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Abstract
Background. One of the most important recent discoveries in brain glioma biology has been the identification of 
the isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion status as markers for therapy and prognosis. 
1p/19q co-deletion is the defining genomic marker for oligodendrogliomas and confers a better prognosis and 
treatment response than gliomas without it. Our group has previously developed a highly accurate deep-learning 
network for determining IDH mutation status using T2-weighted (T2w) MRI only. The purpose of this study was to 
develop a similar 1p/19q deep-learning classification network.
Methods. Multiparametric brain MRI and corresponding genomic information were obtained for 368 subjects 
from The Cancer Imaging Archive and The Cancer Genome Atlas. 1p/19 co-deletions were present in 130 subjects. 
Two-hundred and thirty-eight subjects were non-co-deleted. A T2w image-only network (1p/19q-net) was devel-
oped to perform 1p/19q co-deletion status classification and simultaneous single-label tumor segmentation using 
3D-Dense-UNets. Three-fold cross-validation was performed to generalize the network performance. Receiver op-
erating characteristic analysis was also performed. Dice scores were computed to determine tumor segmentation 
accuracy.
Results. 1p/19q-net demonstrated a mean cross-validation accuracy of 93.46% across the 3 folds (93.4%, 94.35%, 
and 92.62%, SD = 0.8) in predicting 1p/19q co-deletion status with a sensitivity and specificity of 0.90 ± 0.003 and 
0.95 ± 0.01, respectively and a mean area under the curve of 0.95 ± 0.01. The whole tumor segmentation mean Dice 
score was 0.80 ± 0.007.
Conclusion. We demonstrate high 1p/19q co-deletion classification accuracy using only T2w MR images. This repre-
sents an important milestone toward using MRI to predict glioma histology, prognosis, and response to treatment.

Key Points

• 1p/19 co-deletion status is an important genetic marker for gliomas.

• We developed a noninvasive, MRI-based, highly accurate deep-learning method for the 
determination of 1p/19q co-deletion status that only utilizes T2-weighted MR images.

A novel fully automated MRI-based deep-learning 
method for classification of 1p/19q co-deletion status in 
brain gliomas
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Genetic profiling and molecular subtyping of glial neo-
plasms have revolutionized our ability to optimize ther-
apeutic strategies and enhance prognostic accuracy. 
Perhaps, the most compelling evidence supporting 
this paradigm is the 2016 revision of the World Health 
Organization’s (WHO) classification of gliomas which now 
includes genetic analysis. The impact of glioma reclassifi-
cation based on molecular profiling has subsequently been 
studied and 3 genetic alterations have been extensively 
validated: O-6-methylguanine-DNA methyltransferase 
(MGMT), isocitrate dehydrogenase (IDH), and 1p/19q 
co-deletion status.1

MGMT is a DNA repair enzyme that protects normal and 
glioma cells from alkylating chemotherapeutic agents. 
Mutations that result in methylation of the MGMT pro-
moter result in loss of function of the enzyme and its 
protective effect. Mutations of IDH alter the function of 
the enzyme to produce D-2-hydroxyglutarate instead of 
α-ketoglutarate. This altered function results in increased 
sensitivity of the glioma to radiation and chemotherapy. 
Gliomas that are IDH mutated can be further divided into 
gliomas with or without a 1p/19q co-deletion. The 1p/19q 
co-deletion is defined as the combined loss of the short 
arm of chromosome 1 (1p) and the long arm of chromo-
some 19 (19q). According to the 2016 WHO classification of 
gliomas, an IDH-mutated glioma with a 1p/19q co-deletion 
is classified as an oligodendroglioma, whereas an IDH-
mutated glioma without a 1p/19q co-deletion is classified 
as a diffuse astrocytoma. Oligodendrogliomas have a 
better prognosis when compared to diffuse astrocytomas. 
Additionally, even patients with an IDH-mutated anaplastic 
oligodendroglioma (WHO grade III) have a longer median 
overall survival than IDH-wild type, 1p/19q non-co-deleted, 
WHO grade II astrocytomas and are more responsive to 
chemotherapy.2 Therefore, determination of 1p/19q status 
in IDH-mutated gliomas is critical for guiding therapy 
and predicting prognosis. Currently, the only reliable way 
to determine 1p/19q mutation status requires analysis of 
glioma tissue obtained either via an invasive brain biopsy 
or following open surgical resection. These diagnostic 
procedures carry the burden of implicit risk. Therefore, 

considerable attention has been dedicated to developing 
noninvasive, image-based diagnostic methods.

Recent advances in deep learning have led to a signif-
icant interest in advancing techniques for noninvasive, 
image-based molecular profiling of gliomas. Our group 
has previously demonstrated a highly accurate, MRI-based, 
voxel-wise deep-learning IDH-classification network using 
only T2-weighted (T2w) MR images.3 T2w images facilitate 
clinical translation because they are routinely acquired, they 
can be obtained within 2 min, and high-quality T2w images 
can even be obtained in the presence of active patient mo-
tion. Because the current standard of care for IDH-mutated 
gliomas is heavily influenced by 1p/19q co-deletion status, 
the purpose of this study was to develop a highly accu-
rate, fully automated deep-learning 3D network for 1p/19 
co-deletion classification using T2w images only.

Materials and Methods

Data and Preprocessing

Multiparametric brain MRI data of glioma patients were 
obtained from The Cancer Imaging Archive (TCIA) data-
base.4,5 Genomic information was provided from both 
the TCIA and TCGA (The Cancer Genome Atlas) data-
bases.4–6 Only preoperative studies were used. Studies 
were screened for the availability of 1p/19q status and 
T2w image series. The final dataset of 368 subjects in-
cluded 268 low-grade glioma (LGG, 130 co-deleted, 138 
non-co-deleted) and 100 high-grade glioma (HGG, all non-
co-deleted) subjects. TCGA subject IDs, 1p/19q co-deletion 
status, and tumor grade are listed in Supplementary Table 
1. This study utilized data from the TCIA database including 
their diagnoses and designations of “low-grade” versus 
“high-grade” gliomas.

Tumor masks for 209 subjects were available through 
previous expert segmentation.3,7,8 Tumor masks for the re-
maining 159 subjects were generated by the 3D-IDH network3 
and validated by in-house neuro-radiologists. The tumor 
masks were used as ground truth for tumor segmentation 

Importance of the Study

One of the most important recent discoveries 
in brain glioma biology has been the iden-
tification of the isocitrate dehydrogenase 
mutation and 1p/19q co-deletion status as 
markers for therapy and prognosis. 1p/19q 
co-deletion is the defining genomic marker 
for oligodendrogliomas and confers a better 
prognosis and treatment response than 
gliomas without it. Currently, the only reli-
able way to determine 1p/19q mutation status 
requires analysis of glioma tissue obtained 
either via an invasive brain biopsy or fol-
lowing open surgical resection. The ability to 
noninvasively determine 1p/19q co-deletion 

status has significant implications in deter-
mining therapy and predicting prognosis. We 
developed a highly accurate, deep-learning 
network that utilizes only T2-weighted MR im-
ages and outperforms previously published 
image-based methods. The high classifica-
tion accuracy of our T2w image-only network 
(1p/19q-net) in predicting 1p/19q co-deletion 
status marks an important step toward 
image-based stratification of brain gliomas. 
Imminent clinical translation is feasible be-
cause T2-weighted MR imaging is widely 
available and routinely performed in the as-
sessment of gliomas.

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa066#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa066#supplementary-data
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in the training step. Ground truth whole tumor masks for 
1p/19q co-deleted type were labeled with 1s and the ground 
truth tumor masks for 1p/19q non co-deleted type were la-
beled with 2s (Figure 1). Data preprocessing steps included 
(1) co-registering the T2w image to SR124 T2 template9 
using ANTs affine registration,10 (2) skull stripping using 
Brain Extraction Tool11 from FSL,11–14 (3) N4BiasCorrection to 
remove RF inhomogeneity,15 and (4) intensity normalization 
to zero-mean and unit variance. The preprocessing took less 
than 5 min per dataset.

Network Details

Transfer learning was performed with the previously trained 
3D-IDH network for 1p/19q classification.3 The decoder part of 
the network was fine-tuned for a voxel-wise dual-class seg-
mentation of the whole tumor with Classes 1 and 2 repre-
senting 1p/19q co-deleted and 1p/19q non-co-deleted types, 
respectively. The schematics for the network architecture are 
shown in Figure 2B. A detailed description of the network is 
given in Figure 1 of the Supplementary Material section.

  

1p/19q
Co-deleted type

1p/19q non
Co-deleted type

Figure 1. Ground truth whole tumor masks. Red voxels represent 
1p/19q co-deletion status (values of 1) and green voxels represent 
1p/19q non-co-deletion status (values of 2). The ground truth labels 
have the same co-deletion status for all voxels in each tumor.
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Figure 2. (A) 1p/19q-net overview. Voxel-wise classification of 1p/19q co-deletion status is performed to create 2 volumes (1p/19q co-deleted and 
1p/19q non-co-deleted). Volumes are combined using dual volume fusion to eliminate false positives and generate a tumor segmentation volume. 
Majority voting across voxels is used to determine the overall 1p/19q co-deletion status. (B) Network architecture for 1p/19q-net. 3D-Dense-UNets 
were employed with 7 dense blocks, 3 transition down blocks, and 3 transition up blocks.
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Network Implementation and Cross-validation

To generalize the reliability of the networks, a 3-fold cross-
validation was performed on the 368 subjects by randomly 
shuffling the dataset and distributing it into 3 groups (ap-
proximately 122 subjects for each group). During each fold 
of the cross-validation procedure, the 3 groups were alter-
nated between training, in-training validation, and held-out 
testing. Group 1 had 122 subjects (43 co-deleted, 79 non-co-
deleted), Group 2 had 124 subjects (44 co-deleted, 80 non-
co-deleted), and Group 3 had 122 subjects (43 co-deleted, 
79 non-co-deleted). An in-training validation dataset helps 
the network improve its performance during training. Each 
fold of the cross-validation is a new training phase based 
on a unique combination of the 3 groups. However, net-
work performance is only reported on the held-out testing 
group for each fold as it is never seen by the network. The 
group membership for each cross-validation fold is listed 
in Supplementary Table 1.

Seventy-five percent overlapping patches were extracted 
from the training and in-training validation subjects. No 
patch from the same subject was mixed with the training, 
in-training validation, or testing datasets in order to avoid 
the data leakage problem.16,17 The data augmentation steps 
included vertical flipping, horizontal flipping, translation 
rotation, random rotation, addition of Gaussian noise, ad-
dition of salt and pepper noise, and projective transforma-
tion. Additionally, all images were down-sampled by 50% 
and 25% (reducing the voxel resolution to 2mm × 2mm × 
2mm and 4mm × 4mm × 4mm) and added to the training 
and validation sets. Data augmentation provided a total of 
approximately 300 000 patches for training and 300 000 
patches for in-training validation for each fold. Networks 
were implemented using Keras18 and TensorFlow19 with an 
Adaptive Moment Estimation optimizer (Adam).20 The ini-
tial learning rate was set to 10−5 with a batch size of 15 and 
maximal iterations of 100. Initial parameters were chosen 
based on previous work with Dense-UNets using brain im-
aging data and semantic segmentation.3,21,22

1p/19q-net yields 2 segmentation volumes. Volume 1 
provides the voxel-wise prediction of 1p/19q co-deleted 
tumor and Volume 2 identifies the predicted 1p/19q non-
co-deleted tumor voxels. A  single tumor segmentation 
map is obtained by fusing the 2 volumes and obtaining 
the largest connected component using a 3D connected 
component algorithm in MATLAB. Majority voting over 
the voxel-wise classes of co-deleted type or non-co-
deleted type provided a single 1p/19q classification for 
each subject. Networks were implemented on Tesla V100s, 
P100, P40, and K80 NVIDIA-GPUs. The 1p/19q classification 
process developed is fully automated, and a tumor seg-
mentation map is a natural output of the voxel-wise classi-
fication approach.

Statistical Analysis

MATLAB and R were used for statistical analysis of the 
network’s performance. Majority voting (ie, voxel-wise 
cutoff of 50%) was used to evaluate the accuracy of the 
network. The accuracy, sensitivity, specificity, positive pre-
dictive value (PPV), and negative predictive value (NPV) of 
the model for each fold of the cross-validation procedure 

were calculated using this threshold. A receiver operating 
characteristic (ROC) curve was also generated for each 
fold. A Dice score was used to evaluate the performance of 
the networks for tumor segmentation. The Dice score cal-
culates the amount of spatial overlap between the ground 
truth segmentation and the network segmentation.

Results

The network achieved a mean cross-validation testing ac-
curacy of 93.46% across the 3 folds (93.4%, 94.35%, and 
92.62%, SD  =  0.8) (Table  1). Mean cross-validation sen-
sitivity, specificity, PPV, NPV, and area under the curve 
for 1p/19q-net were 0.90 ± 0.003, 0.95 ± 0.01, 0.91 ± 0.02, 
0.95 ± 0.0003, and 0.95 ±0.01, respectively. The mean cross-
validation Dice score for tumor segmentation was 0.80 ± 
0.007. The network misclassified 8, 7, and 9 cases for each 
fold, respectively (24 total out of 368 subjects). Twelve 
subjects were misclassified as non-co-deleted and 12 as 
co-deleted.

ROC Analysis

The ROC curves for each cross-validation fold for the network 
are shown in Figure 3. The network demonstrated very good 
performance curves with high sensitivities and specificities.

Voxel-Wise Classification

Since the network is a voxel-wise classifier, it performs a si-
multaneous tumor segmentation. Figure 4A and B shows ex-
amples of the voxel-wise classification for a co-deleted type 
and non-co-deleted type, respectively, using the network. 
The volume fusion procedure was effective in removing false 
positives to increase accuracy. This procedure improved the 
Dice scores by approximately 4% for the network. We also 
computed the voxel-wise accuracy for the network. The mean 
voxel-wise accuracies were 85.86% ± 0.01 for non-co-deleted 
type and 80.51% ± 0.01 for co-deleted type.

Training and Segmentation Times

It took approximately 1 week to fine-tune the decoder 
portion of the network. The trained network took approxi-
mately 3 min to segment the whole tumor and predict the 
1p/19qco-deletion status for each subject.

  
Table 1. Cross-Validation Results

Fold description 1p/19q-net

Fold number % Accuracy Area under  
the curve

Dice score

Fold 1 93.4 0.9571 0.8151

Fold 2 94.35 0.9688 0.8057

Fold 3 92.62 0.9351 0.8000

Average 93.46 ± 0.86 0.953 ± 0.01 0.801 ± 0.007

  

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa066#supplementary-data
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Discussion

We developed a fully automated, highly accurate, deep-
learning network that outperforms previously reported 
1p/19q co-deletion status classification algorithms.23–26 
When comparing our T2-network with previous work, 
our results suggest that algorithm accuracy can be im-
proved by using T2w images only. Clinical translation 
becomes much simpler using only T2w images because 
these images are routinely acquired and are robust to 
motion. When compared to previously published algo-
rithms, our methodology is fully automated. The time 
required for 1p/19q-net to segment the whole tumor 
and predict the 1p/19q co-deletion status for one sub-
ject is approximately 3 min on a K80, P40, P100, or V100s 
NVIDIA-GPU.

The higher performance achieved by our network when 
compared to previous work is likely due to several factors. 
Similar to our IDH classification network, we employed 3D 
networks whereas prior attempts at 1p/19q co-deletion status 
classification have relied on 2D networks.23 The dense con-
nections in a 3D network architecture are advantageous be-
cause they carry information from all the previous layers to 
the following layers.21 Additionally, 3D networks are easier 
to train and can reduce over-fitting.27 As we previously re-
ported, the dual volume fusion (DVF) postprocessing step 
helps in effectively eliminating false positives while improving 
the segmentation accuracy by excluding extraneous voxels 
not connected to the tumor. DVF improved the Dice scores 
by approximately 4% for the network. The 3D networks in-
terpolate between slices to maintain inter-slice information 
more accurately. The network does not require extraction 

of pre-engineered features from the images or histopatho-
logical data.28 Our approach also uses voxel-wise classifiers 
and provides a classification for each voxel in the image. 
This provides a simultaneous single-label tumor segmenta-
tion. Another factor that may explain the higher performance 
achieved by our network is that previous approaches required 
multi-contrast input which can be compromised due to pa-
tient motion from lengthier examination times, and the need 
for gadolinium contrast. High-quality T2w images are almost 
universally acquired during clinical brain tumor diagnostic 

  

ROC curves for 1p/19q codeletion status cross validation

Fold 1 AUC = 0.9571
Fold 2 AUC = 0.9688
Fold 3 AUC = 0.9351
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Figure 3. ROC analysis for 1p/19q-net. Separate curves are plotted 
for each cross-validation fold along with corresponding area under 
the curve value.
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B

Figure 4. (A) Example of voxel-wise segmentation for a 1p/19q 
co-deleted tumor: native T2 image (a), ground truth segmenta-
tion (b), and network output after DVF (c). Red voxels correspond 
to 1p/19q co-deleted class and green voxels correspond to 1p/19q 
non-co-deleted class. (B) Example of voxel-wise segmentation for 
a 1p/19q non-co-deleted tumor. The sharp borders visible between 
co-deleted and non-co-deleted types result from the patch-wise 
classification approach.
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evaluation. Clinically, T2w images are typically acquired within 
2 min at the beginning of the exam and are relatively resistant 
to the effects of patient motion. Several of the previous 1p/19q 
deep-learning studies were trained and tested on only LGGs 
achieving accuracies ranging from 65.9% to 87.7%.23–25 Our al-
gorithm was trained and evaluated on the multi-institutional 
TCIA database4 with a mix of HGG and LGG, which is a better 
representative of algorithm robustness, real-world perfor-
mance, and potential clinical utilization.

In the clinical setting, histologic evaluation remains the 
gold standard for genetic profiling of gliomas. Several 
different methods to detect 1p/19q co-deletion have been 
employed: fluorescence in-situ hybridization (FISH), 
array comparative genomic hybridization, multiplex 
ligation-dependent probe amplification, and PCR-based 
loss of heterozygosity analysis.29 FISH is the most rou-
tinely performed method.30 FISH relies on fluorescent-
labeled DNA probes to directly detect chromosomal 
abnormalities on a tissue slide in interphase nuclei.31 
The fraction of nuclei that demonstrate a deletion or rel-
ative deletion (in cases with polysomy) is summed and a 
percentage is calculated.32 When the percentage of “de-
leted” nuclei exceeds a predetermined cutoff, the tumor 
is classified as 1p/19q co-deleted.32 A drawback of FISH 
is that it lacks standardized criteria for analysis of 1p/19q 
co-deletion status.30 For example, there is no consensus 
on what cutoff level to use when classifying co-deletion 
status. As a result, variability in institutional-based cutoff 
values can span from 20% to 70% and can affect accurate 
diagnosis.32 This limitation affects the sensitivity, speci-
ficity, PPV, and NPV of 1p/19q detection by FISH based on 
the cutoff value selected.32

There are interesting parallel considerations when 
studying our deep-learning method of 1p/19q determi-
nation. Our network is a voxel-wise classifier and as a 
result some portions within each glioma are classified 
as 1p/19 co-deleted while other areas are 1p/19q non-co-
deleted. The overall determination of 1p/19q co-deletion 
status is based on the majority of voxels in the tumor. 
Given the variability in the cutoff values for FISH detec-
tion of 1p/19q co-deletion, we performed a Youden’s sta-
tistical index analysis to determine if the optimal cutoff 
for our deep-learning algorithm was different than ma-
jority voting (>50%). The analysis demonstrated that 
maximum accuracy, sensitivity, specificity, PPV, and NPV 
were obtained at an optimal cutoff of 50%, the same as 
majority voting.

The algorithm misclassified 24 cases: 12 subjects were 
misclassified as non-co-deleted and 12 as co-deleted. These 
12 cases were subsequently reviewed but no common fea-
tures resulting in misclassification were identified. Despite 
these misclassifications, our network achieved a mean 
cross-validation testing accuracy of 93.46% which is sim-
ilar to what is reported for FISH.32 However, our sensitivity, 
specificity, PPV, and NPV were significantly better than 
when compared to FISH.30 While FISH requires tissue to 
be obtained from an invasive procedure and subsequent 
tissue processing for at least 48 h, our deep-learning algo-
rithm can segment the entire glioma and provide a 1p/19q 
co-deletion status in 3  min. The deep-learning algorithm 

can also be fine-tuned to variations in institutional MRI 
scanners, while FISH analysis currently lacks standardiza-
tion as mentioned above.

The limitations of our study are that deep-learning 
studies require large amounts of data and the relative 
number of subjects with 1p/19q co-deletions is small. 
Additionally, acquisition parameters and imaging vendor 
platforms vary across imaging centers that contribute 
data. Despite these caveats our algorithm demonstrated 
high 1p/19q co-deletion classification accuracy.

Conclusion

We demonstrate high 1p/19q co-deletion classification 
accuracy using only T2w MR images. This represents an 
important milestone toward using MRI to predict glioma 
histology, prognosis, and response to treatment.

Supplementary Data

Supplementary data are available at Neuro-Oncology 
Advances online.
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