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Purpose: Although alterations in resting-state functional connectivity between brain 
regions have been reported in children with attention-deficit/hyperactivity disorder 
(ADHD), the spatial organization of these changes remains largely unknown. Here, we 
studied frontal–parietal attention network topology in children with ADHD, and related 
topology to a clinical measure of disease progression.

Methods: Resting-state fMRI scans were obtained from New York University Child Study 
Center, including 119 children with ADHD (male n = 89; female n = 30) and 69 typically 
developing controls (male n = 33; female n = 36). We characterized frontal–parietal 
functional networks using standard graph analysis (clustering coefficient and shortest 
path length) and the construction of a minimum spanning tree, a novel approach that 
allows a unique and unbiased characterization of brain networks.

Results: Clustering coefficient and path length in the frontal–parietal attention network 
were similar in children with ADHD and typically developing controls; however, diameter 
was greater and leaf number, tree hierarchy, and kappa were lower in children with ADHD, 
and were significantly correlated with ADHD symptom score. There were significant 
alterations in nodal eccentricity in children with ADHD, involving prefrontal and occipital 
cortex regions, which are compatible with the results of previous ADHD studies.

Conclusions: Our results indicate the tendency to deviate from a more centralized 
organization (star-like topology) towards a more decentralized organization (line-like 
topology) in the frontal–parietal attention network of children with ADHD. This represents 
a more random network that is associated with impaired global efficiency and network 
decentralization. These changes appear to reflect clinically relevant phenomena and hold 
promise as markers of disease progression.

Keywords: attention-deficit/hyperactivity disorder, frontal–parietal attention network, small world, minimum 
spanning tree, resting connectivity
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INTRODUCTION

Even when in the resting state and not performing any task 
processing, the brain is still working. The spontaneous brain 
activity present in the resting state is not random and usually 
shows high temporal coupling across different brain regions. This 
creates a set of brain networks that are densely interconnected 
and distinct from others. These resting-state networks are not 
a reaction to any task, but are intrinsically generated by the 
brain itself (1, 2). To date, at least seven brain networks have 
been identified by a variety of functional connectivity analysis 
approaches, and they show a high stability across individuals 
(1–6). The frontal–parietal attention network (FPAN) is involved 
cognitive process, especially attention in these networks (7–9). 
The FPAN not only has been studied in task-related activation 
studies involving sustained attention, but has also been confirmed 
by functional connectivity at rest that directly relates to attention 
performance (8, 10).

Graph theory has been used to study the architecture of brain 
networks (11, 12) and has revealed an economical and highly 
efficient organization of functional connectivity that combines 
global efficiency and local integration. This is called small-world 
(SW) topology and is characterized by limited long-distance 
and dense local connections (13, 14). Many brain diseases have 
been related to disrupted organization of brain networks. The 
study of brain networks has increased our understanding of 
the underlying pathophysiological mechanisms for many brain 
diseases such as epilepsy and schizophrenia (15–17). Attention-
deficit/hyperactivity disorder (ADHD) is one of the most 
common psychiatric disorders during childhood and persists 
into adolescence and adulthood (18). Several whole-brain studies 
using graph theory analysis have reported a shift from a SW 
topology towards a more regular organization in ADHD, which 
results in increased local integration and loss of global network 
efficiency (19, 20). In addition, a vulnerability of some hub regions 
has been reported (21). As a neurodevelopmental disorder, 
ADHD is characterized by developmentally inappropriate 
symptoms of excessive inattention, impulsivity, and hyperactivity. 
Many studies have found that ADHD is a developmental disorder 
and associated with developmental delay (22). Recently, graph 
analysis studies have confirmed a shift from more random to more 
regular SW topological structure during maturation (23–25). 
Smit and colleagues have confirmed connectivity alteration that 
reflected increased network randomness, or decreased order 
(26). These results suggest that the maturational delay in ADHD 
is reflected by more random brain connectivity, but not more 
regular (23–25).

It is difficult to compare networks reported in graph theory 
studies across different groups and conditions. A normalization 
step is required to allow comparison. Common approaches are 
thresholding and/or comparing the observed network with 
randomized networks generated from the observed network; 
however, these do not provide a unique or consistent solution 
(27). One potential solution is minimum spanning tree (MST), 
which is derived from a weighted network (28). MST is an 
acyclic subnetwork that connects the same number of nodes and 
connections, and therefore not only makes the comparison of 

network topology easier across conditions but also avoids potential 
deviations that may be introduced through normalization steps. 
Several studies have used the MST approach to investigate brain 
networks and have shown that this approach is sensitive to brain 
disease, such as Alzheimer’s disease (29), epilepsy (30), and 
maturation from childhood into adulthood (23).

The aim of the present study was to explore the alteration 
of the FPAN connectivity or topology in children with ADHD. 
Increasing evidence has demonstrated that ADHD was a 
developmental disorder and associated with developmental 
delay. Typical maturation during childhood involves a shift from 
a random towards more regular networks (31). We hypothesized 
that, in youth with ADHD, functional networks would shift 
towards being more random, evidenced by decreased local 
integration and global efficiency. Although some previous 
studies report a regular topology in ADHD, with increased 
local integration and decreased global efficiency, we believe that 
these studies have some shortcomings. First, they analyzed the 
whole brain network, but different brain networks mainly took 
on different cognitive task (32), which relied on coactivation of 
executive network (e.g., frontal–parietal control network) and 
reciprocal suppression of the nonexecutive network (e.g., default 
mode network, DMN). The whole brain network analysis may have 
confused the role of different brain networks. Fair and colleagues 
found reduced spontaneous activity within the DMN in ADHD 
(33), and a follow-up study found decreased connectivity in 
DMN and dorsal attention networks, and enhanced connectivity 
within reward-motivation regions in the resting-state in young 
adults with ADHD (34). These previous findings suggest the 
presence of altered functional brain networks associated with 
attention and cognitive processing in ADHD. However, the 
topological features of functional brain networks in FPAN have 
yet to be extensively investigated. The FPAN is a critical module 
in attention processing (8), and exploring its alteration in ADHD 
may be helpful for understanding the pathological mechanism 
of disease. Second, usually, they used a range of thresholds to 
construct the SW topology, and the difference between ADHD 
and typically developing controls (TDCs) mainly exists at some 
threshold, which was not robust and lost many low signals. In 
addition, they did not compare with the real random networks. 
We used the connectivity strength between each pair of brain 
regions as the edge to construct the SW topology and compared 
the observed network with randomized networks generated 
from the observed network to normalize. We also construct 
MST to explore the alteration of brain networks in ADHD. 
Conventional network measures may give inaccurate differences 
in connectivity strength, density, and graph size between 
subjects. MST overcomes these problems and provides an elegant 
solution, which, up to this point, has not received much attention 
in the neuroscience literature. MST is an unbiased approach, and 
the diameter and leaf number of MST were strongly related with 
the path length of SW topology (24). MST captured changes in 
FPAN topology, supporting results derived from conventional 
network analysis (24). In addition, MST successfully captured 
alterations in the properties of the whole-brain network during 
maturation in children (23) and supported the finding that 
the randomness of the topology reduced with age, as shown 
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by conventional network analysis (24). Finally, although many 
studies have reported group differences between children with 
ADHD and TDC, they have not associated these differences with 
clinical features. In the present study, we computed the Pearson’s 
correlation between the properties of SW topology and clinical 
features.

In the present study, we used concepts from graph theory 
to examine resting-state functional connectivity within the 
FPAN. We hypothesized that the functional networks in the 
FPAN would shift towards being more random in children with 
ADHD than in TDC. We used graph theory analysis to quantify 
publically available resting functional magnetic resonance 
imaging (MRI) data from 119 children with ADHD and 69 
TDC. We calculated several measures derived from the SW and 
MST to assess local integration, global efficiency, and relative 
node importance within the networks and hypothesized that 
brain networks of participants with ADHD would display lower 
global efficiency and local integration than brain networks of 
TDC, and that this would be accompanied by a loss of centrality 
of individual brain regions within the FPAN. An analysis was 
then conducted to determine correlations between SW and MST 
parameters and ADHD-related disability, as measured using 
the ADHD symptom score. We hypothesized that, in children 
with ADHD, SW and MST would be associated with ADHD 
symptom score.

MATERIALS AND METHODS

Participants and Data Acquisition
The data we used in this study are publicly available from the 
ADHD-200 Consortium (http://fcon_1000.projects.nitrc.org/
indi/adhd200/). We first selected 191 participants between 
the ages of 7 and 14 years from New York University Child 
Study Center and excluded 7 participants whose IQ (Wechsler 
Abbreviated Scale of Intelligence, WASI), gender, or diagnosis 
information were missing, resulting in the 188 participants for 
further analysis, including 119 children with ADHD (male n = 
89; female n = 30) and 69 TDC children (male n = 33; female 
n = 36), detailed in Table 1. All participants provided signed 
informed consent as approved by the IRBs of NYU and the NYU 
School of Medicine and were compensated, and the institutional 
review boards approved the research protocols.

ADHD Symptoms Measures
Dimensional ratings of ADHD symptoms (Inattention; 
Hyperactivity/Impulsivity) were assessed using Conners’ Parent 
Rating Scale-Revised, Long Version (CPRS-LV).

Magnetic Resonance Imaging Dataset 
and Processing
Magnetic Resonance Imaging Dataset
High-resolution T1-weighted 3D MPRAGE images covering the 
whole brain were acquired for each participant on a Siemens 3.0-
Tesla Allegra MRI scanner at the NYU Center for Brain Imaging 
[time repetition (TR) = 2,530 ms, echo time (TE) = 3.25 ms, T1 = 

1,100 ms; flip angle = 7°, voxel size = 1.3 × 1.0 × 1.3 mm, field of 
vision (FOV) = 256 mm]. Functional imaging was performed in 
a single run using a blood oxygenation level-dependent (BOLD) 
contrast sensitive gradient echo-planar sequence (TR = 2,000 ms, 
TE = 15 ms, flip angle = 90°, FOV = 240 mm, 33 slices per volume, 
176 volumes, acquisition voxel size = 3.0 × 3.0 × 4.0 mm). During 
this scan, participants were asked to relax with their eyes open.

Data Processing
Image preprocessing was performed using the DPARSF data 
processing assistant for resting functional MRI (rsfMRI) (35). 
Preprocessing comprised the following steps: 1) discarding the 
first 10 volumes; 2) slice timing to correct for temporal offsets; 
3) realignment of each volume for head movement; 4) spatial 
normalization to MNI space (New Segment + DARTEL) and then 
resampled to 3-mm isotropic voxels; 5) spatial smoothing with a 
4-mm 3D full width at half-maximum kernel; 6) detrending to 
remove linear trends due to scanner drift; 7) temporal band-pass 
filtering (0.01–0.1 Hz) to remove low-frequency drift and high-
frequency physiological noises; and 8) regressing whole brain 
and white matter signals out of the 24 motion parameters.

Graph and Functional Connectivity Analysis
Graph analysis was performed using Gretna software (36) for 
BOLD time series extraction (https://www.nitrc.org/projects/
gretna) and Brain connectivity toolbox (37) for SW and MST 
topology (https://www.nitrc.org/projects/bct/). The functional 
connectivity derived from 16 brain regions forming FPAN 
(detailed in Table 2), which come from previous literature and 
were transformed to The Montreal Neurological Institute (MNI) 
coordinates (7, 9). Regions of interesting (ROIs) were defined 
as 6-mm-radius spheres around these MNI coordinates (8). 
We extracted BOLD time series from each of the voxels in each 
ROI, and averaged all voxels in the respective ROI as the signal. 
The functional connectivity between each pair of ROIs was then 
computed by a Pearson’s correlation and formed a 16×16 matrix, 
which were z-standardized by Fisher’s r-to-z transformation to 
approximate a Gaussian distribution. Typical graph analyses 
of weighted networks ignored negative correlation (1), and we 
followed the traditional approach. We used the matrix to construct 
SW networks and to compute the network properties. Graph and 
functional connectivity analysis pipelines are shown in Figure 1.

TABLE 1 | Demographic and clinical characteristics of ADHD and TDC groups.

TDC (n = 69) ADHD (n = 119) ADHD vs. TDC

Mean SD Mean SD t values

Age (years) 10.252 1.935 10.192 1.799 0.217
Handedness 0.568 0.287 0.645 0.291 −1.745
Gender 0.478 0.503 0.748 0.436 −3.715***

VIQ 112.594 14.199 107.076 13.890 2.604**

PIQ 107.522 15.560 103.941 14.840 1.566
ADHD Index 45.522 5.229 72.261 8.909 −26.739***

Handedness, Edinburgh Handedness Inventory; VIQ, Verbal IQ; PIQ, Performance 
IQ; ADHD Index, ADHD Index Scale T-score. ADHD, attention-deficit/hyperactivity 
disorder; TDC, typically developing control. *P < 0.05, **P < 0.01, ***P < 0.001.
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Small-World Properties
In order to approximate a Gaussian distribution, the Pearson’s 
correlation coefficients in the resulting 16×16 matrix were 
transformed by Fisher’s r-to-z. This matrix represents the strength 
of the functional connectivity between all 16 regions in the whole 
brain and served as an adjacency matrix for graph analysis. SW 
parameters clustering coefficient (C) and path length (L) were 
calculated in terms of Watts and Strogat (1998). Briefly, characteristic 
path length is defined as the average shortest path connecting any 
two nodes in the graph. The path length is used to measure how 
well a network is connected; a small value indicates an average 
short distance between any two nodes. The cluster coefficient is 
defined as the number of actual edges connecting the neighbors of 
a node divided by the maximum number of edges possible between 
neighboring nodes. The cluster coefficient of a network is used 
to measure how many local clusters exist in the network. A high 
cluster coefficient indicates that the neighbors of a node are often 
also directly connected to each other, that is, they form a cluster.

To determine whether a network has SW properties, the values 
of L and C must be normalized by generated random networks 
(12). SW networks are characterized by path lengths that are 
similar to those of comparable random networks (Lrandom) but 
with increased cluster coefficients (Crandom):λ = L/Lrandom≈1 and 
γ = C/Crandom > 1 (38). Random clustering coefficient and path 
length derived from the mean of those values from 100 random 
networks. Each random network was generated by randomly 
reshuffling the edge weights in the original network (39), which 
ensures that the node degree and node distribution of the random 
network are similar to those of the original network.

Minimum Spanning Tree Reconstruction
The MST of an undirected weighted network is a unique acyclic 
subgraph that connects all the nodes with the minimum possible 
link weight. In our analysis, we used the maximum connection 
strength (correlation matrix) as the edge to construct an acyclic 
subnetwork, equivalent to a MST as obtained by using the 

Kruskal algorithm (40). Briefly, all connections are arranged in 
descending order, then starting from the strongest strength edge, 
consecutive high strength links were added until all nodes (n) 
were connected and formed an acyclic subnetwork consisted with 
n-1 edges (Figure 1). If adding a link resulted in the formation of 
a cycle, this link was skipped.

In terms of the information about the topological properties 
of the MST, we can compute several measures to characterize 
the topology of the tree, including the diameter, normalized leaf 
fraction, kappa (degree of divergence), betweenness centrality, 
and hierarchy. The diameter, which is the largest distance between 
any two nodes, is defined as the longest shortest path in the 
network. The normalized leaf number is defined as the number 
of nodes with a degree of 1, divided by the maximum number of 
leaves possible given the size of the tree, and is used to measure 
the integration in the network (41). A decreased value of the 
normalized leaf number indicates a decreased global efficiency. 
Previous studies have found leaf number to be an important 
network parameter during development, and it is sensitive to 
the changes in aging (25), autism (42), and Parkinson’s disease 
(28). Kappa, also called degree of divergence, is used to measure 
the broadness of the degree distribution. A decreased value of 
kappa indicates a decreased number of highly connected nodes 
or “hubs.” Betweenness centrality (BC) of a node is defined as 
the number of shortest paths between any two nodes passing it, 
divided by the total number of shortest paths in the network. If 
BC = 0, the node is a leaf node; if BC = 1, the node is a central 
node in a star-like network. The BC of a node ranges between 
0 and 1. Usually, we used BCmax, which is the BC of the node 
with the highest BC in the tree to measure the BC of the tree. 
A decreased value of BCmax in the tree indicates a decreased 
global efficiency and a decreased “hub” strength. Hierarchy is an 
indicator of the balance between efficient communication paths 
and overload of hub nodes, which is defined as

TH = L
mBC2 max

where L is the leaf number, m is the number of vertices −1, 
and BCmax is the maximum value of betweenness centrality. The 
value of hierarchy ranges between 0 and 1. If leaf number = 2, 
tree is a line-like topology, and hierarchy approaches 0. If leaf 
number  = m, tree is a star-like topology, and tree hierarchy 
approaches 0.5. When the number is between 2 and m, tree 
hierarchy can have higher values (28).

Statistical Analysis
Statistical differences in age, handedness, gender, verbal, and 
performance IQ were evaluated using T test (Table 1). Due to the 
difference only in verbal IQ and gender between TDC and ADHD 
children, all analyses were also conducted with verbal IQ and 
gender as covariates. Group differences in graph theory analysis 
and functional connectivity were examined using analysis of 
covariance (ANCOVA) in which the main effect of diagnosis 
was tested with verbal IQ and gender as covariates. Moreover, 

TABLE 2 | MNI coordinates of the 16 nodes in the FPAN.

Brain region x y z

Left IPS −23 −70 46
Right IPS 25 −62 53
Left iPL −42 −48 51
Right iPL 48 −41 54
Left vIPS −26 −84 24
Right vIPS 35 −85 27
Left FEF −24 −15 66
Right FEF 28 −10 58
IPCL −55 −2 38
SMA −2 −2 55
Left DLPFC −40 39 30
Right DLPFC 38 41 26
Left vOC −47 −71 −8
Right vOC 55 −64 −13
Left aIns −45 35 9
Right aIns 45 3 15

IPS, intraparietal sulcus; IPL, inferior parietal lobule; FEF, frontal eyefield; iPCS, inferior 
precentral sulcus; SMA, supplementary motor area; DLPFC, dorsolateral prefrontal 
cortex; vOC, ventral occipital lobe; alns, anterior insula.
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a partial correlation coefficient was used to assess the relation 
between network topology (in terms of SW and MST parameters) 
and ADHD symptom score. Statistical analysis was performed 
using SPSS 21 (IBM, Armonk, NY). Multiple comparisons were 
controlled using the false discovery rate (q < 0.05) (43).

RESULTS

Group Characteristics
Table 1 summarizes the characteristics of ADHD and TDC 
children. No significant group differences were observed in age 
(t = 0.217, p = 0.828), handedness (t = −1.745, p = 0.082), and 
performance IQ (t = 1.566, p = 0.119); gender (t = −3.715, p < 
0.001) and verbal (t = 2.604, p = 0.010) IQ showed differences 

between ADHD and TDC children. In the subsequent analysis, 
gender and verbal IQ were used as covariates.

Functional Connectivity
After controlling for gender and verbal IQ, no significant group 
differences were observed for the FPAN mean strength [ADHD: 
0.155 ± 0.034; TDC: 0.153 ± 0.035, F(1,184) = 0.472, p = 0.493], 
detailed in Table 3. No significant correlation (r = 0.023; p = 
0.754) was observed between the FPAN mean strength and the 
ADHD scores, detailed in Table 4.

Small-World Topology
No significant group differences were observed in SW topology 
clustering coefficient [ADHD: 1.254 ± 0.193; TDC: 1.221 ± 0.219, 

FIGURE 1 | Graph and functional connectivity analysis pipeline. Schematic overview of the formation of individual functional brain networks using two different 
methods, i.e., construction of weighted graphs and minimum spanning trees (MST). After MRI recording (A), data from the MRI (B) were projected onto a 
functional framework of 16 frontal–parietal attention network (FPAN regions) (C). Functional connectivity between each pair of brain regions was assessed by 
means of the Pearson’s correlation (Fisher’s r-to-z transformation) (D). For weighted network analysis, a weighted graph (E) was constructed from the Pearson’s 
correlation (z-standardized). For minimum spanning tree analysis, the minimum spanning tree matrix also was derived from the correlation (z-standardized) matrix 
by Kruskal’s algorithm (D’), with concurrent MST construction (E’). Finally, network measures were computed for both the weighted graph (F) and the minimum 
spanning tree (F’) (28).
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F(1,184) = 0.328, p = 0.568] or path length [ADHD: 1.118  ± 
0.066; TDC: 1.104 ± 0.072, F(1,184) = 1.209, p = 0.273], detailed 
in Table 3. No significant correlation was observed between SW 
topology clustering coefficient and ADHD symptom score (r = 
0.040, p = 0.590) or path length and ADHD symptom score (r = 
0.097, p = 0.186), detailed in Table 4.

Minimum Spanning Tree Topology
A significant group difference was observed for diameter 
[ADHD: 0.667 ± 0.089; TDC: 0.632 ± 0.099, F(1,184) = 7.387, p = 
0.007], leaf number [ADHD: 0.410 ± 0.071; TDC: 0.428 ± 0.084, 
F(1,184)  = 6.098, p = 0.014], tree hierarchy [ADHD: 0.021 ± 
0.004; TDC: 0.022 ± 0.004, F(1,184) = 5.505, p = 0.020], and kappa 
[ADHD: 2.264 ± 0.123; TDC: 2.308 ± 0.157, F(1,184) = 7.780,  
p = 0.006], detailed in Table 3. These variables were significantly 
related to ADHD symptom score (diameter: r = 0.175, p = 0.017; 
leaf number: r = −0.208, p = 0.004; tree hierarchy: r = −0.218, 
p = 0.003; kappa: r = −0.212, p = 0.004), detailed in Table 4. 
No significant group difference was observed for betweenness 
centrality [ADHD: 0.649 ± 0.058; TDC: 0.656 ± 0.060, F(1,184) = 
0.724, p = 0.396] or eccentricity [ADHD: 0.535 ± 0.028; TDC: 
2.308 ± 0.157, F(1,184) = 2.071, p = 0.152], detailed in Table 3, 

and these variables had no significant correlation with ADHD 
symptom score (betweenness centrality: r = −0.016; p = 0.829; 
eccentricity: r = 0.112; p = 0.129), detailed in Table 4.

To further examine the regionally nodal characteristics of 
brain networks, the group difference in nodal eccentricity was 
tested in the MST topology. Eccentricity was significantly greater 
in children with ADHD than in TDC in the left intraparietal 
sulcus [ADHD: 7.328 ± 1.595; TDC: 6.783 ± 1.617, F(1,184) = 
7.017, p = 0.009], bilateral ventral intraparietal [left—ADHD: 
8.059 ± 1.457; TDC: 7.406 ± 1.584, F(1,184) = 11.305, p = 0.001; 
right—ADHD: 7.79 ± 1.545; TDC: 7.304 ± 1.365, F(1,184) = 
9.206, p = 0.003], and left and right ventral occipital lobe [left—
ADHD: 7.731 ± 1.655; TDC: 7.087 ± 1.755, F(1,184) = 6.143, 
p = 0.014; right: ADHD: 7.462 ± 1.736; TDC: 6.768 ± 1.637, 
F(1,184) = 8.809, p = 0.003], which also correlated with ADHD 
scores (left IPS: r = 0.165, p = 0.025; left vIPS: r = 0.205, p = 0.005; 
right vIPS: r = 0.154, p = 0.036; left vOC: r = 0.195, p = 0.008; 
right vOC: r = 0.172, p = 0.019), detailed in Table 5.

DISCUSSION

To our knowledge, this is the first study to investigate SW and 
MST properties of FPAN topology in children with and without 
ADHD. We found that, although brain functional networks 
exhibited economical SW topology in both groups, children with 
ADHD had greater MST diameter and lower leaf number, tree 
hierarchy, and kappa than TDC, and these variables were also 
associated with ADHD symptom score.

Since Watts and Strogatz proposed and quantitatively 
described SW networks (12), it has been applied in brain 
structural and functional networks in many studies using 
various imaging techniques including electroencephalography, 
magnetoencephalography, and functional MRI (13, 44). Wang 
and colleagues first explored SW topology in the whole-brain 
functional network in ADHD and found SW topology in TDC and 
children with ADHD, but children with ADHD had a tendency 
towards more regular networks. Consistent with previous studies 
(21, 45), we found that the FPAN had economical SW properties, 
which suggests that SW brain networks are robust in the face of 
disease (21). This supports the view that brain networks may have 
developed to maximize the efficiency of information processing. 
However, we did not find significant alterations in FPAN in 
children with ADHD. It may be that children with ADHD had 
no deficit in FPAN topology, or that any difference was too small 
to be captured by clustering coefficient and path length. Previous 
studies have used one of two approaches for normalizing clustering 

TABLE 3 | Group differences in network parameters.

Group(N) Mean ± SD F-value 

Strength TDC 69 0.154 ± 0.034 0.472
ADHD 119 0.154 ± 0.033

SW C TDC 69 1.221 ± 0.219 .328
ADHD 119 1.254 ± 0.193

L TDC 69 1.104 ± 0.072 1.209
ADHD 119 1.118 ± 0.066

MST Dia TDC 69 0.632 ± 0.099 7.387*
ADHD 119 0.667 ± 0.089

Leaf TDC 69 0.428 ± 0.084 6.098*
ADHD 119 0.410 ± 0.071

BC TDC 69 0.656 ± 0.060 0.724
ADHD 119 0.649 ± 0.058

Th TDC 69 0.022 ± 0.004 5.505*
ADHD 119 0.021 ± 0.004

Ec TDC 69 7.224 ± 1.113 2.959
ADHD 119 7.410 ± 1.016

K TDC 69 2.308 ± 0.157 7.780*
ADHD 119 2.264 ± 0.123

Strength, functional connectivity strength; SW, small world; MST, minimum spanning 
tree; C, clustering coefficient; L, path length; Dia, diameter; BC, betweenness 
centrality; Th, tree hierarchy; Ec, eccentricity; K, kappa (degree divergence). 
*P < 0.05, false discovery rate (FDR) corrected.

TABLE 4 | Correlations between network parameters and disability score.

FC SW MST

C L Dia Leaf BC Th Ec K

ADHD Index 0.023 0.040 0.097 0.175* −0.208* −0.016 −0.218* 0.112 −0.212*

Strength, functional connectivity strength; SW, small world; MST, minimum spanning tree; C, clustering coefficient; L, path length; Dia, diameter; BC, betweenness centrality; Th, tree 
hierarchy; Ec, eccentricity; K, kappa (degree divergence). *P < 0.05, FDR corrected.
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coefficient and path length. However, thresholding the functional 
connectivity matrix cannot provide a unique or consistent solution 
(27, 46). We used the second approach to normalize, whereby the 
observed network parameters were divided by the randomized 
networks parameters, but this approach may include too many low 
noise and may not be sensitive to developmental disease. MST is 
an unbiased approach that overcomes the normalization problem, 
can provide a unique and consistent solution, and can discard the 
low signal.

In the present study, MST analysis showed that diameter, leaf 
number, tree hierarchy, and kappa were altered in ADHD. Children 
with ADHD had greater diameter and lower leaf number, tree 
hierarchy, and kappa, and these variables significantly correlated 
with ADHD symptom score, indicating their clinical relevance. 
Decreased leaf number and increased diameter indicate a decreased 
global efficiency (47), suggesting that the FPAN had lower global 
efficiency in children with ADHD than in TDC. This is consistent 
with whole-brain deficits (21). Together with the significant negative 
correlation between ADHD symptom score and leaf number, and 
positive correlation between ADHD symptom score and diameter, 
this indicates the tendency to deviate from a more centralized 
organization (star-like topology) towards a more decentralized 
organization (line-like topology) in ADHD. The negative correlation 
between ADHD symptom score and tree hierarchy suggests that 
there is a sub-optimal balance between hub overload and functional 
integration in the network. Tree hierarchy can range from 0 to 1, 
and an optimal tree configuration is thought to correspond to a 
hierarchy value of around 0.5 (a compromise between a line-like 
and star-like topology). A star-like topology corresponds to hub 
overload, and a line-like topology corresponds to weak integration 
(32). The lower tree hierarchy in children with ADHD represents 
a more line-like topology, which is indicative of weak integration. 
This is consistent with the finding of a study based on whole-brain 
analysis that reported a decreased clustering coefficient, which 
corresponds to a local integration, in children with ADHD (48), in 
which they found a decreased clustering coefficient (corresponds to 
a local integration). Using MST analysis, we confirmed the decreased 
integration in children with ADHD. In addition, kappa, a measure 
that captures the broadness of the degree distribution, was lower in 
children with ADHD than in TDC and was negatively associated 
with ADHD symptom score. The lower kappa in children with 
ADHD reflects a reduced ease of synchronization, that is, decreased 

spread of information across the tree (41). As hypothesized, these 
findings indicate that FPAN topology is different in children with 
ADHD and TDC, and tends towards greater randomness and lower 
global efficiency and local integration in children with ADHD. 
The correlation between MST parameters and ADHD symptom 
score suggests that the abnormal MST topology may be useful in 
monitoring progression of the disease.

A low kappa value corresponds to a low number of highly 
connected nodes or “hubs.” The number of hubs is associated 
with the resilience of the network against attack. To further 
explore the damaged “hub” regions in the FPAN in children with 
ADHD, we further computed the eccentricity of each region. 
The eccentricity of a node is measured by the longest distance 
between that node and any other node. The closer a node is to 
the center of the tree, the lower its eccentricity. Low eccentricity 
indicates high global efficiency and centrality. We found greater 
eccentricity, reflecting lower global efficiency and centrality, in 
the left IPS, bilateral vIPS, and bilateral vOC. In general, these 
brain regions were concerned in ADHD studies. Previous studies 
found that the centrality in the IPS and vIPS regions of the FPAN 
was associated with alertness and the efficiency of the executive 
control system (8, 49). Consistent with the results of these studies, 
the decreased centrality in the IPS and vIPS in children with 
ADHD may be related to altered alerting and executive function 
in attention processing. These findings are in accordance with 
those of several structural and functional imaging studies that 
have found cortical atrophy and reduced activity in these regions 
in participants with ADHD (49). In addition, vOC also shows 
lower eccentricity in ADHD participants, which were compatible 
with previous studies that found decreased nodal efficiency and 
reduced volume in this region (21, 50).

In summary, this is the first study to reveal the topological 
properties of the FPAN in children with ADHD using resting-state 
functional MRI. We performed MST analysis of brain networks. This 
addresses the threshold and normalization problems encountered 
with conventional approaches, and was sensitive to changes in 
brain topography in children with ADHD. Clustering coefficient 
and path length were not successful in identifying deficits in the 
FPAN, whereas the MST parameters of leaf number, diameter, tree 
hierarchy, and kappa captured the tendency of ADHD brains to 
deviate from a more centralized organization (star-like topology) 
towards a more decentralized organization (line-like topology). 
This corresponds to a decreased global efficiency and weak 
integration. There were also differences in nodal eccentricity of the 
IPS, vIPS, and vOC in children with ADHD, reflecting a decreased 
efficiency and decentralized topology that was associated with 
deficits in alertness and executive function in attention processing. 
In addition, MST parameters were associated with clinical features 
of ADHD. These findings enhance our understanding of the 
underlying pathophysiology of ADHD and may facilitate evaluation 
and monitoring of clinical status in ADHD.

Despite the advantages of this study, some limitations should 
be noted. First, when using MST, we only used the “core” 
connections. This means that some information may have been 
lost. For example, clustering coefficient is a measure that cannot 
be examined in MST. To address this, we derived this information 
from SW topology. Previous studies found that, among children 

TABLE 5 | Regions showing significant changes in each nodal eccentricity 
in ADHD.

Group(N) Mean ± SD F-value 

Left IPS TDC 69 6.783 ± 1.617 7.017*
ADHD 119 7.328 ± 1.595

Left vIPS TDC 69 7.406 ± 1.584 11.305*
ADHD 119 8.059 ± 1.457

Right vIPS TDC 69 7.304 ± 1.365 9.206*
ADHD 119 7.79 ± 1.545

Left vOC TDC 69 7.087 ± 1.755 6.143*
ADHD 119 7.731 ± 1.655

Right vOC TDC 69 6.768 ± 1.637 8.809*
ADHD 119 7.462 ± 1.736

IPS, intraparietal sulcus; vOC, ventral occipital lobe. *P < 0.05, FDR corrected.
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with ADHD, there are gender differences in brain structure 
(51); however, girls comprised only 35% of our participants. In 
addition, participants in the ADHD and TDC groups were not 
matched for gender or IQ. To address this limitation, we treated 
these variables as covariates; however, future studies should 
further explore differences in brain networks using participants 
matched for IQ and gender.
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