]. Long et al.
demonstrated the feasibility of 3D printing CS-PEC hydrogels. The 3D printed dressing
showed self-adhesion to the skin. This strength of adhesion can be easily peeled off without
causing tissue damage or pain. Thus, the replacement process can minimize tissue damage
or scarring [108]. In addition, stem cell therapies are becoming more popular. The interac-
tions between stem cells and materials are fundamental to stem cell behaviors including cell
migration, differentiation, and self-renewal. As an important factor of the cell biophysical
environment, the mechanical properties of materials can largely affect stem cell behaviors
at both spatial and time scales. However, poor mechanical strength limits the application
of CS hydrogels in wound healing. Considering that stem cells in vivo usually experience
dynamically changed mechanical microenvironments, it will be of particular interest to
further investigate stem cell mechanical memory in native-like 3D cell microenvironments.

4.1.6. Hyaluronic Acid

Hyaluronic acid (HA) is one of the main components of the ECM, which interacts with
cells through receptors on the plasma membrane (such as CD44) to promote the formation
of capillaries [109]. During the inflammatory period of wound healing, HA accumulates
in the wound area and regulates the synthesis of pro-inflammatory cytokines by regulat-
ing inflammatory cells to swallow invading microorganisms and induce fibroblasts and
keratinocytes to migrate and proliferate during the proliferation and remodeling stages.
Therefore, HA plays an important role in tissue regeneration and angiogenesis. Researchers
have used these advantages of HA in combination with other biological materials to en-
hance the hydrophilicity of hydrogel dressings and promote wound healing [105,110,111].
HA-based hydrogels also have some disadvantages, such as poor mechanical properties,
poor structural stability, and no antibacterial effect, which may affect their specific effi-
cacy [112]. In order to solve these shortcomings, composite hydrogels have been prepared
to improve the properties of HA-based hydrogels. Jeong et al. developed a new type
of HA-based composite hydrogel with CaF2. Compared with pure hydrogels, the cell
reactions such as cell adhesion and cell proliferation of composite hydrogels were im-
proved [113]. Liu et al. prepared HA/EPL hydrogels through HRP enzymatic cross-linking
and Schiff’s base reaction. The results of the study showed that hydrogels could effectively
kill the bacteria on the wound surface and accelerate wound healing, and the thickness of
new skin, new microvessels, granulation tissue, and collagen density of the rats treated
with the hydrogel dressing were two times higher than those of the rats treated with
commercial fibrin glue [60]. Although HA-based hydrogel dressings are endowed with
good mechanical properties and antibacterial activity by cross-linking polymers or metal
ions, the cytotoxicity of the added materials cannot be ignored. There is a long way to go
to find more efficient green synthesis methods and less toxic materials.
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4.1.7. Silk Proteins (and Others)

In order to achieve the best clinical effect, a suitable dressing is designed according
to the type of wound. Burns or chronic wounds will produce a lot of exudates and the
shape of the wound is irregular, which is easy to be infected and even life-threatening. Silk
fibroin (SF) hydrogels are good candidates because they can absorb exudate from defect
sites and seal different wound defects to prevent microbial contamination [12,114]. SF
has biocompatibility, biodegradability, high water absorption, high oxygen absorption,
low immunogenicity, and good mechanical properties, SF hydrogel can deliver small
molecular weight drugs, biological agents, cells, and simulate ECM in 3D in vitro tissue
models, thereby promoting wound healing. Therefore, it can be directly used as a wound
dressing [115–117]. Currently, natural silks of spiders, silkworms, moths, bees, wasps, and
lacewings are used as an inspiration for the recombinant production of silk proteins to
be used for biomedical applications [118–120]. The recombinant partial dragline spider
silk protein is a self-assembling protein derived from Euprosthenops australis [121–123].
It possesses low density, biodegradability and biocompatibility, and good mechanical
properties, in addition, it has the ability to self-assemble into materials that are suitable
as cell culture matrices [124–126]. The functionalized recombinant spider silk proteins
expressed in bacteria hold great potential for the development of advanced biomaterials
in the field of tissue engineering [115,127]. The wound dressing made by Chouhan et al.
using recombinant spider silk protein (4RepCT) not only stimulated cell proliferation but
also provided antibacterial effects, thereby improving the wound healing process [128].

4.2. Synthetic Materials for Hydrogels
4.2.1. Acrylamide

Acrylamide (AM) and its derivatives have excellent biocompatibility, non-carcinogenicity,
non-toxicity, easy processing, mechanical adjustment, accurate and controllable elastic
properties, and good swelling ability [129]. The SA/PAM-Fe DN hydrogels prepared on
the basis of hydrophobic interaction and ionic cross-linking had excellent self-healing
properties, puncture resistance, fatigue resistance, pH sensitivity, good thermal stability,
and self-healing properties [130]. Based on the good mechanical properties of PAM-based
hydrogels, the application of PAM-based hydrogels in wound dressings can be promoted
by adding antibacterial, antifungal, growth factors, and other macromolecules. Huang
et al. prepared QCS-M-PAM hydrogels with good hemostatic, antibacterial, and adhesion
properties by using QCS and matrix adhesive. QCS-M-PAM hydrogels promote vascular
regeneration and reduce scarring by up-regulating the expression of growth factors and
down-regulating the expression of pro-inflammatory factors [131]. A series of excellent
hydrogel wound dressings can be prepared by continuously improving the synthesis
method of AM-based hydrogels and taking advantage of the excellent biocompatibility of
AM. Combined with natural biomaterials, nanomaterials, growth factors, etc., AM-based
hydrogels can improve their antibacterial and anti-inflammatory properties, and promote
the formation of blood vessels or epithelium, so as to achieve the purpose of promoting
wound healing. At the same time, AM’s mechanical adjustment and precise controllability
of elastic properties make it very promising in future intelligent applications.

4.2.2. Polyvinyl Alcohol

Polyvinyl alcohol (PVA) is a common polymer and has good biocompatibility, sol-
ubility, non-toxicity, non-carcinogenicity, and excellent mechanical properties [132,133].
However, the pure PVA hydrogels do not have the effects of hemostasis, antibacterial,
etc., and lack of elasticity and hydrophilicity. In recent years, researchers have focused
on the combination of PVA with other functional components to promote wound healing.
At present, a large number of materials (such as SA, CS, gelatin, oxidized cellulose, etc.)
have been mixed with PVA to achieve hemostasis [134]. Hydrogels adhered to the wound
surface to block the broken blood vessels and stimulate platelets to release coagulation
factors, thus promoting and accelerating blood coagulation [135]. Because of the current
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abuse of a large number of antibiotics, many bacteria have drug resistance [136]. Kalantari
et al. prepared PVA/CS/CeO2-NPs hydrogels using freeze-thaw technology. Not only
could it absorb a large amount of wound exudate and avoid a large number of bacteria
breeding, but also because of the chemical stability, anti-inflammatory, and antibacterial
properties of CeO2-NPS, hydrogels had strong antibacterial activity against MRSA. This
can help chronic and acute wounds heal quickly [137]. Wang et al. embedded Ag/TiO2
nanoparticles into PVA hydrogels to effectively combat antibiotic-resistant bacteria through
light-induced ROS [138]. Liu et al. prepared Cu-HHA/PVA@MΦ2 hydrogels by physical
cross-linking. The hydrogels can directly provide MΦ2. As the hydrogels degrade, copper
ions are released to further stimulate angiogenesis, thereby accelerating the transition from
inflammation to proliferation and remodeling in the wound healing phase [139].

4.2.3. Polyethylene Glycol

Polyethylene glycol (PEG) is a kind of amphiphilic polymer with a wide molecular
weight range [140,141]. In recent years, PEG has been widely used in wound dressings
because of its non-toxicity, good biocompatibility, biodegradability, easy availability, stable
activity, and low preparation cost [142,143]. However, due to the use of cross-linking
agents, such as formaldehyde, glutaraldehyde, and epichlorohydrin, the prepared hy-
drogel dressings are cytotoxic [144]. Therefore, current researchers focus on reducing
the toxicity of PEG-based hydrogels. At present, many workers use citric acid (CA) as a
cross-linking agent to prepare hydrogels [145]. It was reported that CMC-PEG hydrogels
were prepared by using CA as an environmental cross-linking agent, these hydrogels had
great advantages in chronic wound healing [146]. At present, the difficulty in healing
chronic wounds caused by type II diabetes is mainly due to its persistent infection and
prolonged inflammatory period. The presence of MRSA may exacerbate wound damage.
Using PEG-based hydrogels as a drug delivery carrier can greatly improve the antibacterial
activity of hydrogel dressings. Masood et al. prepared CS-PEG hydrogels containing Ag-
NPs by ion cross-linking, the results showed that hydrogels had good antibacterial activity,
which could effectively prevent bacterial damage to cells, so as to promote wound healing.
This work provides a novel strategy for the development of other synthetic materials as
antibacterial hydrogels for the treatment of chronic wounds [147]. The functionalized
PEGS-FA hydrogel dressing significantly enhanced in vivo wound healing process in a
full-thickness skin defect model by upregulating the gene expression of growth factors
including VEGF, EGF, and TGF-β and then promoting granulation tissue thickness and
collagen deposition [3].

4.2.4. Polyurethane

Polyurethane (PU) is a synthetic polymer with urethane bonds on the main chain
composed of hard segments formed by diisocyanates and chain extenders and soft seg-
ments formed by polyether or polyester blocks [148,149]. PU has good biocompatibility,
blood compatibility, biodegradability, low biotoxicity, chemical stability, and mechanical
properties [150]. Drug-loaded hydrogels that are physically mixed or chemically covalently
bonded often receive attention because of their wide range of action [151]. However, it is
often difficult for hydrophilic hydrogels to load hydrophobic drugs. At present, amphoteric
PU is an ideal candidate for the production of drug-loaded hydrogels [152,153]. Lucas
et al. used PEG and PCL-triol to synthesize PU-based hydrogels through a one-pot method.
The amphiphilic properties of PU enable hydrophobic drugs to be loaded efficiently and
quickly [154]. Feng et al. synthesized PU/curcumin hydrogels by in situ copolymerization,
PU-Cur hydrogels not only retain their physical and chemical properties and functions but
also improves the mechanical strength of the PU hydrogels and promotes rapid wound
healing [155]. However, PU hydrogels often have disadvantages such as poor hydrophilic
properties leading to weak lubricating properties, and cross-linking agents or initiators
required for preparation by radiation or chemical cross-linking are toxic and difficult to
remove. At present, researchers use water-based PU solution (WPU) and PVA to form
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PU/PVA hydrogels by freezing and thawing physical methods, which improves the hy-
drophilicity of PU hydrogels and greatly improves the lubrication performance of PU based
hydrogels [156]. The toxicity of hydrogels can be solved by embedding carbohydrates into
the PU network [157]. Carbohydrates such as cyclodextrin, starch, cellulose, etc. can be
used as cross-linking agents in the PU hydrogels network due to the presence of multiple
hydroxyl groups that can react with isocyanate groups [158].

4.2.5. Polyvinylpyrrolidone

Polyethylene pyrrolidone (PVP) has low toxicity, good water solubility, biocompatibil-
ity, biodegradability, heat resistance, wettability, adhesion, and film-forming properties.
Therefore, it is widely used in medicine, food, cosmetics, and other fields [159]. In recent
years, the impermeability of PVP to bacteria has made PVP-based hydrogel dressings more
widely used. Khan et al. prepared PVP/PVA/Ag@ZnO NCs hydrogels, and the antibacte-
rial activity experiment showed that the dressing could maximize the wound healing rate
by minimizing the increased rate of infection [160]. Due to its good water solubility, PVP
tends to release the loaded drugs quickly. The strong binding effect between coumaric acid
and PVP can effectively promote the controlled release function of PVP-based hydrogels.
This not only solves the problem of drug delivery system design caused by poor water
solubility of phenolic compounds but also solves the problem of rapid dissolution of PVP-
based hydrogels in a wet environment [161,162]. Marco et al. prepared a multifunctional
double-layer wound dressing. PVP loaded with skin disinfectant constitutes the upper
layer, and HA/PVP loaded with antibiotic ciprofloxacin constitutes the lower layer. The
results showed that the combination of HA and PVP ensured a more sustained release of
the antibiotic ciprofloxacin, helping to maintain a sterile wound bed during the later stages
of the healing process [163].

4.2.6. Poly(N-isopropylacrylamide)

Poly(N-isopropylacrylamide) (pNIPAM) has both hydrophilic amido groups and
hydrophobic isopropyl groups on the macromolecular chain. Both the linear pNIPAM
aqueous solution and the cross-linked pNIPAM hydrogels exhibit temperature-sensitive
characteristics. The thermal response is a key function of pNIPAM [164]. Moreover,
PNIPAM is non-toxic and has good biocompatibility/biodegradability and physiological
reactivity. Nanohydrogels based on PNIPAM have been widely used in the controlled
delivery of small molecule drugs and have attracted much attention in the field of hydrogel
dressings [165–167]. Thermally sensitive hydrogels are widely used in tissue regeneration,
collagen, HA, and other polymers can be used to modify PNIPAM hydrogels to improve
their biocompatibility. The heat-sensitive composite hydrogels synthesized by Lin et al.
gradually deliver DS and bFGF during the inflammation phase and the new tissue forma-
tion phase by controlling the temperature for wound repair [168]. The COL–GG–PNIPAMs
IPN hydrogels prepared by Zhang et al. have the properties of processability, injectability,
and remodeling, which significantly promoted the repair of mouse skin wounds. In addi-
tion, they are expected to be widely used in biomedical engineering, wearable electronic
devices, and sensors due to their excellent thermal sensitivity and near-infrared response
characteristics [169].

Wound healing involves a variety of biological reactions, and the application of hy-
drogel dressings that do not match adjacent tissues often leads to tissue inflammation or
rejection. The nature of the polymer almost determines the nature of the hydrogels made
from this polymer. The properties of each polymer are shown in Figure 4. Therefore, vari-
ous factors, such as mechanical properties and antibacterial properties of dressings, should
be considered emphatically in practical application. However, because single polymer
hydrogels often have few advantages, many researchers are working on the development
of new hydrogels with enhanced physical and chemical properties, biocompatibility, con-
trollable biodegradability, and low toxicity by combining natural and synthetic polymers
or modified natural biopolymers through physical or chemical cross-linking [170,171].
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The clinical outcome of wound recovery is primarily determined by the time to com-
plete wound healing, or the proportion of wounds that fully healed (epithelialization)
within a specific period of time and wound infection [172]. Hydrogel wound dress-
ings have many benefits for wound repair. Recent progress has shown that hydrogel
wound dressings can provide complex scaffolds and serve as a delivery system for cells
and biochemical factors, their treatment can heal wounds faster and obtain collagen-rich
and thick wound repair tissue [173]. Currently, widely used hydrogel wound dressings
(eg, Vigilon, Radicare, RadiaGel, Geliperm, FibDex®) can quickly heal wounds [174]. Clini-
cal experiments suggest that wounds dressed with hydrogels healed more rapidly than
those dressed with a variety of usual care regimens, the average healing time of the hydro-
gel dressing was 13.6 ± 9.6 days, while the regular care was 15.1 ± 6.45 days, the hydrogel
dressing was changed less frequently and the infection rate was lower, [175]. The research
results also show that hydrogels can effectively relieve the pain, burning, and irritation
typical of skin wounds. Concurrently, adverse reactions such as wound dryness, swelling,
pruritus, and fever were significantly reduced [176]. In addition, the hydrogel dressing is
easier to remove, the dressing replacement is simple and the cost is lower, which not only
improves patient comfort but also saves resources [177]. Although hydrogels have shown
superior properties in a series of in vitro and in vivo studies for wound management, they
are still far from ideal wound dressings.

5. Conclusions and Prospects

In this review, the research progress of hydrogels as a wound dressing is reviewed
and summarized. Traditional gauze and cotton dressings often cause secondary damage
to the wound when they are removed. Hydrogel dressings are beneficial to the treatment
of any type of wound. Researchers have prepared hydrogels with different properties
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through physical and chemical cross-linking methods, which greatly meet the needs of
humans for the treatment of various wound types. In addition, various methods are used to
continuously optimize the parameters of the hydrogels to expand the scope of application
of the hydrogels. From the point of view of the materials, both natural and synthetic
polymers have good biological activity and a wide range of applications. In particular, the
mixed-use of various polymers highlights the main role of each component and speeds up
wound healing.

In the future, the research of hydrogel dressings will develop towards lower cost
and diversified functions. At present, there are various types of hydrogel dressings,
and various new hydrogel materials are continuously optimized and their functions are
becoming more and more perfect. However, there is still a gap with the ideal hydrogel
dressing, especially in the treatment of chronic wounds. In the future, the development
of hydrogel dressings can pay more attention to the preparation of materials with strong
antibacterial, antioxidant, or slow-release function, or pay more attention to the structural
modification of natural polymers. Many factors including materials and methods can affect
the properties of hydrogels. The stability, processability, and solubility of the polymer are
also important obstacles to optimizing the preparation process. Therefore, researchers can
focus on searching for new technologies and materials and consider various influencing
factors to improve the function of hydrogel dressings.
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