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Abstract

Motivation: Temporal variations in biological systems and more generally in natural sciences are

typically modeled as a set of ordinary, partial or stochastic differential or difference equations.

Algorithms for learning the structure and the parameters of a dynamical system are distinguished

based on whether time is discrete or continuous, observations are time-series or time-course and

whether the system is deterministic or stochastic, however, there is no approach able to handle the

various types of dynamical systems simultaneously.

Results: In this paper, we present a unified approach to infer both the structure and the parameters

of non-linear dynamical systems of any type under the restriction of being linear with respect to

the unknown parameters. Our approach, which is named Unified Sparse Dynamics Learning

(USDL), constitutes of two steps. First, an atemporal system of equations is derived through the ap-

plication of the weak formulation. Then, assuming a sparse representation for the dynamical sys-

tem, we show that the inference problem can be expressed as a sparse signal recovery problem,

allowing the application of an extensive body of algorithms and theoretical results. Results on

simulated data demonstrate the efficacy and superiority of the USDL algorithm under multiple

interventions and/or stochasticity. Additionally, USDL’s accuracy significantly correlates with the-

oretical metrics such as the exact recovery coefficient. On real single-cell data, the proposed ap-

proach is able to induce high-confidence subgraphs of the signaling pathway.

Availability and implementation: Source code is available at Bioinformatics online. USDL algo-

rithm has been also integrated in SCENERY (http://scenery.csd.uoc.gr/); an online tool for

single-cell mass cytometry analytics.

Contact: pantazis@iacm.forth.gr or tsamard@csd.uoc.gr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The great majority of biological processes are time-varying requiring

the use of dynamical models for their quantitative description.

Examples range from macroscopic processes studied for instance in

epidemiology and population dynamics to microscopic processes

such as biochemical reactions and gene regulation in a living cell, all

of which are modeled as time-varying dynamical systems of complex

interactions (Newman, 2014). Learning the structural form and the

parameters of a dynamical system allows one to predict not only the

evolution of the system but also the effects of manipulation and per-

turbation. Depending on the characteristics of the biological system

under study as well as on the available measurements, a palette of

dynamical model formalisms has been successfully applied. For de-

terministic processes typical types of models include difference equa-

tions (when time is modeled as discrete), ordinary differential

equations (ODEs) for continuous time and their space-extended

counterpart, partial differential equations. For stochastic processes,
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typical types of models include Markov Chains such as auto-

regressive and moving averages (for discrete time), and, stochastic

differential equations for continuous time. Due to the absence of a

unifying mechanism, inferring the structure and the parameters of a

dynamical system depends on the underlying formalism requiring

specialized techniques and algorithms.

Several approaches that learn the structural form of an ODE sys-

tem have been presented in the literature. One of the first attempts

was the Inferelator (Bonneau et al., 2006) which is an algorithm for

de novo learning of parsimonious regulatory networks from

systems-biology data sets using a shrinkage operator that induces

sparsity. ODEion (Gennemark and Wedelin, 2014) searches over

the model space and performs an optimization via simulation ap-

proach while SINDy is another sparsity-induced algorithm (Brunton

et al., 2016; Mangan et al., 2016). Sparse regression dedicated on

single-cell data have been also proposed (Klimovskaia et al., 2016).

Generally, sparse solutions are obtained through convex relaxation

approaches (Tropp, 2006) such as linear programing or Lasso

(Tibshirani, 1994) and, not surprisingly, such optimization pro-

grams have been studied extensively in structure inference and net-

work reconstruction (August and Papachristodoulou, 2009; Bolstad

et al., 2011; Charbonnier et al., 2010; Friedman et al., 2008;

Gustafsson et al., 2009). Bayesian inference approaches (Daniels

and Nemenman, 2015; Friston et al., 2003) have been also utilized

for structure learning and phenomenological modeling of determin-

istic dynamical systems. Bayesian methods can tackle unmeasured

(latent) variables on the cost of increased computational demands

due to the substantial sampling of the model space. Moreover, the-

oretical guarantees on the performance are hard to obtain for

Bayesian methods. Studies on stochastic dynamical systems prove

under appropriate assumptions that the true sparse stochastic dy-

namics is guaranteed to be inferred (Bento et al., 2010; Bolstad

et al., 2011). The prominent feature of these studies is that the dy-

namical system is linear with respect to both the unknown parame-

ters and the state variables. Given the structure of the dynamical

system, parameter estimation algorithms are also partitioned

according to the type of the dynamical system (DiStefano, 2015).

In this paper, we present Unified Sparse Dynamics Learning

(USDL) algorithm which is a novel approach to infer both the struc-

ture and the parameters of any dynamical system from temporal

measurements. First, by employing the weak formulation (Davis,

1984; Strang and Fix, 2008), the problem of inducing the structure

of a dynamical model is transformed into an equivalent yet atem-

poral learning problem. The weak formulation can be intuitively

understood as a projection operator that multiplies the dynamical

system’s equation by an arbitrary function, called a test function,

and, then integrates over time and/or space. The weak formulation

can be also thought as a type of feature extraction. The weak formu-

lation has several advantages: (i) by using integration-by-parts, the

weak formulation does not require the computation of the deriva-

tives of the trajectories; in contrast, other methods compute numer-

ically the derivatives thus amplifying the noise and deteriorating the

reconstruction accuracy, (ii) by suitable definition of the test func-

tions, the same algorithm can be applied to almost any type of dy-

namical system, thus, unification across different families of

dynamical models is achieved and (iii) the weak formulation trans-

forms the dynamical system into a linear system of equations where

the time and/or space dimensions have been completely eliminated.

Second, we assume sparsity of the solution which results—in com-

bination with the weak formulation—into a well-posed, well-studied

problem in computer science, namely sparse signal recovery (SSR)

(Bruckstein et al., 2009; Candès et al., 2006) also known as

compressed sensing (Donoho, 2006; Foucart and Rauhut, 2013).

Sparsity in our context means that the dynamics of each state variable

are typically driven by a relatively small number of variables. Sparsity

is critical for learning large systems from finite data and constitutes a

form of complexity penalization and regularization thus favoring sim-

pler solutions. The reformulation of the problem as a SSR problem

allows us to straightforwardly apply a large vividly evolving body of

theoretical and algorithmic results. Specifically, we choose the

Orthogonal Matching Pursuit (OMP) algorithm (Davis et al., 1997;

Pati et al., 1993; Tropp and Gilbert, 2007) which is a greedy and fast

algorithm for recovering the sparse solution while theoretical guaran-

tees on the correctness of the learned solution are provided based on

the mutual incoherence parameter (MIP) (Donoho and Huo, 2001)

and the exact recovery coefficient (ERC) (Tropp, 2006). The presented

examples reveal that the above (in)coherency metrics and especially the

latter are informative indicators of the reconstruction accuracy as

measured by the precision and recall curves. Furthermore, multiple

interventions typically convey crucial information about the true struc-

ture of a biological dynamical system (Sachs et al., 2005). The pro-

posed USDL algorithm is capable of handling not only observational

but also interventional data, a property that distinguishes it from the

existing sparsity-induced approaches.

Finally, we compare USDL algorithm with SINDy (Brunton et al.,

2016) and despite the fact that SINDy occasionally converges faster

than USDL with respect to the amount of data as in Lorenz96 model

(Lorenz, 1996), we demonstrate that our approach performs better in

terms of accuracy in both interventional time-course data and station-

ary stochastic time-series as shown in the Section 3 by the respective

protein networks and multidimensional Ornstein–Uhlenbeck process

given sufficient amount of temporal data. The merit of the weak for-

mulation is notably highlighted at the stationary regime of the

Ornstein–Uhlenbeck process where an educated guess of test func-

tions resulted in perfect reconstruction of the stochastic dynamical

system showing the plasticity and generality of USDL algorithm

which stems from the plethora of choices for the test functions.

2 Materials and methods

2.1 Weak formulation
The weak formulation has been employed primarily in the field of

applied mathematics where it provides a rigorous theoretical frame-

work to define solutions that are not necessarily differentiable (Evans,

1998). Another important application of the weak formulation is

found in numerical analysis. Particularly, the finite elements method

which is a numerical technique for estimating approximate solutions

of dynamical systems is based on it (Strang and Fix, 2008). In our set-

ting, the solutions are given as measurements while the system of dif-

ferential equations is unknown and has to be inferred. Thus, instead

of applying the weak formulation to approximate solutions, we use it

to transform the problem of learning the structure of a dynamical sys-

tem into an equivalent yet atemporal learning problem.

For clarity purposes, the weak formulation is presented for

ODEs which is a particular example of dynamical systems. Let x ¼
xðtÞ 2 R

N be an N-dimensional vector function of time which repre-

sents the state variables while N is the number of state variables.

Following physics notation (i.e. _x :¼ dx
dt), a system of ODEs with lin-

ear parameters is defined as _x ¼ AwðxÞ; xðt0Þ ¼ x0 where t0 is the

starting time instant with initial value x0 2 R
N. A 2 R

N�Q is the un-

known and usually sparse connectivity (or coefficient or parameter)

matrix to be estimated. Dictionary, wð�Þ, is a (given) Q-dimensional

vector-valued vector function, w : RN ! R
Q which contains all the

pre-determined candidate functions that might drive the dynamics.
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Candidate functions are usually powers, cross-products, fractions, trig-

onometric, exponential or logarithmic functions of the state variables

leading to non-linear dynamical systems. The completion of the diction-

ary, which could be guided by the presented incoherence metrics, is typ-

ically an application- and/or user-specific problem. Element-wise, the

ODE system can be equivalently rewritten in a non-matrix form as

_xn ¼
XQ

q¼1

anqwqðxÞ ; xnðt0Þ ¼ x0n ; n ¼ 1; :::;N: (1)

An example from the theory of biochemical reaction networks

(Lente, 2015) is presented in Table 1. Under mass action kinetics law

and depending on the number of reactants in a chemical reaction net-

work, two candidate dictionaries are shown. If the user assumes that

only single-reactant reactions occur then the dictionary is simply the

identity function (i.e. wðxÞ ¼ x) since the reaction rates are linear

with respect to the state variables for this case. However, if the user

assumes that two-reactant reactions occur then the dictionary is aug-

mented with all quadratic terms as shown in the last row of Table 1.

In order to derive the (finite) weak formulation, a set of M test

functions denoted by f/mðtÞgMm¼1 has to be specified. The test func-

tions are smooth, not necessary orthogonal and can be chosen from

a large repository of functions. Typical examples are polynomials,

splines, Fourier modes (i.e. sines and cosines with varying frequency)

or kernel functions from other integral transforms. Fourier modes

are preferred when trajectories exhibit periodicities while splines are

more appropriate when localized phenomena have to be highlighted.

As we will show later, customized families of test functions may be

required in order to reveal imperceptible variable interactions.

Proceeding, let T be the final time and without loss of generality as-

sume that t0 ¼ 0. Denoting by hf ; gi :¼
Ð T
0 f ðtÞgðtÞdt the inner prod-

uct between two functions f and g belonging to the L2 function

space, define the M-dimensional vector zn whose m-th element is

given by znm :¼ h _xn;/mi, the M�Q dictionary matrix W whose

(m, q)-th element is given by Wmq :¼ hwqðxÞ;/mi and let an be a

Q-dimensional vector which corresponds to the n-th row of matrix

A. Then, the weak form of the ODE system in equation (1) is

zn ¼ Wan ; n ¼ 1; :::;N: (2)

In Supplementary S1 Text, we provide the detailed derivation of

the weak formulation for ODEs as well as for other types of dynam-

ical systems.

The intuition behind weak formulation is that it projects the so-

lution of a dynamical system to a finite-dimensional vector (i.e. to a

set of linear functionals in mathematical language) whose elements

are defined from the inner product between the solution and the test

functions. A key advantage of the weak formulation is that appro-

priate test functions for various dynamical systems such as partial

and/or stochastic differential equations exist and can be utilized

transforming again the dynamical inference problem to an

atemporal/aspatial problem similar to equation (2). Thus, unifica-

tion of the structure inference problem for various dynamical sys-

tems is achieved. Moreover, the original problem where time is

continuous is transformed from an infinite dimensional [meaning

that equation (1) should be satisfied for all t 2 ½0;T�] to a finite di-

mensional one. Additionally, and more importantly from a practical

viewpoint, there is no need to numerically estimate the time deriva-

tives of the state variables. Indeed, exploiting the integration-by-

parts formula, it is straightforward to obtain that

znm ¼ xnðtÞ/mðtÞjT0 � hxn; _/mi;

and since test functions, /m, are explicitly know, their differenti-

ation is exact. In general, differentiation amplifies the noise of a sig-

nal resulting in high variance estimates of the derivatives

deteriorating the performance of any inference approach which

necessitates the use of derivative approximation and regularization.

Finally, when new trajectories (or time-series) from different initial

conditions are obtained, they can be easily incorporated into the for-

mulation by straightforward concatenation. Indeed, if P trajectories,

fxðpÞðtÞgPp¼1, are provided and expanding both

zn ¼
z
ð1Þ
n

..

.

z
ðPÞ
n

2
664

3
775 2 R

MP and W¼
Wð1Þ

..

.

WðPÞ

2
64

3
75 2 R

MP�Q

with z
ðpÞ
nm ¼ h _xðpÞn ;/mi and WðpÞmq ¼ hwqðxðpÞÞ;/mi, then, equation (2)

is still valid.

2.2 Type of measurements
In the weak formulation, the estimation of the integrals (i.e. the inner

products between functions) from the temporal data is required. There

are two major categories of temporal data that we consider depending

whether the same object is repeatedly measured or not. For the case of

repeated measurements, the same object is measured sequentially over a

time interval hence a time-series is constructed at the sampling points.

When the sampling frequency is high enough, the collected time-series

can be considered as continuous over time. For repeated measurements

and deterministic systems, standard techniques such as trapezoidal rule

and Simpson’s rule are utilized for the numerical integration. When

measurements are far from each other, interpolation between the time-

points can be applied. Additionally, there is no need for equispaced

sampling since these methods can handle uneven sampling. For stochas-

tic integrals, numerical integration requires different treatment since the

definition of the integrals is different (e.g. Ito integral), nevertheless, nu-

merical methods do also exist for this case (Oksendal, 1985).

Non-repeated measurements—we also refer to them as time-course

data—measure at each time instant a different object. This may happen

because the object is destroyed during the measurement process as, for

instance, in mass cytometry (see the demonstration examples below)

and the same object cannot be measured more than once. However, it

is assumed that all the measured objects are drawn from the same

distribution. For time-course data, time-series cannot be directly

constructed from the data. In order to create time-series from the time-

course data, the collocation method (Ramsay et al., 2007) in conjunc-

tion with a trajectory smoothing penalty (Craven and Wahba, 1978;

Zhan and Yeung, 2011) are utilized. In the collocation method, a time-

series is approximated by a weighted sum of basis functions.

Moreover, time-course data from different experiments might be

available. Each experiment might perform interventions to some or all

variables hence each variable has its own time-series which resembles

the so called multiple shooting method (Peifer and Timmer, 2007) and

Table 1. Different choices for the dictionary, wðxÞ, according to the

allowed chemical reaction types under mass action kinetics law

Unknown reactions Dictionary, wðxÞ Size, Q

Xi ! Xi0 x N

Xi þXj ! Xi0 þXj0 ½x; x1x1:N ; x2x2:N ; :::; x
2
N �

T ðN þ 3ÞN=2

Note: Symbols X1–XN correspond to the state variables [a.k.a. (reaction)

species in chemistry and systems biology]. The row vector xi:j is defined as

xi:j :¼ ½xi; xiþ1; :::; xj�. For the two-reactant case, the dynamical system is non-

linear with respect to the state variables.
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therefore each variable has its own trajectory per experiment.

Interventional data are important in structure inference because they

often reveal critical information about the biological system under

study. Details on the collocation method and how to deal with inter-

ventions (e.g. inhibition) using the multiple shooting method can be

found in Supplementary S2 Text and S3 Text, respectively.

2.3 Sparse signal recovery
The weak formulation enables us to transform a dynamical system in-

ference problem to the identification of the sparse solution of equa-

tion (2) which belongs to the well-studied field of SSR. In particular,

the structure inference is transformed to the problem of finding the

support of the sparse solution. In SSR, the goal is to minimize the l0
quasi-norm of the coefficient vector, a, given that jjz�Wajj2 < �

where � is a pre-defined tolerance (for the sake of simplicity, we drop

the dependence on n for the rest of the section.). Performing the mini-

mization is computationally feasible in small scale systems but, in

general, it is an intractable problem since it grows exponentially,

hence, alternative approximation methods have been developed. One

type of approximation is based on the so-called convex relaxation ap-

proach where the above optimization is replaced by a convex pro-

gram (Tropp, 2006). Convex relaxation is appealing because the

optimization can be completed in polynomial time using standard

software. General conditions under which the convex relaxation pro-

gram returns the right answer has been presented in the literature

(Tropp, 2006). In the presence of noise, additional assumptions are

imposed on the strength of the components’ coefficient in order to

achieve perfect reconstruction with high probability. In

Supplementary S4 Text, we present two commonly used convex re-

laxation formulations namely l1 error where instead of minimizing

the l0 norm, the l1 norm is minimized and Lasso where an l1 norm

regularization term is added to the quadratic cost functional. Another

family of techniques that solves the SSR problem is greedy algorithms

such as matching pursuit (Mallat and Zhang, 1993) and OMP (Davis

et al., 1997; Pati et al., 1993; Tropp and Gilbert, 2007). For these

greedy algorithms, the correct support of the signal is recovered under

suitable assumptions which are similar to the assumptions of convex

relaxation. Details on OMP as well on known theoretical results that

assert under which conditions these algorithms infer the true sparse

representation are provided in Supplementary S4 Text.

In order for any sparse signal identification algorithm to perform

perfect reconstruction both the degree of collinearity among the col-

umns of W and the signal-to-noise ratio have to be properly controlled.

MIP first introduced in Donoho and Huo (2001) which is defined by

lðWÞ :¼ max
1�q;q0�Q;q 6¼q0

jwT
q wq0 j

jjwqjj2jjwq0 jj2
(3)

is a measure of similarity between the columns of W. In the extreme

cases, lðWÞ ¼ 0 when the matrix is orthogonal while lðWÞ ¼ 1

when for instance there are two columns of the matrix which are

collinear. In Supplementary S4 Text, theorems that determine under

which conditions on MIP the SSR algorithms are guaranteed to re-

turn the correct solution are presented. However, MIP can be unim-

portantly conservative because it penalizes for the correlation of

features that may not participate in the solution. Indeed, if two col-

umns of W are highly similar (i.e. collinear or strongly dependent)

but not part of the solution then MIP is close to one but the SSR

algorithms are still expected to estimate the right solution. This can

be circumvented with ERC which does not measure the collinearity

between two columns in general but measures only the collinearity

of the subspace defined by the solution with respect to each column

not in the solution. The definition of ERC given a set of indices, S �
f1; :::;Qg (Tropp, 2004), is

ERCðSÞ :¼ 1�max
q0 62S
jjðwS

T
wSÞ

�1wS
T
wq0 jj1 (4)

where wq :¼ wq

jjwq jj2
are the normalized dictionary atoms (i.e. normalized

columns of W) while WS is the matrix that contains only the columns

of W :¼ ½w1j:::jwQ� that are indexed by the set S. Letting T be the true

index set (i.e. the support of the true signal, or, in our case, the true

structure of the dynamical system), a necessary condition for the con-

vex relaxation algorithms or for the OMP to correctly solve SSR is

ERCðT Þ > 0. The difficulty for estimating ERC arises from the fact

that the true index set, T , is not known a priori. Nevertheless, it can be

used as a posteriori indicator of accuracy. Under noise, OMP algorithm

with the standard stopping criterion returns the true solution, if it add-

itionally holds that (Cai and Wang, 2011)

jaqj�
2

SNRðqÞERCðT ÞkminðT Þ
; for all q¼ 1; :::;Q (5)

where SNRðqÞ ¼ jjwq jj2
jjejj2

is the signal-to-noise ratio between the q-th

dictionary atom and the error/noise vector e :¼ z�Wa while

kmin ðT Þ is the smallest eigenvalue of the matrix W
T

TWT . Overall,

monitoring these quantities is extremely informative on determining

the quality and the confidence of the learned structure.

Remark 1: There is a difference between our sparse identification prob-

lem and typical SSR. In standard SSR, the number of dictionary atoms

(columns of W) is usually larger than the number of measurements (rows

of W) while the opposite is true here since multiple experiments and mul-

tiple interventions are typically performed and measured.

Remark 2: SSR algorithms have one hyperparameter that needs to be

fine-tuned. We incorporate a selection process using the F1 score, which

is the harmonic mean of precision and recall, as a performance metric.

We always select the value that maximizes the F1 score.

Remark 3: Restricted isometry property (Candes and Tao, 2005) like MIP is

another a priori metric that ensures perfect reconstruction, however, like MIP,

it suffers from the same problem of being too conservative. Additionally, it is

computationally expensive thus we choose not to present it in detail.

2.4 Algorithmic summary
Before proceeding with the demonstration examples, a coarse sum-

mary of the proposed dynamical system inference algorithm is pre-

sented below as pseudo-code.

Algorithm 1: USDL

1: Input: Time-series or time-course measurements,

dictionary, wðxÞ, and set of test functions, f/mg.
2: if time-course measurements then

3: Apply the Collocation method. " Time-series

interpolation

4: Compute W and zn; n ¼ 1; :::;N. " Weak formulation

5: Estimate MIP from W.

6: for n ¼ 1; :::;N do " For each row of A

7: ân ¼ SSRðzn;WÞ " Solve SSR problem

8: Estimate ERCðT̂ nÞ.
9: Output: Â, MIP and ERC.

3390 Y.Pantazis and I.Tsamardinos

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz065#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz065#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz065#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz065#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz065#supplementary-data


3 Results

The inference capabilities of the proposed approach for several classes

of dynamical systems are presented. Source code that produces the

figures is available (Supplementary S1 Code). Among the algorithms

that are capable of solving SSR, we adopt OMP due to the following

reasons. First, it is computationally more efficient since a forward se-

lection of the components is performed. Second, the theoretical justifi-

cations between the various methods are very similar making the

algorithms almost equivalent. Third, the hyperparameter of OMP is

more intuitive compared for instance with Lasso since it is the energy

of the noise term (i.e. jjejj2). Indeed, we approximate the noise energy

as ð1þ aÞ times the l2-norm of the residual between the signal and the

complete Least Squares solution with a being usually a small positive

number. OMP stops when relative residual energy becomes smaller

than a, therefore, OMP returns sparser solutions as we increase the

value of a (see Supplementary S4 Text for more details). Lastly, it is

straightforward to incorporate prior knowledge by adding any known

contribution to the dynamics, hence, it is straightforward to include

data with one or more interventions with known effects.

3.1 Protein interaction network
The first demonstration is a simulation of mass cytometry measure-

ments with a three-species prototypical protein interaction network

with cycles. The complete biochemical reaction network is given in

Supplementary S5 Text and it has been simulated with standard

ODE solver. The ground truth of interactions are shown in Figure 1a

where the arrow means that the source variable up-regulates the tar-

get variable while the vertical bar means that the source variable

down-regulates the target variable. The experimental setup assumes

that P1, P2 and P3 are measured at specific time-points and every

sample is destroyed during the measurement (see dots in Fig. 1b). In

order to apply the weak formulation, time-series have to be con-

structed, thus, we first apply the collocation method with smoothing

penalty. Dashed curves in Figure 1b correspond to the estimated

time-series. If, additionally, multiple experimental interventions are

performed, the multiple shooting method is applied and one time-

series per experiment is obtained.

Proceeding, despite the fact that the complete biochemical reac-

tion network is non-linear (As explained in Supplementary S5 Text,

the complete reaction network is unfortunately unidentifiable making

it an improper example for testing the learning algorithms.) with re-

spect to the state variables, the assumed model for inference is linear,

_x ¼ Ax ;

where vector xðtÞ 2 R
3 contains the abundance of P1–P3 at time in-

stant t. Connectivity matrix, A, encodes the direct causal interac-

tions within the set of state variables. Indeed, if element anq is zero

then no direct causal interaction exists from species xq to xn. If anq is

positive then an increase of variable xq implies an increase of the

rate of xn which results in increasing the concentration of xn thus xq

activates or up-regulates xn and it is denoted with an arrow from xq

to xn. On the contrary, if anq is negative then xq inhibits or down-

regulates xn and it is denoted with a vertical bar. Thus, the structure

Fig. 1. (a) The network of interactions between the three species (P1, P2 and P3). This graph is a coarse high-level representation and it should not be confused

with the detailed biochemical reaction network which is given in Supplementary S5 Text. (b) Time-course measurements (dots) and the estimated smoothed tra-

jectories (dashed curves). The collocation method in conjunction with smoothing penalty is used for the estimation of the time-series. Notice that time-course

data from the low noise case are shown. (c) MIP and ERC for P1–P3 as a function of the number of experiments under low (blue) and high (red) measurement un-

certainty. Standard deviation of the various stochastic terms in high uncertainty regime is twice as much compared to the low uncertainty regime. From the lower

plot, it is evident from the negativity of ERC that the problematic variable is P2 when only one experiment is used. (d) Precision and recall curves under low (blue)

and high (red) measurement noise as a function of the number of experiments. Results from both USDL (solid lines) and SINDy (dashed lines) algorithms are pre-

sented. Perfect inference is achieved only with USDL under five experimental interventions and the low noise case. Precision (solid lines) seems to be insensitive

to higher noise levels, however, recall slightly degrades
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of the network can be induced from the matrix A. Indeed, both the

strength and the type of an interaction is inferred from the absolute

value and the sign of the corresponding element of A, respectively.

Furthermore, it is noteworthy that several sources of error exist in

this benchmark example. First, there is measurement error related to

the machine limitations and it is assumed to be additive. Second, there

is uncertainty error due to the fact that each measurement comes

from a different cell and each cell has different concentrations of the

measured quantities as Figure 1b demonstrates. Additional sources of

error stems from the facts that (i) the complete reaction network is

non-linear for the state variables while the assumed model is not and,

(ii) not all species are measured since the compound P1P3 is not quan-

tified resulting in the existence of latent confounding variables.

Figure 1c presents the MIP as a function of the number of experi-

ments (upper plot) as well as the ERC for each state variable (lower

plot). Even though MIP drops as the number of experiments is

increased, the decrease is not significant making the correct infer-

ence of the interaction network a priori less certain. ERC which is a

posteriori metric, asserts that the problematic variable is P2 when

only one experiment is fed to the inference algorithm (dashed lines

in lower plot of Fig. 1c) while ERC is positive when all five interven-

tions are used for the inference making one crucial assumption for

perfect reconstruction true. However, this is not always enough as

shown be the performance of the algorithms when the measurement

noise is doubled (red solid lines in Fig. 1c and d).

Indeed, the precision-recall curves of Figure 1d assert that the net-

work is partially reconstructed when USDL (solid lines) fed with data

from only one intervention is applied. In contrast, the true network is

reconstructed when all five interventions are taken into account. Note

that 41 Fourier modes which correspond to a constant function, 20

sines and 20 cosines were used as test functions in USDL algorithm.

Additionally, Figure 1d presents the reconstruction accuracy for the

SINDy algorithm (dashed lines). The hyperparameter value for both

approaches is optimally selected by maximizing the F1 score which is

shown in Supplementary Figure S1a of S5 Text. When one intervention

is used, the performance of SINDy is slightly better to USDL, however,

SINDy does not improve its accuracy as the number of experiments

increases. Evidently, SINDy is not capable of handling datasets that

have multiple complex interventions. Moreover, we evaluate the fore-

cast capabilities of the inferred model on new experiments. Prediction

accuracy (Supplementary Fig. S1b in S5 Text) is in accordance with the

precision-recall curves (i.e. Fig. 1d) in all cases revealing once again that

the problematic variable is P2. Overall, this demonstration example

shows the necessity of designing and executing several experiments for

guaranteed perfect reconstruction of a network from non-repeated time-

course measurements. In Supplementary S5 Text, we present additional

case studies on the performance of the proposed approach when the

number of sampling points is reduced as well as when different weights

for the smoothing penalty in the collocation method are applied.

Remark 4: For small systems, a brute force alternative is tractable. A com-

plete search of all possible solutions when the non-zero components are

less than ten is computationally feasible for dictionary size up to twenty

atoms. However, such an approach will provide little or no information

on how to design a new experiment or a new data acquisition policy com-

pared with greedy algorithms or convex relaxation methods where metrics

such as MIP and ERC can guide the experimental designer.

3.2 Protein network inference from mass cytometry

data
The second demonstration is the inference of protein interactions from

publicly available mass cytometry data (Krishnaswamy et al., 2014).

Single-cell analysis and particularly mass cytometry widely opens

new directions for understanding cellular responses to perturbations

and cellular functionalities due to the capability of measuring tens of

proteins in each cell. Moreover, it can be multiplexed resulting in

studying the cells under different conditions and time-points in a

relatively cheap and fast way (Bodenmiller et al., 2012;

Krishnaswamy et al., 2014). Given the high resolution of single-cell

analysis it is expected to become a standard technique in medical

sciences in the near future. In Krishnaswamy et al. (2014), 13

time-points are sampled and measurements are separated into 3 sub-

populations, namely, CD4þ, CD8þ and Effector/Memory. Two

activation cocktails which stimulate the receptors CD3/CD28 and

CD3/CD28/CD4 were applied, respectively. Each experiment was

repeated twice with different activation levels. Reconstructing the

signaling pathway upon activation is a non-trivial task because few

proteins inside the cells are measured and on top of that many inter-

fering mechanisms with different rate are also occurring. Both result

in a large number of latent confounding factors. Thus, it is very hard

to reconstruct directly the complete system of interactions.

However, network reconstruction would be more successful if

restricted to subnetworks.

We perform network inference for two subnetworks with the

first being a cascade of CD3z, SLP76, Erk and S6 proteins while the

second is enriched with MAPKAPKII, Creb, Akt and Rb. Figure 2a

presents the trajectories of the proteins estimated from the mass

cytometry data using the collocation method with smoothing pen-

alty. The multiple shooting method is utilized for each subpopula-

tion and each experiment. We note that the collocation method

assumes that the overall measurement noise is Gaussian, however,

we observed that the noise in the mass cytometry data is sometimes

skewed and/or multimodal potentially deteriorating the quality of

the estimated trajectories. Furthermore, time-series adjustment is

performed by subtracting the minimum value of each trajectory

which merely corresponds to the state of no activity. As it is evident

from the figure, the level of stochasticity is high making the dense

sampling of the signaling phenomenon necessary.

Figure 2b and c presents the reconstruction of the smaller subnet-

work for USDL and SINDy algorithm, respectively, while Figure 2d

and e presents the reconstruction results for the larger subnetwork.

We consider a linear ODE model ( _x ¼ Ax) excluding more compli-

cated protein interactions. USDL algorithm utilizes 21 Fourier

modes while the hyperparameter for each approach is fine-tuned

based on the F1 score estimated on an independent subset of the

data (see Supplementary Fig. S6 in S5 Text) using the KEGG data-

base (Kanehisa and Goto, 2000) as ground truth. The semantics of

arrow and bar edges are the same as in the previous example. An

edge is bold when it is also found in the KEGG database, regular if

found with USDL (or SINDy) but it is not found in KEGG database

while it is dotted if it is in the KEGG database but not found.

Inference is repeated 100 times using a portion of the available data

in each iteration and the reported edges are the ones that are found

at least in 80% of the times. Concentrated in the case with four pro-

teins, the subnetwork is correctly reconstructed with USDL algo-

rithm while SINDy infers two additional edges. The bar edges in

Figure 2b, which imply down-regulation, are explained as a mechan-

ism to model the degradation of each variable over time. When four

more proteins are added, the network reconstruction becomes

harder. Nevertheless, USDL using CD4þ subpopulation and CD3/

CD28 activator (see Fig. 2d) was able to recover half of the known

edges. The cascade Slp76 ! Erk ! S6 is still correctly inferred.

However, CS3z was replaced by Akt in the phosphorylation of

Slp76. Additionally, the proposed algorithm correctly assesses the
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influence of Akt to the phosphorylation of both Rb and Creb show-

ing that Akt plays a central role in pathway signaling of T cells. In

contrast, SINDy with the optimal hyperparameter returns an almost

fully-connected graph resulting in a non-sparse solution.

The difficulty in inferring the KEGG-based network of protein inter-

actions is reflected on both MIP and ERC (reported in Supplementary

S5 Text). Both incoherency metrics deteriorate when more proteins are

added to the analysis making the assumptions for perfect reconstruction

less valid. Thus, more experiments are required in order to improve the

accuracy of the network inference algorithm. These experiments can be

guided by metrics such as MIP or ERC. Additional demonstrations can

be found in Supplementary S5 Text. Particularly, the reconstructed net-

works when additional activators and/or subpopulations are considered

are presented as well as how important is the high sampling rate for

protein interactions inference through mass cytometry data. For in-

stance, the reconstruction accuracy is severely reduced when removing

half of the time-points as it is shown in Supplementary S5 Text. Finally,

we have integrated the USDL algorithm in SCENERY (http://scen

ery.csd.uoc.gr/) (Papoutsoglou et al., 2017) which is a web tool

for single-cell cytometry analysis. SCENERY provides a comprehensive

and easy-to-use graphical user interface where users may upload their

data and perform various types of protein network reconstruction. The

incorporation of USDL algorithm into SCENERY aims to increase its

reusability and, hopefully, its popularity.

3.3 Multidimensional Ornstein–Uhlenbeck process
The last example is a multidimensional Ornstein–Uhlenbeck process

which is a system of linear stochastic differential equations with

additive noise. It has applications in evolutionary biology where

multiple traits are modeled over time with multidimensional

Ornstein–Uhlenbeck process (Bartoszek et al., 2012) as well as in

particle physics (Gardiner, 2004) and finance (Gardiner, 2009).

Mathematically, the driving system of equations is given by

_x ¼ �Axþ r _B ; (6)

where xðtÞ 2 R
N is the stochastic process, connectivity matrix A 2

R
N�N determines the interactions between the variables, r 2 R cor-

responds to the noise level while BðtÞ 2 R
N is an N-dimensional

standard Brownian motion. Intuitively, the derivative of a Brownian

motion can be understood as a continuous-time zero-mean white

noise with variance one. We set N¼20 while matrix A is defined

as the graph Laplacian with random edges and maximum outgoing

degree ¼3.

Figure 3a presents the graph of interactions for each variable of a

randomly drawn instance of A. We distinguish between two

regimes, namely, the stationary (or equilibrium) regime and the tran-

sient regime. At stationarity, the driving force is primarily the sto-

chastic or diffusion term [second summand in the r.h.s. of equation

(6)] with the deterministic or drift term [first summand in the r.h.s.

of equation (6)] acting as a stabilizer. In the transient regime, the dy-

namics are primarily driven by the drift term. This separation is of

great importance because the signal in the former case is buried

under the noise (i.e. both have approximately the same energy or, in

other words, the signal-to-noise ratio is 	1) while the signal is stron-

ger compared to the stochastic term in the transient regime (see the

simulated trajectories for both regimes in Supplementary Fig. S12a).

As performance measures show in Figure 3b, both USDL and

SINDy are able to infer the correct structure of A (i.e. the correct

graph of interactions) at the transient regime (red curves) when

enough—approximately P¼100—time-series are provided. We re-

mark here that, as in the previous examples, the hyperparameter val-

ues of both algorithms are selected based on the maximum F1 score.

Averaged ERC is positive for this setup as inset plot reveals and

signal-to-noise ratio is high enough to theoretically guarantee the

perfect reconstruction of the dynamical system.

In the stationary regime, the driving force is the noise and posi-

tive (averaged) ERC is not enough to guarantee perfect reconstruc-

tion and control of the signal-to-noise ratio is required for true

structure learning. We tested a series of typical test functions such as

Fourier modes and splines as well as we varied the number of test

functions, however, we were not able to perfectly reconstruct the dy-

namical system with the accuracy hitting a plateau (figures in

Supplementary S5 Text) despite the fact that theoretical results

(Bento et al., 2010) suggests that true recovery is possible. The prob-

lematic cases arise from variables whose time cross-correlations

have similar shape and they are close to each other thus we need to

define another type of test functions with the property of having

sharp changes which assist the separation between small time-

differences. A well-educated choice of test functions, which we

named peaky Fourier modes (details in Supplementary S5 Text) re-

sult in perfect reconstruction of the connectivity matrix for the

Fig. 2. Network reconstruction of protein interactions from temporal mass cytometry data. (a) Time-course measurements (dots) and the estimated smoothed tra-

jectories (solid lines). The collocation method in conjunction with smoothing penalty was used for the estimation of the time-series. Observe the high level of sto-

chasticity of the time-course mass cytometry data. (b) The reconstructed subnetwork with four proteins using the USDL algorithm. Bold arrows (true positives)

indicate that the true network of interactions is inferred. (c) Similar to (b) for SINDy. (d) The reconstructed network with eight proteins with non-bold arrows corre-

sponds to false positives while dotted arrows correspond to false negatives. Dynamics for the additional proteins vary less over time as it is evident from the

lower panel of (a). Nevertheless, most of the interactions are directly (such as Akt ! Rb or Erk ! S6) or indirectly (like Akt ! Erk ! S6 instead of Akt ! S6)

inferred. (e) Similar to (d) for SINDy
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stationary regime when USDL is applied (blue solid lines in Fig. 3b).

In contrast, SINDy algorithm (dashed blue lines) is incapable of

inferring the structure of the dynamical system because it is not

designed for stochastic systems and thus it is unable to handle the

high intensity of the noise which is observed in the stationary

regime.

Moreover, we measured the root mean squared error (RMSE) on

the elements of the connectivity matrix A and assess the parameter

estimation behavior of the inference approaches. RMSE results

(Supplementary Fig. S13b in S5 Text) reveal that two orders of mag-

nitude lower RMSE is reported in the transient regime relative to the

stationary regime. In the same figure, it is shown that the RMSE for

USDL is lower than the RMSE for SINDy which is in accordance

with the structure inference performance (i.e. the precision-recall

curves).

4 Discussion

The weak formulation enables the transformation of any spatio-

temporal dynamical system that is linear with respect to its parame-

ters into a linear system of equations. The unification through the

weak formulation creates the foundations for general dynamical sys-

tem inference in biological applications. For instance, in mass

cytometry and more generally in single-cell analysis, not trajectories

but the distribution of the species populations is measured over

time. Thus, the structure learning from partial differential equations

such as the Fokker–Planck or the master equation (Gardiner, 2004)

which both describe the evolution of the probability distribution of

the measured quantities can be transformed into a linear set of equa-

tions. Moreover, the avoidance of differentiation through the

integration-by-parts trick could benefit the already existing dynam-

ical inference algorithms, especially, in adverse, noisy conditions.

Additionally, the transformed structure learning problem can be

considered not only as an SSR problem but also as a feature selec-

tion problem (Guyon et al., 2003), a subfield of machine learning

and statistics. The extensive body of work on feature selection could

be also employed and, therefore, boost the accuracy of the overall

inference.

SSR literature offers an arsenal of theoretical indicators and met-

rics that we showed correlate well with the performance as quantified

by the precision and recall curves. Even though there is a growing re-

search area for dynamical system inference algorithms, limited num-

ber of attempts to compute and exploit such metrics can be found in

biological studies. The presented examples revealed that the values of

these metrics could be easily lay far from the theoretically desirable.

For instance, MIP took values closer to one rather than to zero in the

mass cytometry example necessitating the design of additional experi-

ments or the elimination of some problematic proteins from the dic-

tionary. Actually, the determination of the dictionary is crucial in

biological inverse problem inference. Quantities that are constant

over time can imperil the accuracy of a structure learning algorithm

because of the addition of collinearities especially when quadratic

terms are considered in the dictionary. Thus, it is preferable to remove

some or all of the constant-over-time variables from the dictionary

and attempt to infer the structure of the quantities that are time-

varying. Both incoherence metrics can serve as a guideline for the con-

struction of a dictionary with high potential for true recovery.

Dynamics in biological processes contain critical information

about the underlying reaction mechanisms between molecules.

Current technologies are able to measure several time-points

increasing the possibility of inducing the interactions between the

measured quantities. However, the shape characteristics of the bio-

logical dynamics are usually simple. Prominent examples are impul-

sive patterns, which are either up-regulating or down-regulating

excitations followed by a return to their basis values, and sustained

patterns where the measured quantity remains over-expressed or

under-expressed after the excitation (Bar-Joseph et al., 2012). A cas-

cade of four impulsive responses for protein signaling whose interac-

tions were correctly inferred is shown in the upper plot of Figure 2a.

Thus, the dynamical system that can be potentially identified cor-

rectly from relatively simple trajectories should not have complex

Fig. 3. Performance analysis and comparison between USDL and SINDy algorithms for Ornstein–Uhlenbeck stochastic process. (a) The connectivity graph for

each variable of the Ornstein–Uhlenbeck process. The edges, their direction as well as the type of interaction are determined by the non-zero elements of con-

nectivity matrix A. (b) Precision and recall are shown as functions of the number of measured time-series in two different regimes; stationary (blue) and transient

(red). Both USDL (solid) and SINDy (dashed) algorithms achieve perfect reconstruction of the dynamical system for the transient regime and when enough time-

series are measured. For the stationary regime, perfect reconstruction is possible only for USDL and a special type of test functions (peaky Fourier modes) while

SINDy (blue dashed) fails to recover completely the dynamical system in this regime due to the high stochasticity
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driving forces. This is the primary reason why in our experiments

we chose a linear dictionary. Adding more complex interactions to

the dictionary will only result in less identifiable inference problems.

Finally, the presented examples assumed a linear with respect to the

state variables dynamical model and, thus, a linear dictionary is con-

structed. However, the proposed inference algorithm is not restricted

to linear differential equations. In Supplementary S6 Text, we apply

the proposed dynamical inference algorithm to a non-linear and chaot-

ic system from climate science, namely, Lorenz96 (Lorenz, 1996)

where comparisons with SINDy are also performed. The precision-

recall results indicate that both methods are able to achieve perfect re-

construction. However, SINDy requires 3–4 times less data in order to

succeed it for the case of moderate chaotic behavior. Generally, chaotic

systems enjoy richer and more complex dynamics which actually assist

the structural learning of the differential equations as both the incoher-

ence metrics and the obtained results on the accuracy revealed.

5 Conclusions

In this paper, we present the USDL algorithm, a generic and unified

approach to solve the sparse dynamical structure inference problem

from temporal data. It is based on the weak formulation of differen-

tial equations where the dimension of time is eliminated. Several

properties of weak formulation such as being derivative free are use-

ful and have high practical value. The transformed system is a set of

linear equations whose sparse solution can be found using SSR algo-

rithms. Convex relaxation methods as well as greedy algorithms

such as OMP can be used and theoretical guarantees can be com-

puted. To this end, a priori metrics such as MIP and a posteriori

metrics such as ERC are computed and the satisfiability of the

assumptions is checked. These metrics might also serve as candidates

for optimization in experimental design. Moreover, various dynam-

ical models can be transformed with the weak formulation to an

SSR problem making our approach model independent. We test and

compare USDL against SINDy on a wide range of dynamical models

and show that, under high stochasticity, USDL achieves perfect re-

construction given enough data while SINDy fails for the same

amount of data. This is notably evident for the stationary OU pro-

cess where noise is prevalent revealing the generality and robustness

of the proposed approach.
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