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Background: Profound knowledge about cardiovascular physiology in the setting
of microgravity can help in the course of preparations for human space missions.
So far, influences of microgravity on the cardiovascular system have been
demonstrated, particularly pertaining to venous fluid shifts. Yet, little is known about the
mechanisms of these adaptations on continuous macrocirculatory level and regarding
the microcirculation.

Methods: Twelve healthy volunteers were subjected to alternating microgravity and
hypergravity in the course of parabolic flight maneuvers. Under these conditions, as
well as in normal gravity, the sublingual microcirculation was assessed by intravital
sidestream dark field microscopy. Furthermore, hemodynamic parameters such as heart
rate, blood pressure, and cardiac output were recorded by beat-to-beat analysis. In
these settings, data acquisition was performed in seated and in supine postures.

Results: Systolic [median 116 mmHg (102; 129) interquartile range (IQR) vs. 125 mmHg
(109; 136) IQR, p = 0.01] as well as diastolic [median 72 mmHg (61; 79) IQR vs.
80 mmHg (69; 89) IQR, p = 0.003] blood pressure was reduced, and cardiac output
[median 6.9 l/min (6.5; 8.8) IQR vs. 6.8 l/min (6.2; 8.5) IQR, p = 0.0002] increased
in weightlessness compared to normal gravitation phases in the seated but not in
the supine posture. However, microcirculation represented by perfused proportion of
vessels and by total vessel density was unaffected in acute weightlessness.

Conclusion: Profound changes of the macrocirculation were found in seated postures,
but not in supine postures. However, microcirculation remained stable in all postures.

Keywords: weightlessness, microcirculation, parabolic flight, microgravity, hemodynamic changes

Abbreviations: 0 G, microgravity; 1, G regular terrestrial gravity; 1.8 G, hypergravity; BP, sys/dia systolic/diastolic blood
pressure; bpm, beats per minute; BSA, body surface area; HR, heart rate; IQR, interquartile range; PPV, perfused proportion
of vessels; TVD, total vessel density.
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INTRODUCTION

Over the past decades, spaceflight has been a thriving field
of scientific interest (Buckey, 1999; Mairesse et al., 2019). In
the meantime, hundreds of astronauts have spent months in
space, challenged by the circumstances of microgravity. However,
striving to space is not without perils looking at in-flight and
postflight health risks (Buckey et al., 1996; Lawley et al., 2017).
As commercial flights to space will become accessible in the near
future, even more humans with different health states will be
exposed to microgravity. Even though putative health risks do
not seem permanent, understanding more about physiological
processes of the human body under these conditions is of
great interest (Hubbard and Hargens, 1989; Demontis et al.,
2017; Garrett-Bakelman et al., 2019) as good human health is a
prerequisite for the success of any space mission (Hubbard and
Hargens, 1989; Demontis et al., 2017).

It is evident that there are only a few platforms that harbor
the possibility of fruitful experiments in space or else can mimic
conditions of space here on earth. In this regard, spaceflight
analogs, such as bed rest, head-down tilt at a moderate angle,
or water immersion, have been implemented, particularly in
scientific settings (Hargens and Vico, 2016). Even so, since a
few decades, parabolic flights have equally proven a promising
spaceflight analog (Caiani et al., 2009; Petersen et al., 2011; Norsk,
2014; Shelhamer, 2016; Klein et al., 2019).

It is well known that gravitational changes have significant
effects on the cardiovascular system, constantly challenging the
cardiovascular system in diminishing venous blood return to
the heart and therewith altering cardiac outputs, particularly
in seated, and upright postures (Norsk et al., 2006). Here,
cardiopulmonary and arterial baroreflexes compensate for
gravity-induced dropping of blood pressure by induction of
vasoconstriction (Norsk et al., 2006). Prior studies have revealed
that in microgravity, the effects on the cardiovascular system
are somewhat even more prominent (Aratow et al., 1991; Baisch
et al., 2000). In microgravity in particular, headward venous
fluid shifts have been reported as hydrostatic gradients are
abolished and tissue pressures change (Buckey et al., 1993).
In this regard, prominent clinical features of microgravity are
puffy faces, nasal congestion, headaches, and bird legs due to
dehydration of the lower legs (Hargens et al., 1983; Hargens and
Richardson, 2009). Buckey et al. (1993) stressed that, in particular,
central venous pressure is altered. It has also been described
that in the course of acute loss of gravity in weightlessness,
substantial fluid shifts are induced, leading to central volume
expansion (Fritsch-Yelle et al., 1996; Norsk et al., 2006, 2015).
Hargens et al. (1983) documented the acute effects of these
fluid shifts with transition into microgravity (Breit et al., 1993;
Hargens and Richardson, 2009) as well as in simulated models
of weightlessness. Looking at these facts, one has to bear in
mind that understanding the mechanism of fluid shifts under
these conditions remains complex, particularly as overall fluid
response mechanisms may have significant medical implications
(Nicogossian et al., 1991; Simanonok and Charles, 1994). As
stated above, one of the primary fluid shift mechanisms upon
entrance into microgravity is the relocation of vascular fluids to

cephalad compartments (White and Blomqvist, 1998; Drummer
et al., 2000; Hawkey, 2003). However, it should be mentioned that
overall fluid distribution also entails fluid allocations into other
locations such as extravascular and extracellular compartments
(Leach et al., 1996; Drummer et al., 2000), for instance, in the
course of transcapillary fluid shifts (Hargens and Richardson,
2009). Furthermore, shifts of interstitial fluids have been reported
in former studies as potentially underlying causes of complex
systemic adaptations of the human body to weightlessness
(Kirsch and Von Ameln, 1981; Blomqvist, 1983). Another
noteworthy aspect of fluid distributions under these conditions
is its timescale: previous studies have revealed the importance
of characterizing short-term, mid-term, and long-term fluid shift
alterations in this setting (Norsk et al., 2015; Gerber et al.,
2018; Norsk, 2020), even with respect to postflight readaptations
(Moore and Thornton, 1987).

Furthermore, details about general physiologic adaptations
during spaceflights have been addressed (Tipton and Hargens,
1996). These changes occur immediately upon entering
microgravity and last for at least several days or even weeks
(Norsk et al., 2006, 2015). As an excellent health status is a
prerequisite of any astronaut, candidates for space missions
undergo profound prior medical testing proving excellent health
states. Thus, most astronauts recover from postflight health
deficits in a timely fashion of a few weeks, and permanent
health deficiencies have remained scarce. However, postflight
cardiovascular deconditioning, as in orthostatic intolerance, is
an important issue. Buckey et al. (1996) and Lee et al. (2015) have
investigated about its clinical relevance and implications (Buckey
et al., 1996; Lee et al., 2015).

So far, scientific works have been focusing on macrocirculatory
parameters such as blood pressure, cardiac output, and heart
rate during human space missions as well as with spaceflight
analogs (Mukai et al., 1991; Fritsch-Yelle et al., 1996; Schlegel
et al., 1998; Norsk et al., 2006, 2015; Caiani et al., 2009;
Coupé et al., 2009). However, in-flight measurements of these
cardiovascular parameters are difficult to obtain, and results have
been inconsistent (Fritsch-Yelle et al., 1996; Norsk et al., 2006;
Verheyden et al., 2009; Petersen et al., 2011; Klein et al., 2019).

With respect to the known data about cardiovascular
adaptations in space, alterations of the microcirculation
under these conditions seem likely, but the impact of acute
weightlessness on the microcirculation has not yet been
addressed. The microcirculation is regarded the largest part
of the circulation. It entails a large network of arterioles and
venules that facilitates gas and nutrient exchange on tissue and
endothelial levels (Coupé et al., 2009), with an estimated surface
area of 350 m2. In this regard, the microcirculation plays a crucial
role in blood flow regulations, ensuring adequate organ function
(Jung et al., 2016a). The evaluation of the microcirculation has
become more and more clinically relevant, in particular, in
the setting of critically ill patients (De Backer et al., 2014; Jung
et al., 2016b). In these scenarios, the microcirculation has been
identified as one of the key predictors of mortality. The timely
evaluation of the microcirculation has been esteemed one of the
tools for improvement of therapeutic strategies. Former studies
demonstrated that in challenging scenarios with profound
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alterations of the cardiovascular system, macrocirculation, and
microcirculation might differ substantially in responses (Jung
et al., 2010; Jung et al., 2016b). Therefore, in our setting, one of
the aims was to investigate about differences of macrocirculation
and microcirculation as substantial effects on the cardiovascular
system are generally known. Handheld video microscopes, as the
one we implemented in our setting, have been classified helpful
in the assessment of microcirculatory flow (Massey and Shapiro,
2016; Ince et al., 2018).

There were two aims of this study: (1) to test the feasibility
of measurements of the sublingual microcirculation during
parabolic flight maneuvers as a novel approach on a spaceflight-
mimicking platform and (2) to assess alterations of hemodynamic
cardiovascular parameters of the macrocirculation and the
microcirculation during microgravity and to evaluate the effect
of supine and seated body postures on these variables.

MATERIALS AND METHODS

Study Population
Twelve healthy volunteers (seven male, median age of the whole
group 29 years) were recruited for this study. Airworthiness
(proven by medical certificate) was attested prior to participation
in this study. The study was conducted in accordance with the
Declaration of Helsinki (1975, revised in 2008), and the protocol
was approved by the German Ethics Committee of the Medical
Faculty of the University Hospital Duesseldorf, Germany (Date
of approval: August 14, 2017; Project Identification number:
2017054297), and by the French Ethics Committee [Comité
de Protection des Personnes (CPP) Nord-Ouest III] of the
Medical Faculty of the University of Caen (Date of approval:
September 6, 2017; Project Identification number: 2017-A01185-
48). Written informed consent was voluntarily provided by all
participants of the study.

Parabolic Flight
The study was conducted within a participation in a so-
called parabolic flight campaign by the German space agency
[Deutsches Zentrum für Luft-und Raumfahrt (DLR)] as
described previously (Bimpong-Buta et al., 2018a). The location
of this campaign was in Bordeaux (France) with flight over
the Mediterranean Sea and the Atlantic Ocean. On-site in
Bordeaux, the French company NoveSpace (headquarter in
Mérignac, France) was in charge of regulations of adequate
aviation procedures. On each flight day, 31 parabolic flight
maneuvers were performed. The aircraft implemented in this
flight campaign was an Airbus 310. To obtain best parabolic
flight trajectories, the aircraft was aviated by well-trained jet
pilots. In the course of each parabolic flight path, alternating
states of gravity can be experienced aboard. These gravity
states range from earthly gravity (1 G) to begin with (“steady
flight”) followed by a state of hypergravity (“1.8 G pull-up”)
followed by a state of microgravity (0 G) for the duration
of 22 s. Hereafter, via a second phase of hypergravity (“1.8
G pull-out”), regular gravity (1G) is resumed at the end
of each parabolic flight maneuver. Details about the flight

maneuver have been published before (Schlegel et al., 1998;
Shelhamer, 2016).

One of the primary concerns in the course of preparation
of the flight campaign was the possible occurrence of motion
sickness due to the anticipated abrupt gravitational changes
inherent to the scheduled flight maneuvers. In worst-case
scenarios, health issues of the crew or participants might
have led to cancelation of a flight day. With respect to the
extensive efforts of preparation of each experiment prior
to the campaign, one aim prior to takeoff was to minimize
possible interferences or interruptions of the flight maneuvers,
especially as this physiologic reaction has proven foreseeable.
On the basis of experiences from former flight campaigns,
the intentional application of antiemetic medications prior
to takeoff has helped alleviate this issue. Thus, in order
to prevent motion sickness during the parabolic flight
maneuvers, the antiemetic drug scopolamine was administered
subcutaneously around 2 h prior to takeoff on a voluntary
basis. In one of our previous studies, we could demonstrate
that scopolamine does not affect our measurements of the
sublingual microcirculation (Bimpong-Buta et al., 2018b).
Nonetheless, one has to bear in mind that the application of
scopolamine in this setting might have unknowingly modified
the results of the performed measurements in other ways (see
also limitations).

Experimental Setup
In our experimental setup, for each flight day, three test subjects
were scheduled. As 31 parabolas were flown per flight day,
each test subject was examined in the course of 10 consecutive
parabolas, with five parabolas in the supine posture and five
parabolas in the seated posture. Each data set comprised the
measurements of parameters of microcirculation and parameters
of macrocirculation, respectively.

Macrocirculation
The macrocirculation was investigated using a device for
continuous and non-invasive beat-to-beat measurement
of hemodynamic blood flow (CNAP R© Monitor 500 HD,
CNSystems Medizintechnik GmbH, Graz, Austria). In
short, the analysis includes blood pressure wave form
documentation and provides derived parameters. The device
has been validated in clinical trials indicating an excellent
comparability with invasive measurements (Smolle et al.,
2015; Wagner et al., 2015; Rogge et al., 2017). In the course
of preparations of the project, a specially trained CNAP R©

instructor was invited from Austria for hands-on training
sessions with our team of operators. With respect to the planned
rotations of the test subjects aboard and therewith indicated
changes of postures, this training focused on optimization
of procedures of (re-) calibrations of the device to ensure
correct measurements throughout the experiment. For
correct measurements, the calibration entailed positioning
the left hand on the chest. Aboard, all beat-to-beat data were
stored with defined markers for later analysis. For quick
setup, the monitor was connected to each test subject via
a single-line finger sensor placed on the right index finger.
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Before each set of measurements, notably after the change
of postures, the monitor was calibrated and checked to
ensure proper function in all its particulars. In this manner
in our setup, for each parabola, the following parameters
were obtained: blood pressure (BP), heart rate (HR), stroke
volume (SV), cardiac output [(CO) = HR × SV], cardiac index
[(CI) = CO/body surface area (BSA)], and systemic vascular
resistance {(SVR) = [80 × (mean arterial pressure – mean right
pressure)]/CO}.

Microcirculation
The microcirculation was assessed by implementation of
the sidestream dark field microscopy (MicroScan R© device,
Microvision Medical, Amsterdam, Netherlands) as described
before (Ince, 2005; De Backer et al., 2007; Bimpong-Buta et al.,
2018b). This intravital microscope is designed for real-time
measurement of the human sublingual microcirculation. In more
than 200 clinical studies, it has been proven to serve as a
valid diagnostic tool for high-quality imaging of the sublingual
capillary network. With a highly sensitive camera at the tip
of the device, real-time recordings of the sublingual capillary
network can be performed and visualized on a tablet screen
to be saved for later analysis. In this regard, in our setting,
the device was mounted on the side of the tongue of each
participant with application of gentle pressure to ensure just
sufficient contact of the tip of the device with the sublingual
surface. As part of the visualization software, the monitor offered
a real-time feedback about the quality of the intended recording.
Thus, high-quality visualization of the microcirculatory network
could be ensured.

The tablet we utilized in this setting is the Microsoft
Surface Pro 4 (Redmond, Washington, United States). After
acquisition of the imagery data, a device-specific software
(AVA, Version 4.3 C) is implemented for data analysis. For
the evaluation of the microcirculation, for each parabola, the
following parameters were measured: Proportion of perfused
vessels [(PPV) = 100 × (total number of perfused vessels/total
number of vessels)], perfused vessel density [(PVD) = total length
of perfused vessels divided by the analyzed area], total vessel
density [(TVD) = total number of vessel crossings], number
of crossings [(NC) = number of vessel intersections the lines
in a grid of 3 equidistant horizontal and vertical lines], and
the perfused number of crossings [(PNC) = number of vessel
crossings with continuous flow].

Statistical Analysis
Statistical analysis was performed applying a commercially
available software (GraphPad Prism Software, Version 6,
GraphPad Software, San Diego, CA, United States). As the size
of the group of test subjects was rather small, we did not assume
a Gaussian distribution in this setting. The data are presented
as median in the course of repeated measures. In this regard,
the statistical tests applied were the Mann–Whitney test and the
Friedman test, respectively. In the course of post hoc analysis, the
Dunn’s multiple comparisons test was implemented. A two-tailed
p-value < 0.05 was considered statistically significant.

RESULTS

The baseline characteristics of the study population are shown
in Table 1. Throughout the course of each parabola in
seated postures, significant changes of hemodynamic parameters
reflecting the macrocirculation could be observed. Thus, systolic
as well as diastolic blood pressure decreased in weightlessness.
Blood pressures reached a median of 116 mmHg (102; 129)
interquartile range (IQR) vs. 125 mmHg (109; 136) IQR, p = 0.01,
e.g., a median of 72 mmHg (61; 79) IQR vs. 80 mmHg (69;
89) IQR, p = 0.003, respectively, after 20 s of microgravity
in the seated posture (Figure 1). Furthermore, in the seated
posture, cardiac output increased in 0 G as well as in hypergravity
compared to steady flight values with a median of 6.9 l/min (6.5;
8.8) IQR vs. 6.8 l/min (6.2; 8.5) IQR, p = 0.0002, upon 20 s
of weightlessness and of 7.3 l/min (6.5; 8.9) IQR, p < 0.0001
after 10 s of 1.8 G in the pull-out phase of the parabola, as
shown in Figure 1. Interestingly, heart rate increased during
phases of hypergravity up to median values of 87 bpm (74; 97)
IQR after 15 s of hypergravity in the pull-up phase compared
to steady flight values with a median of 73 bpm (63; 85) IQR,
p < 0.0001, whereas heart rate returned to baseline levels with
median values of 73 bpm (64; 84) IQR after 20 s of microgravity
(Figure 1). Stroke volume decreased in microgravity, whereas
systemic vascular resistance was unchanged in weightlessness in
seated as well as in supine postures (data not shown).

In contrast to the macrocirculatory changes observed in
seated postures throughout the course of each parabola, in
supine postures, no significant alterations regarding blood
pressure, heart rate, or cardiac output could be observed, as
shown in Figure 2.

Visualization and recording of high-quality imaging of the
sublingual capillary network with a highly sensitive intravital
sidestream dark field microscope connected to a tablet screen
were feasible in microgravity and during steady flight phases.
Despite the observed impact of parabolic flight maneuvers on the
macrocirculation, on the level of microcirculation, no significant
alterations could be detected in parabolic flight maneuvers in
supine and seated postures, as shown in Figure 3A: PPV (%): 1 G

TABLE 1 | Baseline characteristics of the study population. Data are presented in
counts or as median and IQR.

n 12

Sex 7 male, 5 female

Age (years) 29 [23–31]

Height (m) 1.77 [1.71–1.90]

Weight (kg) 80 [62–90]

BMI (kg/m2) 24.5 [20–25]

BSA (m2) 2 [1.72–2.13]

BP sys (mmHg) 110 [106–127]

BP mean (mmHg) 92 [87–94]

BP dia (mmHg) 78 [69–81]

HR (bpm) 79 [61–95]

BMI, body mass index; BSA, body surface area; BP, blood pressure, HR, heart
rate; and IQR, interquartile range.
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FIGURE 1 | Macrocirculatory parameters in the course of parabolic flights in the seated position. (A) Systolic blood pressure, (B) diastolic blood pressure, (C) heart
rate, and (D) cardiac output changes during the course of a parabola in the seated position are shown. Data are presented as median and interquartile range (IQR).
Significant differences between groups are shown (Friedman test and Dunn’s multiple comparisons post hoc test). *p < 0.05, **p < 0.01, ***p < 0.001, and
****p < 0.0001.

supine [median of 93 (90; 97) IQR] vs. 0 G supine [96 (94; 100)
IQR], p = 0.07; Figure 3B: PPV (%): 1 G seated [96 (92; 100) IQR]
vs. 0 G seated [95 (90.5; 99.5) IQR], p = 0.57; Figure 3C: TVD:
1 G supine [7 (6; 9) IQR] vs. 0 G supine [7 (6; 10) IQR], p = 0.92;
and Figure 3D: TVD: 1 G seated [8.1 (7; 9.35) IQR] vs. 0 G seated
[8.2 (6.9; 8.7) IQR], p = 0.63.

DISCUSSION

The aims of the presented study were to investigate the
impact of acute weightlessness as well as of acute hypergravity
on macro-hemodynamic parameters and on the sublingual
microcirculation in the setting of parabolic flight maneuvers as
an established spaceflight analog (Shelhamer, 2016). Moreover,
we were interested in learning more about responses of the
cardiovascular system in seated postures in comparison to supine
postures under these conditions. So far, gravitational loads have

had the most prominent effects on the cardiovascular system
in upright postures. This is evident as in upright postures that
the weight of the blood column is more prominent than in
supine postures. Thus, upon microgravity exposure with abrupt
loss of the effect of the blood column, more intense alterations
are expected in upright postures due to abrupt loss of the
weight of the blood column. On the other hand, for supine
postures, with primarily abolished vertical weight of the blood
column, even upon entrance into microgravity, effects would be
anticipated to remain low. Bearing these thoughts in mind, we
did not expect high alterations of cardiovascular parameters in
supine postures.

As a novel approach, we implemented continuous beat-
to-beat-analysis and visualization of the microcirculation
with a handheld video microscope to monitor the sublingual
microcirculation under these conditions. Prior works in the
setting of septic and cardiogenic shock underlined the fact
that, particularly in these life-threatening states with high
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FIGURE 2 | Macrocirculatory parameters in the course of parabolic flights in the supine position. (A) Systolic blood pressure, (B) diastolic blood pressure, (C) heart
rate, and (D) cardiac output changes during the course of a parabola in the supine position are shown. Data are presented as median and interquartile range (IQR).
Significant differences between groups are shown (Friedman test and Dunn’s multiple comparisons post hoc test). *p < 0.05, **p < 0.01, ***p < 0.001, and
****p < 0.0001.

mortality rates, assessment of the cardiovascular status can
be challenging as tracked macrocirculatory parameters may
seem stable enshrouding deleterious microcirculatory disorders
causative for organ dysfunctions (Jung et al., 2016a; Jung, 2019;
Legrand et al., 2019). The evaluation of microcirculation at
the bedside has been esteemed highly important (Kara et al.,
2016). In particular in these settings, the assessment of the
sublingual microcirculation with handheld videos microscopes
has proven feasible and reliable (De Backer and Dubois, 2001;
Ince et al., 2018).

In our current experiment, we demonstrated that
measurement of sublingual microcirculation using intravital
sidestream dark field microscopy is feasible in microgravity.
In line with prior studies, our work demonstrates that acute
weightlessness significantly affects the cardiovascular system.

In our setting, significant alterations of macrocirculatory
parameters such as blood pressure and cardiac output were
evident in seated but not in supine postures, as anticipated.
Interestingly, the microcirculation remained unchanged
in the course of the parabolic flight maneuvers regardless
of body posture.

For the acute setting, previous studies conducted during
human space missions and spaceflight analogs on earth
have reported inconsistent data regarding the changes of
cardiovascular parameters under these conditions (Fritsch-
Yelle et al., 1996; Petersen et al., 2011; Norsk, 2014; Klein
et al., 2019). For instance, Klein et al. (2019) documented
decreases of mean arterial pressures, whereas Norsk et al.
(2006) constituted no changes of mean arterial pressures in
the same setting. These discrepancies might be caused by the
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FIGURE 3 | Microcirculation in steady flight and acute weightlessness. Comparison of obtained parameters for normal gravity (1 G) and microgravity (0 G) for two
variables of sublingual microcirculation, namely, the perfused proportion of vessels [(A) in the supine posture and (B) in the seated posture] and the total vessel
density [(C) in the supine posture and (D) in the seated posture]. The test applied in statistical analysis was the Mann–Whitney test. ns, not significant.

fact that blood pressure evaluation under baseline conditions
in some studies was done in the standing or seated posture,
whereas in other studies, blood pressure was measured in
the supine posture. This might have affected on account of
differing references. In our setting, baseline parameters for
all variables were documented under normal gravity (1 G)
and for both tested body positions (seated and supine) to
ensure correct correlations to baseline references. Another reason
for differing results for macrocirculatory parameters among
diverse studies pertaining to short-term microgravity during
parabolic flight maneuvers might be different techniques for
blood pressure measurements. In our setting, hemodynamic
variables were obtained by beat-to-beat analysis closely linked
to a defined time line. Thus, great time resolutions could
be provided. Our findings confirmed those of Verheyden
et al. (2009) with decrease of blood pressures during space
missions with more prominent effects for upright postures in

comparison to the effects measured in supine postures. However,
these results contrast the findings of Norsk et al. in other
studies that showed that blood pressure was unchanged in
parabolic flight maneuvers (Norsk et al., 2006) but reduced
during space missions (Norsk et al., 2015), even though
Norsk (2020) performed their baseline measurements in supine
postures as we did.

Another cardiovascular parameter we looked at is the
heart rate. Here, we found an increase in heart rate during
phases of hypergravity in seated but not in supine postures,
whereas heart rate remained unchanged during phases of
microgravity compared to baseline values. However, previous
studies reported a decrease in heart rate in weightlessness
(Fritsch-Yelle et al., 1996; Hughson, 2009). In our setting, these
decreased heart rates might have been overridden on account
of the rapid changes between hypergravity and microgravity
in the course of repeated parabolic flight maneuvers. On the
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other hand, the increase of heart rate we documented might
have been reactive to diminution of peripheral resistance upon
entrance into microgravity, accounting for the increase of
cardiac output. Thus, heart rate might have primarily fueled
the compensatory mechanism to counteract fluid shifts and
blood pressure alterations. These findings are in line with
findings of previous studies (Norsk et al., 2006, 2015) as we
found an increase in cardiac output in acute weightlessness
in seated postures compared to measurements performed in
normal gravity. This increase in cardiac output is furthermore
caused by increased central blood volume (Norsk et al., 2006,
2015) as previous echocardiographic studies showed a distension
of the heart chambers in this process (Videbaek and Norsk,
1996; Pump et al., 1999; Caiani et al., 2009). Again, in supine
postures, we could not detect any significant differences in
cardiac output when comparing normal gravity, microgravity,
and hypergravity.

In acute settings, possible discrepancies of macrocirculatory
and microcirculatory measurements are known (Jung et al.,
2009). Accordingly, in our study, despite observed significant
consequences of altering gravitational loads on the parameters
of macrocirculation, the sublingual microcirculation remained
unchanged, regardless of body posture, or gravitational state.
This investigation of the sublingual microcirculation is a
novel approach as, to our knowledge, there are no data
thereabout to date. However, previous studies looked at other
circulatory networks of the human body. In the assessment
of putative health risks for astronauts, visual impairment
has been documented (Zhang and Hargens, 2014; Zhang
and Hargens, 2018). Lawley et al. (2017) constituted that in
prolonged stays in microgravity, slightly elevated intracranial
pressures might be causative for remodeling of the eye but
intracranial pressures were reduced in acute microgravity. Other
studies about cerebral autoregulation showed that cerebral
autoregulation and perfusion are not altered in weightlessness
or head-down bed rest (Arbeille et al., 2001; Iwasaki et al.,
2007). Thus, it is tempting to speculate that the human
organism somewhat harbors safety mechanisms to counteract
hemodynamically challenging scenarios such as weightlessness
aiming at preserving steady organ perfusion to ensure nutrient
and gas exchange. In this regard, localized vascular adaptations
of the sublingual vascular beds might explain the stability of
sublingual flow, even in microgravity. Possibly, pre-capillary
sphincters and myogenic responses could contribute to this
process. As previous studies have demonstrated, vasoactive
hormones such as elevated aldosterone levels (Limper et al.,
2014) might additionally contribute to vasoconstriction of
arterioles. In contrast to our finding of unaltered microcirculation
in the setting of acute weightlessness, a previous study by
Coupé et al. (2009) indicated a microvascular dysfunction upon
56 days of head-down bed rest, as another spaceflight analog.
In that study, as a marker of microcirculatory function, the
endothelial dysfunction was measured, whereas our approach
entailed direct visualization of the sublingual microcirculation
with subsequent software-based calculation of microvasculatory
parameters. Taking these differences into account, these studies
might not be adequately comparable.

Certain limitations of our study have to be addressed:
Parabolic flights have been known as established spaceflight
analog for emulation of acute states of microgravity. However,
as with other spaceflight analogs, there might be differences to
prolonged states of microgravity during human space missions.
In this regard, measurements of cardiovascular parameters
over longer periods might differ from our measurements
of acute alternating gravitational loads with rather short
periods of weightlessness of a little more than 20 s per
aviated parabola.

As motion sickness during the parabolic flight maneuvers
has been a common side effect in former flight campaigns,
application of scopolamine remains a strong recommendation
for all flight participants. Frankly, there was no strong scientific
justification for its use. On the other hand, in our pre-study
experiment prior to the campaign, we could show that use
of scopolamine does not interfere with our measurements
of sublingual microcirculation (Bimpong-Buta et al., 2018b).
However, one has to admit that other known effects of
scopolamine, in particular on the cardiovascular system, might
have altered our results. On the other hand, scopolamine has
an elimination half-life of approximately 2 h (Stetina et al.,
2005), which might have mitigated its subsequent effects on our
measurements, as scopolamine was administered around 2 h
prior to takeoff.

Another point is that one has to bear in mind that
the sublingual microcirculation harbors tissue-specific
responsiveness that does not necessarily represent all
microcirculation of the human body, so that findings in
this particular vascular bed cannot necessarily be transferred to
all other vascular beds. However, as described earlier, in former
studies, the microcirculation could serve as a reliable predictor
of mortality outcomes and may gain further importance in
future studies as a tool of improvement of therapeutic strategies,
particularly for critically ill patients.

Finally, it should be noted that the CNAP monitor was
calibrated multiple times in the course of our data acquisition,
as mentioned above. Reasonable accuracy of its measurements
has been proven (Wagner et al., 2015; Rogge et al., 2017).
The intention of repeated calibrations was to ensure correct
measurements throughout the experiment. However, possible
impacts of macrocirculatory and microcirculatory changes on the
accuracy of the instrument cannot be fully excluded.

CONCLUSION

In summary of our works, as a novel approach, we could
demonstrate that the measurement of the sublingual
microcirculation in microgravity induced by parabolic flight
maneuvers is feasible. Our results underline the fact that
profound alterations of the macrocirculatory hemodynamic
parameters occur under these circumstances. In our setting,
these alterations were most prominent in seated postures
but not evident in supine postures, as could be anticipated
with regard to known abolished weight of blood columns in
supine postures. However, microcirculation remained stable in
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acute weightlessness regardless of body posture, suggesting
that localized and tissue-specific reactions in this vascular bed
might be causative. For instance, it would be interesting to
examine standing participants with a similar setting to investigate
about possible effects of a more prominent blood column in
standing postures. Here, we would expect more prominent
results of the documented differences as the weight of the
blood column in standing humans is again more than for
seated postures.

Future studies on cardiovascular parameters seem warranted
to learn more about physiologic circulatory response mechanisms
under these conditions. This could be helpful for establishments
of health safety strategies, as the good health of humans in space
will remain a primary concern for upcoming commercial and
scientific endeavors.
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