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Introduction:Crohn’s disease (CD) is a disease that manifests mainly as chronic

inflammation of the gastrointestinal tract, which is still not well understood in

terms of its pathogenesis. The aim of this study was to use bioinformatics

analysis to identify differentially expressed genes (DEGs) and miRNAs with

diagnostic and therapeutic potential in CD.

Materials and methods: Three CD datasets (GSE179285, GSE102133,

GSE75214) were downloaded from the Gene Expression Omnibus (GEO)

database. DEGs between normal and CD tissues were identified using the

GEO2R online tool. The Gene Ontology (GO) term and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs

were conducted using the clusterProfiler function in the R package. Protein-

protein interaction network (PPI) analysis and visualization were performed

with STRING and Cytoscape. Ten hub genes were identified using

cytoHubba’s MCC algorithm and validated with datasets GSE6731 and

GSE52746. Finally, the miRNA gene regulatory network was constructed

by Cytoscape and NetworkAnalyst to predict potential microRNAs (miRNAs)

associated with DEGs.

Results: A total of 97 DEGs were identified, consisting of 88 downregulated

genes and 9 upregulated genes. The enriched functions and pathways of the

DEGs include immune system process, response to stress, response to

cytokine and extracellular region. KEGG pathway analysis indicates that

the genes were significantly enriched in Cytokine-cytokine receptor

interaction, IL-17 signaling pathway, Rheumatoid arthritis and TNF

signaling pathway. In combination with the results of the protein-protein

interaction (PPI) network and CytoHubba, 10 hub genes including IL1B,

CXCL8, CXCL10, CXCL1, CXCL2, CXCL5, ICAM1, IL1RN, TIMP1 and

MMP3 were selected. Based on the DEG-miRNAs network construction,

5 miRNAs including hsa-mir-21-5p, hsa-mir-93-5p, hsa-mir-98-5p, hsa-

mir-1-3p and hsa-mir-335-5p were identified as potential critical miRNAs.

Conclusion: In conclusion, a total of 97 DEGs, 10 hub genes and 5 miRNAs that

may be involved in the progression or occurrence of CD were identified in this

study, which could be regarded as biomarkers of CD.
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Introduction

Crohn’s disease (CD) is one of the inflammatory bowel

diseases (IBD), mainly manifesting as chronic inflammation of

different parts of the gastrointestinal tract, with a progressive and

destructive course, whose incidence has been increasing in recent

years (Roda et al., 2020). CD is still unclear in its etiology, but

genetic, immune, and environmental factors increase its risk of

development and progression (Torres et al., 2017). Crohn’s

disease shows an overlap with regard to disease behaviour

with ulcerative colitis (Atreya and Siegmund, 2021). The

course of CD is progressive and destructive, and systemic and

extra-intestinal manifestations can occur, which can seriously

affect the quality of life and prognosis in patients

(Ananthakrishnan et al., 2018).

Currently, promoting mucosal healing is the preferred

treatment aim for CD (Bernstein et al., 2019). The use of

anti-inflammatory treatments such as infliximab, adalimumab

and Vedolizumab, for example, has transformed the

management of CD in the last 2 decades (Dulai et al., 2016;

Feagan et al., 2016). Although these targeted biologic therapies

represent a significant advance in the treatment of CD, there are

still some patients who are not sensitive to the targeted drugs

(anti-TNF antibodies such as infliximab and adalimumab) that

have been identified (Schmitt et al., 2021). However, biomarkers

may help clinicians characterize disease severity and prognosis in

early diagnosis and intervention, whereas biomarkers may be

useful in defining treatment response and predicting

postoperative CD recurrence. Therefore, the research and

discovery of the precise molecular mechanisms of the disease

are essential for the development of therapeutic strategies for CD.

Bioinformatics is an emerging subject that is alreadywidely used

for early diagnosis and predicting the prognosis of cancer patients

(Wang and Liotta, 2011). This new approach has been used broadly

in the study of various cancers (Li et al., 2017; Yan et al., 2018; Tsai

andGamblin, 2019), and has also played a role in the identification of

a few new biomarkers for non-oncology diseases (Chen et al., 2018;

Cakmak and Demir, 2020; Xie et al., 2020). Microarray technology is

widely used to screen for genomic level differential alterations and

can be used to participate in the prediction of CD development and

progression. Nie et al. identified TLR2, TREM1, CXCR1, FPR1, and

FPR2 as promising candidates for predicting anti-TNFα responses in
CD patients by microarray analysis (Nie et al., 2022). Hu et al. found

that Hsa_circ_0062142 and hsa_circ_0001666 may play a key role in

pathogenesis and serve as potential biomarkers of CD by microarray

analysis (Hu et al., 2021). MicroRNAs (miRNAs) are

19–25 nucleotide single-stranded non-coding RNA molecules

which can inhibit translation and destabilize messenger RNAs

(mRNAs). MiRNAs regulate gene expression by binding to

mRNAs and may play a critical modulatory function in the

progression of CD (Kalla et al., 2015). Growing evidence suggests

that miRNAs contribute significantly to the complicated etiology and

pathogenesis in CD (Schaefer et al., 2015). However, reliable results

from individualmicroarray analysis are difficult to obtain owing to its

high false positive rate. Accordingly, in our study, we downloaded

3 mRNA microarray datasets from Gene Expression Omnibus

(GEO) and performed them to identify DEGs between normal

and CD intestinal mucosal tissues. Afterwards, enrichment

analysis of GO terms and KEGG pathways and PPI network

analysis were conducted to identify the underlying molecular

mechanisms of CD onset and progression. Lastly, miRNA gene

regulatory networks were construct for predicting potential

microRNAs (miRNAs) associated with DEGs with the use of

Cytoscape and NetworkAnalyst. In summary, there were

97 DEGs, 10 hub genes and 5 potential miRNAs that were

identified as potential target biomarkers for CD.

Materials and methods

Microarray data

GEO (http://www.ncbi.nlm.nih.gov/geo) (Edgar et al., 2002) is

a public functional genomics data repository of high throughput

gene expression data, chips and microarrays. The GSE75214

(Vancamelbeke et al., 2017) and GSE102133 (Verstockt et al.,

2019) datasets generated using the Affymetrix GPL6244 platform,

(Affymetrix Human Genome 1.0 ST Array), and GSE179285 (Keir

et al., 2021) generated on the GPL6480 platform (Agilent-

014850 Whole Human Genome Microarray 4 × 44K G4112F)

were downloaded from GEO. Annotated information from the

platform was used to convert the probes to the corresponding gene

symbols. The GSE179285 dataset contained 47 CD intestinal

mucosa tissue samples and 31 controls; the GSE75214 dataset

contained 59 CD samples and 22 healthy controls; and the

GSE102133 dataset contained 65 intestinal mucosal biopsies

from CD patients and 12 intestinal mucosal tissues from controls.

Identification of DEGs

Identification of DEGs between CD and normal samples was

performed using GEO2R (http://www.ncbi.nlm.nih.gov/geo/

geo2r). GEO2R is an online interactive tool that allows users

to identify DEGs for different experimental conditions by

comparing two datasets in the GEO series (Barrett et al.,

2013). Adjusted p-values (adj. P) and Benjamini and

Hochberg’s false discovery rates were applied to provide a
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balance between discovering statistically significant genes and

limiting false positives. Probe sets without corresponding gene

symbols or genes with more than one probe set were deleted or

normalized, respectively. |Log FC (fold change)| >1 and adj.

p-value <0.01 were considered statistically significant.

Enrichment analysis of KEGG and GO for
DEGs

KEGG is a database resource for elucidating high-level

functions and effects of biological systems (Kanehisa, 2002;

Kanehisa et al., 2017). GO is a major bioinformatics initiative

for high-quality functional gene annotation based on biological

processes (BP), molecular functions (MF) and cellular

components (CC) (Pomaznoy et al., 2018). GO term and

KEGG pathway analyses were conducted using the

clusterProfiler function in the R package. The cutoff criteria of

p < 0.05 and FDR <0.05 were defined as significant.

Construction of PPI network and module
analysis

The PPI network was constructed using the Search Tool for

the Retrieval of Interacting Genes (STRING; http://string-db.org)

(version 11.5) (Franceschini et al., 2013) online database.

Cytoscape (version 3.9.1) is an open-source bioinformatics

software platform for visualizing molecular interaction

networks (Smoot et al., 2011). Molecular Complex Detection

(MCODE) (version 2.0) is a plug-in in Cytoscape used to identify

densely connected regions by clustering a given network based on

the topology (Bandettini et al., 2012). Using Cytoscape to map

the PPI network, the MCODE was used to identify the most

significant modules in the PPI network. The following selection

criteria were used: MCODE scores >5, degree cut-off = 2, node

score cut-off = 0.2, Max depth = 100 and k-score = 2.

Selection and analysis of hub genes

The top 10 genes were obtained using MCC algorithm with

Cytoscape’s plug-in cytoHubba. GO term and KEGG pathway

analyses were conducted using the clusterProfiler function in the

R package.

Validation of hub gene expression of CD
datasets

The two microarray datasets of CD (GSE6731: 7 inflamed

CD vs. 4 healthy controls; GSE52746:10 active CD vs.

17 healthy controls) that were retrieved from the GEO

database were used to verify the expressions of the hub

genes The “limma” package was also applied to identify the

DEGs with thresholds of |log2FC| ≥ 1 and adjust. p < 0.05. The

results were visualized in volcano plots and the hub genes were

marked.

MiRNAs related to hub genes

The top 9 hub genes were mapped to the respective

miRNAs with NetworkAnalyst 3.0 (Zhou et al., 2019)

(https://www.networkanalyst.ca/), an online platform for

visualization that helps to identify miRNA-gene

interactions in Gene Regulatory Networks. For each hub

gene, miRNAs were identified as having a degree cutoff =

1.0. Lastly, a mapping of these hub genes and miRNAs was

performed by Cytoscape 3.9.1.

Results

Identification of DEGs in CD

A total of three datasets (GSE179285, GSE75214 and

GSE102133) containing gene expression profiles of both

healthy and CD-active intestinal mucosal tissue samples

were obtained from the GEO database. Details for the three

datasets are shown in Table 1. DEGs were identified after

normalization of microarray results (634 in GSE179285,

388 in GSE75214, and 291 in GSE102133). A total of

517 upregulated and 117 downregulated genes,

303 upregulated and 85 downregulated genes and

191 upregulated and 100 downregulated genes were included

in the DEGs in the GSE179285, GSE75214 and

GSE102133 datasets, respectively. All DEGs were identified

by comparison of the gene expression profiles of normal

healthy controls and CD samples. Figure 1 shows the gene

expression profiles of DEGs in three datasets containing data

from 2 sets of samples.

Such genes were presented by further screening and Venn

diagrams were drawn to demonstrate these genes. The 97 DEGs

were found to be significantly differentially expressed in the

3 groups, as shown in Figure 2, with 88 genes upregulated and

9 genes downregulated (Table 2).

TABLE 1 Details for GEO Crohn’s disease data.

References GEO Platform Control CD

Verstockt S (2019) GSE102133 GPL6244 12 65

Vancamelbeke M (2017) GSE75214 22 59

Keir ME (2021) GSE179285 GPL6480 31 47
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FIGURE 1
Volcano plots indicating differentially expressed genes (DEGs) among the control and CD groups. (A–C) DEGs of the GSE179285,
GSE102133 and GSE75214 datasets are shown, separately. Red data points represent upregulated genes and blue ones represent downregulated
genes. Genes without any significant differences are in black.

FIGURE 2
Venn diagrams showing the differentially expressed genes (DEGs) that overlapped among the 3 datasets retrieved from Gene Expression
Omnibus (GEO). (A,B) Indicate the overlap of upregulated and downregulated genes in the GSE179285, GSE102133 and GSE75214 datasets,
separately.

TABLE 2 Screening DEGs in Crohn’s disease patients by integrated microarray.

DEGs Gene terms

Upregulated ADGRE2 ADGRG6 ANGPTL2 ANXA1 AQP9 BACE2 C2 CD274 CD55 CDH11 CDH3 CFB CFI
CHI3L1 COL4A1 COL6A3 CTSK CXCL1 CXCL10 CXCL11 CXCL2 CXCL5 CXCL8
CXCL9 CXCR2 DMBT1 DRAM1 DUOX2 DUOXA2 FCGR3A FPR1 FPR2 FSTL1 GBP4 GBP5 HCAR3 ICAM1
IDO1 IFITM1 IFITM3 IGFBP5 IGHV3-69–1///IGHV3OR16-7 IGKC IL1B IL1RN KCNE3 KYNU LAMP3 LCN2 LPL LUM
MMP1 MMP10 MMP12MMP3MUC1 MXRA5 NCF2 NOS2 PDZK1IP1 PLA2G7 PLAU RAB31 REG1A REG1B S100A8 S100P
SAA2 SAMD9L SELP SERPINA3 SLAMF7 SLC6A14 SOCS3 SOD2 STAT1 TCN1 TFF1 TFPI2 TIMP1
TMPRSS3 TNFAIP6 TNFSF13B TREM1 UBD VWF WARS WNT5A

Downregulated ACSF2 CDHR1 CLDN8 GUCA2A MT1M PADI2 PAQR5 SLC26A2 TRPM6
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Enrichment analysis of KEGG and GO for
DEGs

In order to make predictions about the biological functions of

DEGs, we carried out functional enrichment analysis of

upregulated and downregulated genes. Results of GO analysis

showed that the upregulated genes were mainly enriched in

immune system process, response to stress, response to

cytokine and extracellular region (Figure 3A), while the

downregulated genes were significantly enriched in cell

FIGURE 3
Function enrichment analysis of DEGs related to CD. (A) Bubble plot of enriched GO terms showing upregulated DEGs. (B) Bubble plot of
enriched GO terms showing downregulated DEGs. A darker color and a larger bubble denote a more significant difference. (C) KEGG enrichment
analysis of DEGs related to CD; The genes are linked to their assigned pathway terms via colored ribbons and are ordered according to the observed
log10 p-value, which is displayed in descending intensity of red-green squares next to the selected genes.
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projection membrane and plasma membrane region (Figure 3B).

KEGG pathway analysis indicated that the DEGs were

significantly enriched in Cytokine-cytokine receptor

interaction, IL-17 signaling pathway, Rheumatoid arthritis and

TNF signaling pathway (Figure 3C).

PPI network construction, module
analysis and hub genes identification

PPI analysis of the DEGs was based on the STRING database

and the results were visualized using Cytoscape (Figure 4A). Using

MCODE, a plug-in in Cytoscape, we identified the most densely

connected regions (13 nodes, 75 edges) in the PPI network

(Figure 4B). The top 10 genes, including IL1B, CXCL8,

CXCL10, CXCL1, CXCL2, CXCL5, ICAM1, IL1RN,

TIMP1 and MMP3, were obtained using MCC algorithm with

Cytoscape’s plug-in cytoHubba (Figure 4C). The results showed

that IL1B (Interleukin 1 Beta, score 4.21E+07) and CXCL8(C-X-C

motif chemokine ligand 8, score 4.21E+07) were the most

significant genes, followed by CXCL10(C-X-C motif chemokine

ligand 10, score 4.20E+07), CXCL1(C-X-C motif chemokine

ligand 1, score 4.19E+07), CXCL2(C-X-C motif chemokine

ligand 2, score 4.19E+07), CXCL5(C-X-C motif chemokine

ligand 5, score 4.18E+07), ICAM1(Intercellular adhesion

molecule 1, score 4.17E+07), IL1RN(Interleukin-1 receptor

antagonist protein, score 4.10E+07), TIMP1(Metallopeptidase

inhibitor 1, score 4.03E+07) and MMP3(Matrix

metalloproteinase-3, score 4.03E+07).

Analysis of hub genes

The symbols, abbreviations and functions of the hub genes

are listed in Table 3. Functional enrichment analysis revealed

10 hub genes mainly centered on biological processes (BP), such

as cytokine-mediated signaling pathway, regulation of signaling

receptor activity, cellular response to cytokine stimulus, response

to cytokine, while KEGG was mainly focused on IL-17 signaling

pathway, Rheumatoid arthritis, TNF signaling pathway,

Cytokine-cytokine receptor interaction and NF-kappa B

signaling pathway (Figures 5A,B; Table 4).

FIGURE 4
PPI networks of 88 upregulated genes and 9 downregulated genes by Cytoscape. The network consists of 97 nodes and 376 edges. 2 edges
between nodes represent the interactions between genes. Each gene corresponding to the node is sized and colored according to the degree of
interaction. The color grade indicates the change in the degree of each gene from high (blue) to low (white). The nearer the blue node, the higher the
connection between the 2 nodes (A). The densest connected region in the PPI network (13 nodes, 75 edges) was identified using MCODE (B).
Using the MCC algorithm in cytoHubba, 10 hub genes were identified in the densest connected regions. The scores are shown in red color. A darker
color means a higher score (C).
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Validation of hub gene expression in CD

To determine whether the hub genes were differentially

expressed in the datasets of CD, we selected two other

microarray datasets (GSE52746 and GSE6731) for analysis. A

total of 464 DEGs were found in GSE52746 and 167 DEGs were

found in GSE6731 (Figures 6A,B). In dataset GSE52746, all

10 previously screened hub genes were upregulated DEGs;

whereas in dataset GSE6731, all the hub genes were

upregulated DEGs except CXCL5 and MMP3.

Establishment of miRNAs-hub genes
regulatory network

MiRNAs perform multiple roles in regulating gene expression.

Based on the NetworkAnalyst database, Cytoscape was used to

construct miRNAs-hub genes regulatory networks to identify

miRNAs aimed at hub genes. Finally, all of the 10 genes, with

the exception of IL1RN, were identified to be related to

miRNAs.9 hub genes and their correspondent regulatory

miRNAs molecules are shown in Figure 7 and Table 5. Hsa-mir-

TABLE 3 10 hub genes and their functions.

Gene
symbol

Description Function

IL1B Interleukin 1 Beta Potent proinflammatory cytokine

CXCL8 C-X-C motif chemokine ligand 8
(IL-8)

A chemotactic factor that attracts neutrophils, basophils, and T-cells, but not monocytes

CXCL10 C-X-C motif chemokine ligand 10 Chemotactic for monocytes and T-lymphocytes. Binds to CXCR3

CXCL1 C-X-C motif chemokine ligand 1 Has chemotactic activity for neutrophils. May play a role in inflammation and exerts its effects on endothelial cells
in an autocrine fashion

CXCL2 C-X-C motif chemokine ligand 2 Produced by activated monocytes and neutrophils and expressed at sites of inflammation

CXCL5 C-X-C motif chemokine ligand 5 Involved in neutrophil activation

ICAM1 Intercellular adhesion molecule 1 ICAM proteins are ligands for the leukocyte adhesion protein LFA-1

IL1RN Interleukin-1 receptor antagonist
protein

Inhibits the activity of interleukin-1 by binding to receptor IL1R1 and preventing its association with the
coreceptor IL1RAP for signaling

TIMP1 Metallopeptidase inhibitor 1 Metalloproteinase inhibitor that functions by forming one to one complexes with target metalloproteinases

MMP3 Matrix metalloproteinase-3 Can degrade fibronectin, laminin, gelatins of type I, III, IV, and V; collagens III, IV, X, and IX, and cartilage
proteoglycans

FIGURE 5
Analysis of functional enrichment for hub genes. (A) Bubble plot of enriched GO terms showing hub genes. (B) Bubble plot of enriched KEGG
showing hub genes.
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21-5p had 3 target genes (ICAM1, CXCL10 and IL1B). Among the

9 hub genes, CXCL2, CXCL8 and ICAM1 were common targets of

2 miRNAs (hsa-mir-98-5p and hsa-mir-335-5p).

Discussion

Bioinformatics studies have enriched the field of complex

polygenic diseases and have helped to identify several genes

responsible for CD, thus providing new insights into the

pathogenesis of CD. In this study, 97 DEGs were identified,

consisting of 88 upregulated genes and 9 downregulated genes.

The results of GO functional classification indicated that the

DEGs were mainly enriched in immune system process, response

to stress, response to cytokine and extracellular region. KEGG

pathway analysis indicated that the DEGs were significantly

enriched in IL-17 signaling pathway, Rheumatoid arthritis,

TNF signaling pathway and Cytokine-cytokine receptor

TABLE 4 Functional enrichment analysis of hub genes.

Term Description Count in
gene set

P.value Gene symbol

GO: BP cytokine-mediated signaling pathway 9 4.30037448176226e-12 IL1B/CXCL8/CXCL10/CXCL1/CXCL2/ICAM1/IL1RN/
TIMP1/MMP3

GO: BP regulation of signaling receptor activity 8 5.47014566250108e-11 IL1B/CXCL8/CXCL10/CXCL1/CXCL2/CXCL5/IL1RN/
TIMP1

GO: BP cellular response to cytokine stimulus 9 9.99274690868016e-11 IL1B/CXCL8/CXCL10/CXCL1/CXCL2/ICAM1/IL1RN/
TIMP1/MMP3

GO: BP response to cytokine 9 1.93718003768327e-10 IL1B/CXCL8/CXCL10/CXCL1/CXCL2/ICAM1/IL1RN/
TIMP1/MMP3

KEGG IL-17 signaling pathway 7 2.87111108913105e-12 IL1B/CXCL8/CXCL10/CXCL1/CXCL2/CXCL5/MMP3

KEGG Rheumatoid arthritis 7 2.87111108913105e-12 IL1B/CXCL8/CXCL1/CXCL2/CXCL5/ICAM1/MMP3

KEGG TNF signaling pathway 7 1.09096029745403e-11 IL1B/CXCL10/CXCL1/CXCL2/CXCL5/ICAM1/MMP3

KEGG Cytokine-cytokine receptor interaction 7 9.92447566156695e-09 IL1B/CXCL8/CXCL10/CXCL1/CXCL2/CXCL5/IL1RN

KEGG Viral protein interaction with cytokine and cytokine
receptor

5 6.98290442829672e-08 CXCL8/CXCL10/CXCL1/CXCL2/CXCL5

KEGG NF-kappa B signaling pathway 5 7.71707732164516e-08 IL1B/CXCL8/CXCL1/CXCL2/ICAM1

FIGURE 6
Validation of the expressions of hub genes in CD. (A,B) DEGs of the GSE52746 and GSE6731 datasets are shown, separately. Red data points
represent upregulated genes and blue ones represent downregulated genes. Genes without any significant differences are in black.
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interaction. In the PPI network of DEGs, 10 (IL1B, CXCL8,

CXCL10, CXCL1, CXCL2, CXCL5, ICAM1, IL1RN, TIMP1 and

MMP3) out of 97 genes had high degree of interation. All of the

10 hub genes were upregulated in patients with CD. GO term

analysis showed that these 10 genes were highly enriched in

cytokine-mediated signaling pathway, regulation of signaling

receptor activity, cellular response to cytokine stimulus,

response to cytokine, while KEGG pathway analysis were

mainly enriched IL-17 signaling pathway, Rheumatoid

arthritis, TNF signaling pathway, Cytokine-cytokine receptor

interaction and NF-kappa B signaling pathway. Numerous

studies have suggested that the pro-inflammatory cytokine

IL17 is associated with the pathogenesis of CD (Schmitt et al.,

2021). Through the action of the TNF signaling pathway, anti-

TNF therapy was approved for Crohn’s disease in 1998 and has

transformed the treatment landscape, allowing for improved

patient response and remission rates (Adegbola et al., 2018).

A variety of complex roles regarding NF-κB signaling in the

pathogenesis of IBD have also been elucidated in previous studies

(Huang et al., 2019; Nguyen et al., 2021). These enrichment

results for GO terms and the KEGG pathway indicate that the

DEGs or hub genes found in our study might be participating in

the disease progression of CD by the aforementioned means.

The IL17 and IL23 signaling pathways could trigger a cascade

of pro-inflammatory molecules such as TNF, IL22, lymphotoxin,

IL1B and lipopolysaccharide (LPS) thus affecting the progression

of CD (Schmitt et al., 2021). IL23 binding to the receptor activates

Janus kinase 2 (JAK2) and tyrosine kinase 2 (TYK2), which leads

to subsequent signal transduction and phosphorylation of

transcriptional activator 3 (STAT3) in the p19 subunit and

STAT4 in the p40 subunit, and subsequent IL23R signaling

initiation leads to the activation of several pathways including

FIGURE 7
Top 9 hub genes in the integrated miRNA-DEGs network. The pink diamond shape indicates the 9 hub genes. The grey circles indicate miRNAs
with low connective properties to the hub genes. Green hexagons indicate miRNAs with high connective properties to the hub genes.

TABLE 5 The critical miRNAs in CD.

Name Degree Genes of interaction Betweenness score

hsa-mir-21-5p 3 ICAM1, CXCL10, IL1B 4,301.029

hsa-mir-93-5p 3 ICAM1, MMP3, CXCL8 4,839.289

hsa-mir-98-5p 3 CXCL2, CXCL8, ICAM1 783.4889

hsa-mir-1-3p 3 CXCL1, CXCL2, CXCL8 275.1575

hsa-mir-335-5p 3 CXCL2, CXCL8, ICAM1 783.4889
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P38 MAPK, PI3K-Akt, and NFlB. Activation of these pathways

leads to the release of CD-associated cytokines such as IL17A,

IL17F, or IL22, which contribute in the pathogenesis of CD (Cho

et al., 2006; Floss et al., 2013; Razawy et al., 2018).

IL1B (IL-1β) is a pivotal mediator in the inflammatory

response and is essential for both host response and defense

against pathogens (Lopez-Castejon and Brough, 2011). It has

been shown that alterations in IL1B gene expression can be a

predictive factor for non-response to anti-TNF treatment among

patients with CD (Lykowska-Szuber et al., 2021). It has been

indicated that IL-1β could be a target for potential clinical

intervention in patients with colitis who have not responded

to the neutralization of TNFα (De Santis et al., 2017). In the

present study, IL1B was the most significant upregulated gene,

which indicated its possible use as a potential indicator for the

diagnosis of CD.

CXC chemokines can be divided into two groups: the ELR +

CXC family is structurally characterized by a Glu-Leu-Arg

tripeptide pattern at its N-terminal end; CXCL1, CXCL2,

CXCL5, and CXCL8 belong to the ELR + CXC family. Unlike

the ELR + CXC family, the ELR-CXC family lacks this tripeptide

pattern, to which CXCL10 belongs (Clark-Lewis et al., 1993;

Strieter et al., 1995). Several ELR + CXC chemokines have been

identified in association with IBD: CXCL1-2, CXCL5 and

CXCL8 chemokines are significantly expressed in areas of

intestinal inflammation in patients with IBD compared to

normal tissues (Autschbach et al., 2002; Banks et al., 2003;

Gijsbers et al., 2004). Dhawan et al. showed that high

CXCL8 expression was associated with reduced expression of

choline acetyltransferase in resected intestinal epithelial cells

from patients with CD (Dhawan et al., 2015). ELR-CXC

chemokines are highly responsive to memory T cells and NK

cells (Cole et al., 1998; Cole et al., 2001). CXCL10 is a ligand for

the CXCR3 receptor and its activation leads to the recruitment of

T lymphocytes and the perpetuation of mucosal inflammation

(Ostvik et al., 2013). It has been suggested that atorvastatin to

reduce plasma CXCL10 levels may be a candidate for future

treatment of Crohn’s disease (Grip and Janciauskiene, 2009). In

our study, all 5 chemokines were upregulated in CD patients,

suggesting a potential role in the future as biological targets to

forecast and guide CD therapy.

ICAM1 causes leukocytes to migrate to the inflamed mucosa

by binding to its receptor. (Dustin et al., 1986). Anti-ICAM-

1 antibodies have been shown to reduce colitis and prolong the

survival of dss-induced ICAM-1-deficient mice (Bendjelloul

et al., 2000). ICAM1 has been suggested as a possible early

predictor that can determine the response to vedolizumab

treatment in CD patients (Holmer et al., 2020). In

combination with our study, ICAM1 may serve as a molecular

target for the treatment of CD in the future.

TIMP1 is one of the four members of the glycoproteome

(TIMP1-4), whose main function is the translocation of the

extracellular matrix, while it is involved in various

pathological processes, including wound healing (Gardner and

Ghorpade, 2003). TIMP1 has been used as a predictor of CD-

associated intestinal strictures (Zorzi et al., 2012). Further

research is needed to determine whether TIMP1 can be used

as a therapeutic target for CD.

IL1RN (IL-1RA) is a competitive inhibitor of naturally

occurring interleukin-1 (IL-1)-induced pro-inflammatory activity

(Witkin et al., 2002). Dobre et al. suggested that transcript levels of

IL1RN are candidate biomarkers that can contribute to the

differential diagnosis of UC and CD in clinical practice (Dobre

et al., 2018). A study by Bank et al. suggested that genetic

polymorphisms involved in the regulation of the cytokine

pathway (IL1RN) were associated with the response to anti-TNF

therapy (Bank et al., 2019). Infliximab is effective in inducing and

maintaining remission in CD patients, and MMP3 has been shown

to be a promising biomarker for predicting primary non-response to

infliximab (Li et al., 2021). The role of MMP3 and IL1RN in CD is

still unexplored and more studies are needed to clarify it.

For microRNAs (miRNAs), a major role is to regulate the

expression of most human genes; they perform a crucial function

in the development of autoimmune diseases, including CD (Zhou

et al., 2021a). The results of our study suggest that several miRNAs,

including hsa-mir-21-5p, hsa-mir-93-5p, hsa-mir-98-5p, hsa-mir-

1-3p, and hsa-mir-335-5p, may play critical roles in CD. It has

been shown that elevated levels of miR-21-5p in the stool of IBD

patients could be a guide for the noninvasive clinical diagnosis of

IBD (Zhou et al., 2021b). It has been demonstrated that miR-93-5p

is upregulated before surgery and downregulated in relapsed CD

patients (Moret-Tatay et al., 2021). Wang et al. found that the

lncRNA MEG3 could improve ulcerative colitis by upregulating

miR-98-5p-Sponed IL-10 (Wang et al., 2021). It has been shown

that MiR-1-3p and MiR-124-3p could synergistically disrupt the

intestinal barrier in the aging colon to promote the development of

IBD (Sun et al., 2022). However, the relationship betweenmir-335-

5p and CDhas not been reported and needs to be explored further.

In previous studies, mir-335-5p has been found to inhibit the

inflammatory response in chronic rhinosinusitis (Gu et al., 2020);

and moreover mir-335-5p could alleviate the inflammatory

response and airway fibrosis by modulating ATG5, resulting in

relief of childhood asthma (Liang et al., 2022). It is also shown that

fibroblasts with high ICAM1 expression act as a key driver of

inflammation and play a facilitative role in the process of fibrosis

(Layton et al., 2020). In our study, miR-335-5p was interlinked

with CXCL2, CXCL8 and ICAM1, which led us to speculate that

miR-335-5p may alleviate the progression of CD by suppressing

the intestinal inflammatory response (CXCL2, CXCL8) and

intestinal fibrosis (ICAM1). These results may provide us with

new research ideas about their interactions in CD. In addition,

studies about genes and miRNAs in CD remains to be limited.

There is no doubt that gene-miRNA regulatory networks act

as an essential role in the CDmechanism. This not only enhances

the understanding of CD, but also provides targeted therapeutic

strategies and predictions for CD. The study is limited in that
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microarray expression profiles were analyzed using

bioinformatics analysis and not validated with primary

experiments. Additionally, we did not explore the detailed

mechanisms for how hub genes and miRNAs modulate CD.

As a result, further validation of our findings with additional

clinical samples and research is necessary in the future.

Conclusion

In conclusion, a total of 97 DEGs, 10 hub genes and

5 miRNAs (hsa-mir-21-5p, hsa-mir-93-5p, hsa-mir-98-5p,

hsa-mir-1-3p, and hsa-mir-335-5p) that may be involved in

the progression or occurrence of CD were identified in this

study, which could be regarded as biomarkers of CD. In

addition, these hub genes act mainly on IL-17 signaling

pathway, TNF signaling pathway, and NF-kappa B signaling

pathway to influence the progression of CD. However, further

studies are still needed to define their biofunction in CD.
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