
1Scientific Reports |          (2019) 9:9348  | https://doi.org/10.1038/s41598-019-45814-8

www.nature.com/scientificreports

Trader as a new optimization 
algorithm predicts drug-target 
interactions efficiently
Yosef Masoudi-Sobhanzadeh1, Yadollah Omidi   2, Massoud Amanlou   3 & Ali Masoudi-Nejad1

Several machine learning approaches have been proposed for predicting new benefits of the existing 
drugs. Although these methods have introduced new usage(s) of some medications, efficient methods 
can lead to more accurate predictions. To this end, we proposed a novel machine learning method which 
is based on a new optimization algorithm, named Trader. To show the capabilities of the proposed 
algorithm which can be applied to the different scope of science, it was compared with ten other 
state-of-the-art optimization algorithms based on the standard and advanced benchmark functions. 
Next, a multi-layer artificial neural network was designed and trained by Trader to predict drug-target 
interactions (DTIs). Finally, the functionality of the proposed method was investigated on some DTIs 
datasets and compared with other methods. The data obtained by Trader showed that it eliminates 
the disadvantages of different optimization algorithms, resulting in a better outcome. Further, the 
proposed machine learning method was found to achieve a significant level of performance compared 
to the other popular and efficient approaches in predicting unknown DTIs. All the implemented source 
codes are freely available at https://github.com/LBBSoft/Trader.

A drug is referred to a substance, except for the nutrients, which impose a temporary and/or diachronic physio-
logical impact(s) in the body. Based on the mechanism of actions and therapeutic properties of drugs, they can 
be categorized into several classes such as the anatomical therapeutic chemical classification (ATC) and biop-
harmaceutics classification systems (BCS). Because of their importance and critical efficacies, many researchers 
have proposed various methods for the design of a drug1. Nonetheless, the design of a new drug is a very costly 
and time-consuming process, which takes over 15 years. Also, lots of drug discovery and development projects 
may fail, in large part because of the rigorous controls during drug development phases. Hence, researchers 
attempted to find other approaches for the treatment of diseases such as drug repurposing method as a cost- 
and time-effective strategy that offers many new benefits of the existing drugs. Several computational manners 
have been suggested for the repurposing of medications. These approaches can be categorized into some classes, 
including:

	 i)	 Molecular docking methods: These methods, which look for ligands that can bind to proteins based on 
their multi-dimension structures, are the most popular approaches in drug repositioning field2. However, 
the methods cannot be used if the multi-dimension structure of a protein or a ligand is unknown.

	 ii)	 Metabolic pathway-based methods: These procedures are usually used for treating orphan or rare diseases. 
For this purpose, the metabolic pathways related to the disease are identified. Next, drugs, which can affect 
the metabolic pathways of the diseases, are investigated3, and then, introduced to treat the diseases if they 
are qualified. Since the metabolic pathways of many orphan and rare diseases are not determined, these 
methods have a low level of success rate.

	iii)	 Connectivity-MAP (CMAP) methods: These approaches, which confront lots of genomic data, are used 
to discover relationships between diseases and genes4. For the methods, one can refer to some limitations 
such as various cell-lines, platforms, etc., which make the data inconsistent.

	iv)	 Data-mining methods: These methods, which include different procedures such as text-mining, machine 
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learning, etc., are the most powerful ones in finding the novel usages of drugs. Since the methods act based 
on existing data, they increase the success rate of drug repositioning and many researchers take them into 
consideration5. Nevertheless, the validity of the acquired results remains a primary challenge.

The existing machine learning methods might achieve acceptable results. However, the more effective the 
approaches are, the better the prediction will be. To this end, we proposed an improved and efficient machine 
learning method which predicts drug-target interactions (DTIs) efficiently and fits into the fourth category of the 
groups mentioned above. The proposed method (the so-called ANNTR) is a multi-layer artificial neural network 
which is trained by a novel optimization algorithm called “Trader”. Accordingly, a proper model with a higher 
predicting ability is acquired. Besides introducing an efficient and improved machine learning approach for pre-
dicting DTIs, two other facts motivate us to introduce Trader optimization algorithm. First, an efficient algorithm, 
which eliminates the limitations of the optimization algorithms and can be applied to different fields such as engi-
neering, biology, computer science, etc., is useful and essential. Second, a comprehensive and suitable comparison 
of optimization algorithms with others can determine their actual performance in the real-world usages.

Related Works
Our proposed method, which is a combination of artificial neural network and Trader optimization algorithm 
(ANNTR), falls into the data-mining class of drug repositioning and on predicting DTIs. This section is allocated 
to reviewing the related literature from the data-mining viewpoints. The conducted investigations have been 
categorized into six classes, as follows:

	 i)	 Learner-based methods: In these studies, learners such as Deep learning6,7, Support vector machine8–11, 
Regression algorithms12, K-nearest neighbors13, Rotation forest learner11, and Relevance vector machine14 
aimed to find out the relationships between the input and output using labeled datasets. The acquired 
model is evaluated and applied to predict unknown DTIs. Since every learner uses a different method for 
separating samples, their results differ from each other. The biggest weakness of the mentioned literature 
works is generating negative datasets and obtaining a model based on them. For this reason, the percent-
age of error goes up due to a possible positive interaction between a drug and a target in the generated 
negative dataset. To tackle such restriction, one-class classification machine learning approaches can be 
used15. There is a low level of accuracy in the methods used in the related literature despite the fact that 
their obtained results are acceptable. To enhance the prediction accuracy, we have introduced an efficient 
machine learning method, which is based on a new optimization algorithm, so-called “Trader”, as well as 
an artificial neural network.

	 ii)	 Network-based methods: This type of literature works formulate drugs and their various targets (genes, 
proteins, enzymes, metabolic pathways, etc.) and then analyze them for obtaining new information. In a 
series of related works, the designed network is examined by various algorithms such as Random walk16,17 
and Random forest18. Unlike the first class of related works which depends on the negative dataset19, the 
second group only considers the existing information. As a result, the error of the second category is lower 
than the first one. Nevertheless, the performance of the first category is higher than the second group.

	iii)	 Prioritization-based methods: These types of researches calculate drug-drug, network-network or tar-
get-target similarities. After they are ranked based on acquired scores, the intended drugs are suggested 
for treating diseases. To compute the scores, chemical information of drugs, topological information of 
networks, and sequence information of targets are examined20. Considering different studies, it can be 
concluded that the similarity is not an only determinant factor in the repositioning of drugs. Hence, the 
false positive rates of prioritization-based methods are high. To overcome the restriction, some researches 
integrate different information and then calculate the similarity scores21.

	iv)	 Mathematics and probabilistic-based methods: This type of studies formulate the problem as a graph and 
then mine it to obtain new information22. These methods run into difficulties when there are orphan nodes 
in the generated graph. To deal with the existing constraint, a matrix regulation and factorization method 
may be usefull23.

	 v)	 Ensemble-based methods: It has been shown that a proper combination of machine learning methods usu-
ally leads to better results in computer science problems. Inspired by the combination idea, some research-
ers have predicted DTIs using a combination of the above-mentioned classes24–26. Although these methods 
enhance the separability power of a drug-target predictor, they increase the error rate and suffer from the 
disadvantages of the combined methods.

	vi)	 Review-based approaches: Large numbers of drug-target prediction literature studies are considered just to 
review articles which have investigated the problem from various viewpoints such as applied tools27, meth-
ods28, databases, software applications29, etc. These articles usually include a discussion of the advantages 
and disadvantages of proposed methods and give some directions to be followed in the future30.

Methods and Materials
Preparing the datasets.  We integrate chemical and genomic spaces and gather information about drugs 
and targets as a dataset, similar to the work carried out by Yamanishi et al.31. The targets are divided into four 
classes, including enzymes (EN), ion channel proteins (IC), G-protein coupled receptors (GP), and nuclear recep-
tor proteins (NR). To provide the datasets, the following steps can be considered:

	 i)	 The chemical information on drugs and ligands is obtained from KEGG DRUG and KEGG LIGAND 
databases32. Then, the similarity scores between drugs are calculated by Eq. (1) 14. For this purpose, the 
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pharmacological effects of medications on 17109 molecular properties are taken into consideration.
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Where, n, Fi, SIM, and Wi are a total number of molecular properties (17109), the ith molecular feature, 
the similarity score between two drugs such as D and D’, and the weight of the Fi calculated by Eq. (2) 14, 
respectively.
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Where, di, σ, and h are the frequency of ith feature, the standard deviation of dk (k = 1through n), and a 
constant value 0.1, respectively. Using Eq. (1), a matrix of the effect similarity score for every pair of drugs 
is created.

	 ii)	 Amino acid sequences of protein targets are obtained from the DrugBank33 database and KEGG GENE da-
tabases. Further, we have developed an integrated database named DrugR+34 (http://www.drugr.ir) which 
is a relational database and contains all data of DrugBank and some data of KEGG. Next, the similarity 
score between every pair of targets is computed by the normalized smith and waterman alignment scoring 
method35, and a matrix is generated for target-target similarity scores.

	iii)	 The interaction information between drugs and targets is obtained from the DrugR+ database.

For every type of the targets, a dataset is created by the pseudocode presented in Fig. 1. These datasets can be 
used as gold standard datasets by researchers who want to predict the interaction between drugs and targets using 
machine learning approaches. In Table 1, the attributes of the generated datasets are also shown.

The machine learning approach.  Our proposed method, whose framework is depicted in Fig. 2, creates a 
prediction model using a multi-layer perceptron (MLP) artificial neural network (ANN) with two hidden layers. 
The generated datasets are divided into two sets, including (i) training and (ii) testing sets. For all the generated 
datasets, the ANN is trained by Trader in which every candidate solution consists of 38 variables. There are 8, 3, 2, 
and 1 neurons in the input, the first hidden, the second hidden, and the output layers, respectively. In the ANN, all 
the neurons of a layer are connected to all the neurons of the next layer, and hence, the total number of synapses 
or ANN’s edges is 8*3 + 3*2 + 2*1 = 32. Moreover, since there are six biases which are specified in Fig. 2, the total 
number of variables will be 32 + 6 = 38 in a potential answer. In this problem, the objective function is considered 
as root mean square error (RMSE) which is computed by Eq. (3):
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S
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Where, S, P, and O are the total number of samples, predicted and real-world values, respectively.

Figure 1.  Pseudocodes for generating the dataset. The generated datasets only include positive drug-target 
interactions and have been obtained based on the chemical similarity score of drugs and smith waterman 
alignment score of targets.

Name
Number of 
samples

Samples in the 
training set

Samples in the 
test set

EN 2,236 1,736 500

IC 1,374 1,074 300

GP 504 404 100

NR 47 27 20

Table 1.  Properties of the generated datasets.
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Trader optimization algorithm.  Our proposed algorithm, Trader, has been inspired by the intelligent 
behavior of traders who are looking for more profit and property using different operations such as retailing, 
importing, exporting, and many other activities. In Fig. 3, the flowchart of Trader has been shown. Trader consists 
of several steps that are described, as follows:

	 i)	 Creating the first population of candidate solutions: Like other optimization algorithms, Trader starts with 
some potential answers which consist of several variables and can be considered as an array. Equation (4) 
shows a candidate solution (CS) with n variables:

= …Variable {v , v , , v , G} (4)1 2 n

Where G determines the group of the CS which belongs to a trader, vi shows the ith variable. The groups are 
not specified at the beginning of the algorithm. For the drug repurposing problem, a CS determines the 
weights of the ANN’s edges, and the variables show the edges of the ANN. Therefore, the total number of 
variables and edges of the ANN are the same.

	 ii)	 Calling the objective function: After creating the first population of CSs, the worthiness of each of them 
is calculated by an objective function (OF), whose worthiness is defined based on a problem nature. For 
example, the fitness of a CS is computed by the value of the error in the problem of training an artificial 
neural network (Eq. (3)).

Figure 2.  The framework of the proposed method for drug repurposing. After generating the datasets, Trader 
trains the ANN using datasets. When the ANN is appropriately trained, the model is generated and then applied 
to the prediction of the unknown drug-target interactions. IN, H, D, and T show neurons of the input layer, and 
neurons of hidden layers, a drug, and a target, respectively.

Figure 3.  The flowchart of Trader: The proposed optimization algorithm starts with some candidate solutions 
which each of them determine the weights of the ANN. Next, they are placed into several groups and are 
improved by Eq. 6 through 8 (see the text for details). The steps of Trader are repeated until the termination 
condition is satisfied. By passing the steps of the algorithm, the value of RMSE is also reduced and a suitable 
predictor model is acquired.

https://doi.org/10.1038/s41598-019-45814-8
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	iii)	 Grouping the candidate solutions: The groups are constituted based on the number of traders and their 
properties. At the start of the algorithm, all the traders have a same property which will be updated during 
the algorithm’s iterations. Equation (5) is used to calculate the number of CSs devoted to a specific trader (a 
group):
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where, NBi, Pi, C, and T are the total number of CSs assigned to the ith trader or group, the property of the 
ith trader, the number of existing CSs, and the number of traders, respectively. Also, the constant value of 
2 indicates that none of the traders or groups is eliminated during the algorithm iterations, and at least 
two CSs remain in every group. Figure S2 has illustrated an example of the competition among traders for 
getting the CSs.

	iv)	 Changing the candidate solutions: After grouping candidate solutions, at first, the best CS of each group 
named Master CS is selected, and then its variable values are distributed to the another CS, named Slave 
CS, using Eq. (6):

∑ ∑ == = CS slave j rand n CS master k rand n( ( _ _ ( ( )) _ _ ( ( )))) (6)j
Ck

i
R

1 1

where n is the total number of variables in a CS, R is a random integer value between [1, n], Ck is the num-
ber of CSs of the kth group, CS_slave_j is the jth Slave CS of the kth group, and CS_master_k is the Master CS 
of the kth group. In case Eq. (6) enhances the value of the OF (RMSE), these changes are ignored. Other-
wise, they will be accepted. In addition to the Eq. (6) which helps the Slave CSs to improve their value of 
OF, there is another operator that changes the Slave CSs based on their contents. These changes are applied 
to the Slave CSs using Eq. (7).

∑ = + ×= CS CS k rand CS( ( )) (7)i
R

slave M slave M slave M1 ( ) ( ) ( )

where R is a random integer value between 1 and n/10, M is a random integer value between 1 and n, CSslave 
is a Slave CS, and k is an arbitrary value which is selected either 1 or −1. Like the previous operator, the 
changes are accepted if they improve the value of the OF. Unlike Eqs (6) and (7) which only change Slave 
CSs, there is another equation (Eq. (8)) which alters Master CSs. This operator exchanges values of variables 
among Master CSs. For applying it to the Master CSs, some of the values of the best CS of other groups are 
randomly chosen and then are imported to the selected Master CS.

∑ ∑ == = CS master j rand n CS master k rand n( _ _ ( ( )) _ _ ( ( ))) (8)j
T

i
R

1 1

Where, R is a random integer value between 1 and n, j and k indicate the importer and exporter groups, 
CS_master_j shows the Master CS of the importer group, and CS_master_k shows the Master CS of the 
exporter group. The value of k is calculated by Eq. (9).

= | ≠ ≤ ≤K {a a j and a is an integer random value in 1 a n} (9)

Like the other operators of Trader, the changes, induced by the Eq. (8), are accepted if the imported values 
improve the value of the OF. By the Eq. (6) through (8), the weights of the ANN’s edges are altered, and a 
new drug-target predictor is acquired. Provided that the new drug-target predictor reduces the value of the 
RMSE (Eq. (3)), the changes of weights are admitted. Figures S3 through S5 illustrate how the changes on 
CSs are applied.

	 v)	 Updating property: The operators of Trader, shown by Eq. 6 through 8, may change the CSs. Hence, the 
total value of the objective functions of a group, which is computed using Eq. (10), varies. Accordingly, the 
property of the groups must be updated.

∑= | =={ }OF j CS j G GProperty ( ) ( , ) (10)j
B

ii 1

where, propertyi is the property of the ith trader or group, B, Gi, and G are the number of CSs, the ith group, 
and the group which the jth CS belongs to it, respectively.

	vi)	 Termination condition: Like other optimization algorithms, each of the following options can be consid-
ered as the termination condition of Trader: (i) calling algorithms steps based on a predefined number of 
iterations; (ii) reaching a determined value of accuracy or error; (iii) elapsing a certain amount of time; (iv) 
stabilizing of the best answer in recent iterations. For training the ANN, a predefined number of iterations 
has been selected as the termination condition.

	vii)	 Selecting the best answer: When the termination condition is satisfied, a CS having the best value of OF 
will be selected and introduced as the solution to the problem. For the DTIs prediction problem, a CS, 
which has the minimum value of the RMSE, is chosen as a solution to forecast unknown DTIs. Figure 4 
shows the pseudocode of Trader.

https://doi.org/10.1038/s41598-019-45814-8
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Results
The proposed machine learning approach has been implemented in MATLAB programing language and all the 
implemented source codes are available at (https://github.com/LBBSoft/Trader). This section contains three cat-
egories of results as follows:

Trader in comparison with the other optimization algorithms.  Besides Trader, ten state-of-the-art 
optimization algorithms (PSO36, WCC37, TGA38, TE39, EPO40, ION41, VIR42, DVBA43, HTS44, and CEFOA45) 
were implemented. Then, these algorithms were applied to 20 benchmark functions which are used in various 
researches in which the above-mentioned optimization algorithms have been introduced. These standard test 
functions, which are available in Table S1 (Supplementary File), are categorized into unimodal, multimodal, 
fix dimension, expanded, penalized, and hybrid categories. Since optimization algorithms produce variable 
results in different executions, these algorithms are recommended to be executed at least 30 times for an intended 
problem, and then, the final best-obtained result should be reported to answer the problem46. Hence, all of the 
above-mentioned algorithms were executed over 50 individual executions on the determined benchmark func-
tions with high dimensions. Further, the algorithms were executed under similar conditions such as the number 
of iterations during execution and the number of OF callings, and their parameters are determined in such a way 
that their performances were maximized. To evaluate the optimization algorithms, the criteria like convergence 

Figure 4.  The pseudocode of Trader. For training the ANN, Trader produces some potential answers which 
consist of several variables (the edges of the ANN). Trader includes three operations, shown by Eq. 6 through 8. 
These operations change the weight of ANN’s edges differently. For instance, Eq. (7) alters them based on their 
content, or Eq. (8) tries to improve them by importing some values from the best solutions.

https://doi.org/10.1038/s41598-019-45814-8
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and stability of acquired results are considered. Figure 5 shows the convergences of the algorithms on the test 
functions, which relate to their best result over 50 individual executions. For similar convergence behaviors, the 
average outcomes were drawn. For example, the results of F11 and F12 were merged into one. Besides, the con-
vergences of the algorithms on each of the benchmark functions are presented in Fig. S6 (Supplementary File).

The acquired results show the below findings:

	 i)	 Trader, TGA, TE, and EPO have more convergence speed than the others and can get better results. How-
ever, the convergence speed of EPO is lower than TGA, Trader, and TE in early steps and depends on its 
fourth quarter of iterations in which the range of variables become smaller and smaller (Fig. 5a). Therefore, 
EPO gets more speed of convergence in the last quarter. TE, TGA, and ION use a similar method as does 
EPO and limit the range of variables by passing the iteration of the algorithms’ steps; and therefore, pro-
duce the better results for some special problems such as F1 through F9.

	 ii)	 EPO, TGA, and ION algorithms cannot produce the desired results to some problems such as F11 and 
F12 (Fig. 5b,c). The other algorithms outperform these three algorithms when their iterations of steps are 
enhanced and can acquire better results.

	iii)	 For the small-sized benchmark functions such as F17 through F20, the algorithms have similar perfor-
mance, and all of them can obtain the optimal solution (Fig. 5d).

	iv)	 The convergence of VIR, HTS, WCC, and CEFOA are slower than other algorithms for some of the test 
functions (Fig. 5a). Nonetheless, they can acquire acceptable results with enhancing the allocated time or 
the number of iterations, but not EPO, TE, and TGA, because of falling into local optima.

For an accurate evaluation of the algorithms, we summarized their findings over 50 distinct executions in 
Tables S2 through S4 (Supplementary File) with two decimal digits of accuracy using the ANOVA one-way test. 
We also provided Table 2 which includes the P- values of the algorithms compared to Trader as a test base and 
shows that the null hypothesis can be strongly rejected. For this purpose, the Wilcoxon rank sum test, which 
states how much the generated results are the same47, was done.

Based on the average and standard deviation point of views (Table 3), Trader has proper functionality, but its 
results are close to the outcomes of EPO, TGA, and TE for the test functions F1 through F9. However, they are 
only suitable for the problems whose optimal answer is 0 because of their operators’ nature. For this reason, their 
performance is the same for all of the benchmark function. From the STD aspect, HTS will be the best algorithm 
and the best option when the range of variables is small in a problem.

The proposed machine learning method against the others.  In the second part of this section, the 
performance of the proposed method (ANNTR) is evaluated based on four gold standard datasets48, and then, is 
compared against three state-of-art methods, including the rotation forest-based drug-target (RFDT) predictor 
method11, the Bayesian (BAY) ranking-based method22, and a relevance vector machine-based method14 (RVM). 
The datasets, which are named Enzyme, Ion channel, G-protein, and Nuclear receptor, consist of 4,449, 2,029, 
1,268, and 168 DTIs samples, respectively. Further, the samples have been marked using positive and negative 

Figure 5.  The convergence of the algorithms on different test functions shown by F. For instance, Fi presents 
ith test function. (a) The average convergence of the algorithms on F1 through F9 and F15. (b) The average 
convergence of the algorithms on F11 and F12. (c) The convergence of the algorithms on F13. (d) The average 
convergence of the algorithms on F10, F14, and F16 through F20. Among the test functions, F10, F14, and F16 
through F20 are the benchmark functions with the small sizes, but the others have a large number of variables 
with a higher range. These diagrams show that Trader has more stable behavior than the others on different 
benchmark functions whereas EPO, TGA, and ION fall into local optima for some of them as F11, F12, and F13. 
Also, the results state that the performance of the algorithms is almost the same when the size of a problem or 
the number of variables is small.

https://doi.org/10.1038/s41598-019-45814-8
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labels, which show whether an intended drug and target have the interaction or not. The acquired results, which 
present the proposed method outperforms the other methods in the overall state, have been shown in Table 4. For 
every criterion on the datasets, the best-acquired outcome has been determined using the boldface value.

Figures 6 and 7 show the receiver operating characteristic (ROC) and precision-recall (PR) curves based on 
5-fold cross-validation test, respectively. Besides, these data (Figs 6 and 7) represent information about the area 
under the curve (AUC) which compares the performance of the methods on the datasets. Except for the enzyme 
dataset, ANNTR achieves better results than three others. Furthermore, the proposed method obtains the aver-
age AUC values of 0.9457 and 0.9708 for ROC and PR curves, respectively, which are better than three others. 
Furthermore, as shown in Figs 6 and 7, RFDT, RVM, and BAY respectively obtain the average AUC values of 
0.8736, 0.9216, and 0.9215 for the ROC, and 0.9248, 0.9581, and 0.9634 for the PR.

The acquired results on the generated datasets.  In the third part of the results, we investigated the 
performance of Trader on the generated DTIs datasets (Table 1). For the testing datasets, a total of 751 (from 800 
samples) DTIs were correctly predicted by the proposed method. In an evaluation with details and a comparison 
with other methods, we compared the proposed method with three other popular and efficient classification 
methods, including the support vector machine (SVM), the decision tree (DT), and the artificial neural network 
trained by error back propagation method (ANNEBP)15. The acquired results are shown in Table 5. Since the 
datasets are relating to the known DTIs, the problem is considered to be a one-class classification problem. Thus, 
true positive and false positive rates are reported in Table 5.

As reported in Table 5, ANNTR displays a higher detection capability of DTIs relative to the others. We used 
10-fold cross-validation test in which a dataset has been divided into ten distinct sets for the comprehensive eval-
uation of the methods. In 10 iterations, four sets are considered as the training set; and the remaining one is used 
as the test set. There is also the convergence behavior of Trader on the generated datasets (Fig. 8).

Furthermore, we generated all the potential drug-target interactions dataset using pseudocode (Fig. 1), result-
ing in 119,743 records. Then, we applied the obtained models to the dataset of the potential DTIs. For all the 
possible DTIs dataset (119,743 samples), ANNTR predicted 47 new DTIs (Table 6).

Discussion
The proposed machine learning ANNTR method, which is based on the new optimization algorithm, was devel-
oped and compared with the well-known and efficient machine learning methods. Then, the acquired results 
were analyzed. Although many optimization algorithms have been proposed, they suffer from some limitations. 
Our proposed algorithm, which eliminates the shortcomings of other algorithms, shows stable behavior much 
more than the others do, and trains the ANN appropriately. The findings also show that Trader, VIR, HTS, DVBA, 
CEFOA, ION, PSO, and WCC have better performance in comparison with TGA, TE, and EPO. The main rea-
sons for such performance are as follows: (i) They lack any assumptions about the optimal answer to a problem 
with their operators, whereas TGA, TE, and EPO include operators making the range of variables smaller and 
smaller and therefore can reach optimal answers in a faster manner for some of the problems. (ii) Their behaviors 

WCC PSO TE VIR DVBA CEFOA EPO ION TGA HTS

F1 1.2823E-17 2.17584E-17 7.96337E-18 1.35201E-17 1.15344E-17 7.7553E-18 9.03396E-18 1.09304E-17 1.38319E-17 1.3884E-17

F2 8.17978E-18 1.47874E-17 1.38295E-17 1.04958E-17 1.27209E-17 8.06865E-18 1.00463E-17 1.35367E-17 1.26639E-17 1.38459E-17

F3 1.16996E-17 3.30908E-16 1.30661E-17 1.36657E-17 1.18621E-17 1.24203E-17 1.23171E-17 9.83758E-18 1.16977E-17 8.27569E-18

F4 1.2055E-17 8.22248E-18 9.02283E-18 7.39232E-18 7.75241E-18 1.28847E-17 1.19758E-17 9.30672E-18 1.37804E-17 7.30947E-18

F5 1.01663E-17 2.09249E-16 1.24753E-17 1.2685E-17 8.38653E-18 1.05268E-17 1.02146E-17 1.1633E-17 1.20785E-17 1.23987E-17

F6 9.01648E-18 4.52061E-16 1.1695E-17 8.2151E-18 7.90692E-18 1.05875E-17 1.38477E-17 9.47126E-18 1.12016E-17 8.64754E-18

F7 1.23746E-17 5.33226E-16 1.06412E-17 1.20058E-17 1.33613E-17 1.38445E-17 1.09327E-17 8.0456E-18 8.12099E-18 8.88564E-18

F8 1.30066E-17 1.42263E-16 1.28199E-17 8.78684E-18 1.36323E-17 9.53908E-18 8.45523E-18 8.84025E-18 1.14191E-17 1.04104E-17

F9 9.55092E-18 4.43485E-15 1.12016E-17 1.09505E-17 1.3547E-17 9.08583E-18 1.24165E-17 1.2392E-17 9.75433E-18 1.10783E-17

F10 7.60206E-18 7.44729E-18 1.08167E-17 1.25717E-17 1.36659E-17 7.984E-18 1.10854E-17 1.03828E-17 7.15017E-18 9.4482E-18

F11 8.21206E-18 1.26785E-17 9.26514E-18 1.08007E-17 8.23656E-18 1.13197E-17 8.92425E-18 1.16878E-17 1.19361E-17 5.78827E-20

F12 1.02496E-17 7.65836E-18 8.68404E-18 1.35198E-17 8.14279E-18 1.29014E-17 1.087E-17 1.41048E-17 7.61847E-18 6.82815E-20

F13 7.81969E-18 1.38629E-17 7.09882E-18 1.25416E-17 1.28412E-17 1.32043E-17 7.6627E-18 9.89096E-18 8.90233E-18 1.27194E-17

F14 1.01145E-17 1.35008E-17 8.35102E-18 8.93012E-18 8.09446E-18 8.02754E-18 1.32086E-17 1.11623E-17 1.09514E-17 8.09033E-18

F15 1.30937E-17 8.17177E-16 9.54593E-18 1.06927E-17 9.90528E-18 7.60286E-18 8.76134E-18 7.93745E-18 8.36558E-18 8.76159E-18

F16 1.00145E-17 7.41693E-18 1.34447E-17 1.3742E-17 1.05346E-17 1.05232E-17 9.45242E-18 1.34259E-17 9.6752E-18 7.85184E-18

F17 1.25794E-17 9.81999E-18 8.77388E-18 9.92014E-18 7.74763E-18 7.9986E-18 1.37227E-17 1.38222E-17 1.11305E-17 7.48848E-18

F18 8.72504E-18 9.56152E-18 1.28687E-17 7.17491E-18 7.37008E-18 8.26017E-18 1.16528E-17 1.22365E-17 1.16431E-17 1.02523E-17

F19 1.09313E-17 9.1599E-18 1.23281E-17 8.40124E-18 1.19189E-17 8.36277E-18 9.66981E-18 1.14867E-17 1.25792E-17 7.63931E-18

F20 1.36332E-17 1.25473E-17 1.05058E-17 1.01459E-17 1.02231E-17 9.23076E-18 1.06592E-17 1.06752E-17 1.28435E-17 1.26824E-17

Table 2.  The obtained P-values of the algorithms based on their best results in different executions with Trader 
as a test base. WCC: World Competitive Contests; PSO: Particles Swarm Optimization; TE: Thermal Exchange; 
VIR: Virulence; Dynamic Virtual Bat Algorithm; CEFOA: Co-Evolution Fruit fly Optimization; EPO: Emperor 
Penguin Optimizer; ION: Ion Motion; TGA: Tree Growth Algorithm; HTS: Heat Transfer Search.
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are almost the same on the different benchmark functions, whereas TE, EPO, and TGA fall into local optima 
positions for some test functions.

As a case study, we applied the proposed ANNTR method to some biological datasets and all the potential 
DTIs data to find drugs which may affect targets, with the result that 47 DTIs were discovered. The predicted 
results can be used in three manners. First, they propose some unknown DTIs. In case a disease is due to the 

Trader WCC PSO TE VIR DVBA CEFOA EPO ION TGA HTS

F1 253.1526 ±  
91.38444

841.7066 ±  
31.64796

477.6466 ±  
18.94408

267.309375 ±  
95.324573

959.4107 ±  
5.94061

984.8087 ±  
3.682139

950.7273 ±  
11.24574

296.88529 ±  
53.116245

976.356 ±  
3.531292

301.05265 ±  
124.06458

967.8077 ±  
3.767768

F2 241.6875 ±  
87.64757

839.1354 ±  
34.11527

477.5999 ±  
16.72475

264.262762 ±  
0.2740584

960.1196 ±  
5.092073

985.5377 ±  
2.865412

948.5616 ±  
12.12369

247.59292 ±  
11.962224

977.6307 ±  
2.102615

24.02758 ±  
0.0752910

968.2255 ±  
4.680692

F3 247.4043 ±  
98.93201

850.3819 ±  
37.43831

478.2538 ±  
19.38222

235.281881 ±  
0.3718979

959.8414 ±  
6.465041

985.1427 ±  
3.265755

948.7011 ±  
10.60998

247.20669 ±  
25.180205

976.7359 ±  
4.132642

224.04293 ±  
0.0750508

967.5905 ±  
3.589742

F4 254.8232 ±  
70.79901

847.9573 ±  
42.10005

480.1671 ±  
16.30009

262.355633 ±  
96.352460

959.6194 ±  
6.010377

985.1864 ±  
3.512979

948.769 ±  
11.73818

74.56383 ±  
26.100591

976.3783 ±  
3.778037

154.0341 ±  
0.0900080

967.3514 ±  
3.921301

F5 278.0891 ±  
101.3598

848.5671 ±  
37.93419

475.6191 ±  
18.63996

216.298908 ±  
0.4138509

959.3906 ±  
5.015376

985.3614 ±  
3.462716

952.145 ±  
12.92692

366.49984 ±  
17.768409

977.4732 ±  
2.668033

297.03107 ±  
39.083350

967.0254 ±  
5.551571

F6 250.9852 ±  
81.59639

838.3908 ±  
35.51018

479.2404 ±  
17.91999

299.244924 ±  
102.31963

959.7162 ±  
5.834993

985.3645 ±  
3.358163

946.9678 ±  
12.91631

305.46687 ±  
67.032709

977.2192 ±  
3.438642

300.01504 ±  
49.081595

967.4208 ±  
4.269639

F7 251.3358 ±  
108.8897

841.1641 ±  
39.66158

479.4888 ±  
14.50753

2.367119 ±  
0.3282396

961.0597 ±  
6.120448

985.2691 ±  
4.110173

948.9477 ±  
11.33569

47.58055 ±  
2.014534

976.1429 ±  
3.420905

24.02266 ±  
0.0841355

967.9891 ±  
3.429372

F8 253.9236 ±  
92.58586

846.1772 ±  
39.51895

476.0835 ±  
16.47731

29.276181 ±  
3.40998

959.46 ±  
6.371902

984.5531 ±  
3.213782

949.5816 ±  
11.30967

47.08275 ±  
2.257234

977.3502 ±  
2.663908

24.03074 ±  
0.0772274

967.606 ±  
4.560412

F9 260.6851 ±  
102.8401

855.9507 ±  
29.35375

479.3728 ±  
21.17523

260.311927 ±  
25.333143

959.9554 ±  
5.546612

984.9158 ±  
3.203462

947.1605 ±  
13.9521

165.73816 ±  
21.956847

977.6 ±  
3.671616

233.0349 ±  
44.073838

967.3254 ±  
4.316765

F10 1.7736e-32 ±  
1.253e-31

145.9045 ±  
83.05286

29.76548 ±  
5.045027

4.743712 ±  
0.6323218

525.0646 ±  
51.02185

288.105 ±  
35.46705

51.30359 ±  
11.50775

13.47461 ±  
1.575858

99.40116 ±  
15.27536

17.35812 ±  
1.41808

74.66727 ±  
10.12832

F11 5.1198e-72 ±  
2.634e-71

0.03253717 ±  
0.0231875

2.2715e-08 ±  
1.502e-08

1.025448 ±  
0.245046

0.2861472 ±  
0.2577325

0.06544539 ±  
0.0364154

0.00349084 ±  
0.0016383

0.00548362 ±  
0.0031898

0.01487591 ±  
0.0094282

0.00577078 ±  
0.0053602 0 ± 0

F12 0 ± 0 0.00220911 ±  
0.0021401

1.7413e-09 ±  
1.302e-09

0.08037839 ±  
0.0154615

0.02280964 ±  
0.0188935

0.00475016 ±  
0.0028673

0.00034019 ±  
0.0001791

0.00035483 ±  
0.0001949

0.00093730 ±  
0.0005838

0.00057121 ±  
0.0006454 0 ± 0

F13 4.8004e-63 ±  
2.968e-62

0.00166645 ±  
0.0016165

7.6484e-09 ±  
3.888e-09

0.01628576 ±  
0.001229

0.01011512 ±  
0.0110870

0.00235245 ±  
0.000852

0.00022412 ±  
9.119e-05

0.00036907 ±  
0.0001605

6.8835e-05 ±  
8.987e-05

0.00047189 ±  
0.0004179 5.928e-12 ± 0

F14 4.6657e-36 ±  
3.262e-35

147.8289 ±  
92.29859

30.23713 ±  
4.95025

4.773464 ±  
0.6929691

508.2296 ±  
54.1219

281.2291 ±  
45.63714

52.49834 ±  
14.60957

13.56846 ±  
1.401647

101.3417 ±  
17.26803

17.00028 ±  
1.862734

76.718 ±  
10.14181

F15 258.9922 ±  
107.4624

852.0461 ±  
41.73354

480.807 ±  
19.48127

222.342933 ±  
0.3350069

960.0506 ±  
5.331034

984.5826 ±  
3.527149

945.3247 ±  
13.84791

47.6192 ±  
2.178289

977.731 ±  
2.914132

334.02932 ±  
0.0848916

967.8714 ±  
4.844288

F16 2.3816e-32 ±  
1.426e-31

157.1937 ±  
88.66653

30.07814 ±  
5.658763

4.887573 ±  
0.5766644

524.5626 ±  
47.10672

278.6976 ±  
36.47537

54.55871 ±  
16.3804

13.60383 ±  
1.502604

101.7394 ±  
17.00099

17.07861 ±  
1.607762

74.4641 ±  
11.54133

F17 5.3552e-28 ±  
3.786e-27

169.7363 ±  
88.32107

30.85688 ±  
5.256397

4.706465 ±  
0.6551469

515.5718 ±  
53.29598

278.9005 ±  
35.72971

53.5587 ±  
13.27707

13.91615 ±  
1.720058

98.84173 ±  
16.28048

17.30378 ±  
1.511352

78.45175 ±  
11.01959

F18 1.0635e-28 ±  
7.520e-28

151.4619 ±  
89.5036

29.90848 ±  
5.2751

4.76432 ±  
0.7214757

499.9788 ±  
55.48298

282.8907 ±  
42.3109

54.82297 ±  
11.80817

13.47419 ±  
1.497829

98.37421 ±  
15.05355

17.385 ±  
1.539785 0 ± 0

F19 4.6354e-35 ±  
2.960e-34

156.6053 ±  
61.30125

30.35593 ±  
5.681104

4.930016 ±  
0.9168929

516.1155 ±  
47.98521

278.2041 ±  
38.58286

52.01463 ±  
10.74207

13.48662 ±  
1.561745

99.91899 ±  
16.78486

17.39819 ±  
1.618368

73.81935 ±  
10.6238

F20 1.4363e-33 ±  
8.344e-33

161.686 ±  
91.38573

30.15713 ±  
5.526973

4.607396 ±  
0.487521

511.36 ±  
55.23571

285.4784 ±  
40.22137

53.02054 ±  
15.04198

13.6743 ±  
1.550832

97.17674 ±  
14.64385

17.10843 ±  
1.49111

78.12226 ±  
10.41774

Table 3.  The obtained mean and standard deviation values of the algorithms with [mean] ± [standard 
deviation] pattern. WCC: World Competitive Contests; PSO: Particles Swarm Optimization; TE: Thermal 
Exchange; VIR: Virulence; Dynamic Virtual Bat Algorithm; CEFOA: Co-Evolution Fruit fly Optimization; EPO: 
Emperor Penguin Optimizer; ION: Ion Motion; TGA: Tree Growth Algorithm; HTS: Heat Transfer Search.

Enzyme Ion channel G-protein coupled receptor Nuclear receptor Average

ACC SEN SPC PRE ACC SEN SPC PRE ACC SEN SPC PRE ACC SEN SPC PRE ACC SEN SPC PRE

ANNTR 94.2 92.92 95.24 94.46 96.2 96.61 95.32 95.74 93.5 92.15 94.24 93.17 94.6 95.28 94.43 93.06 94.62 94.24 94.80 94.10

RFDT 91.3 92.02 91.34 92.56 89.1 88.92 89.21 89.46 84.1 84.21 84.86 85.21 71.1 71.16 71.88 70.13 83.0.9 84.07 84.32 84.34

RVM 97.73 97.44 97.78 98.01 93.12 93.32 93.02 92.96 86.78 84.89 87.36 87.91 87.78 92.63 87.51 85.19 91.35 92.07 91.41 91.01

BAY 89.04 88.73 89.04 90.52 95.3 94.47 95.19 94.44 92.64 91.26 93.25 92.92 94.8 95.37 94.06 92.66 92.94 92.45 92.88 92.63

Table 4.  A comprehensive comparison between the 5-fold cross-validation results of the proposed method 
and the others. ANNTR: Trader-based Artificial Neural network; RFDT: Rotation Forest-based Drug-Target 
predictor; RVM: Relevance Vector Machine; BAY: Bayesian ranking-based; ACC: Accuracy; SEN: Sensitivity; 
SPC: Specificity; PRE: Precision.
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intended target, the related drug can be introduced as an option for the treatment of disease. Further, the side 
effects of drugs can be determined by investigating the predicted relation between a drug and a target. Second, 
they show that some of the medications, like D00086 and D00145, have an identical predicted target. There is a 
possibility that they have similar functionality and can be used alternatively. Also, these results can be useful to 
chemical pharmacists who look for the novel potential efficacy of drugs and researchers who want to validate 
their predicted outcomes. Third, the predicted DTIs might reveal the real mechanism of actions (MOA) of drugs49 
which show the pharmacological effect(s) of a drug.

Figure 6.  The ROC curve of the methods on the four gold-standard datasets. (a) The ROC curves of the 
algorithms on the enzyme dataset. (b) The ROC curves of the algorithms on the ion channel dataset. (c) The 
ROC curves of the algorithms on the G-protein dataset. (d) The ROC curves of the algorithms on the nuclear 
receptor dataset. Besides the four plots, there are also the values of the AUC. Except for the enzyme dataset, the 
proposed method has obtained better results than others. Furthermore, Trader’s average value of the AUC is 
higher than four others. ANNTR: Trader-based Artificial Neural network; RFDT: Rotation Forest-based Drug-
Target predictor; RVM: Relevance Vector Machine; BAY: Bayesian ranking-based.

Figure 7.  The PR curve of the methods on the gold-standard datasets. (a) The PR curves of the algorithms 
on the enzyme dataset. (b) The PR curves of the algorithms on the ion channel dataset. (c) The PR curves of 
the algorithms on the G-protein dataset. (d) The PR curves of the algorithms on the nuclear receptor dataset. 
The size of the positive and negative datasets is the same. The PR curves show the proper performance of the 
proposed method relative to the others. The average value of Trader’s AUS is also higher than them. ANNTR: 
Trader-based Artificial Neural network; RFDT: Rotation Forest-based Drug-Target predictor; RVM: Relevance 
Vector Machine; BAY: Bayesian ranking-based.
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For example, we predicted that diazoxide interacts with the angiotensin-I-converting enzyme (ACE). An 
investigation in the clinical impact of diazoxide and ACE together with some previous studies reveals that diazox-
ide can be used for the treatment of severe hypertension50, while ACE is responsible for controlling blood pres-
sure51. Therefore, for the first time, we have shown that diazoxide can affect the ACE, while the MOA of diazoxide 
has been reported differently by others52. Also, similar to diazoxide, Ketotifen, used to reduce conjunctivitis aller-
gic effects, can also interact with the ACE. Likewise, in a study conducted by Sanchez-Patan et al.53, Ketotifen was 
shown to decrease hypertension in rats.

Another example is erlotinib which is used for treating epithelial lung cancer. Our proposed method has 
predicted that erlotinib interacts with Muscle, skeletal, receptor tyrosine kinase (MuSK) which its antibodies are 
found in neuromuscular diseases. The disease leads to various phenotypes such as less eye involvement, weak-
ness, and pain in the neck. Some researches related to the side effects of ertolinib54 may validate the predicted 
interaction.

Dataset Method
True 
positive

False 
negative Accuracy

EN

ANNTR 406 94 81.20

SVM 306 194 61.20

DT 255 245 51.00

ANNEBP 294 206 58.80

IC

ANNTR 241 59 80.33

SVM 203 97 67.67

DT 151 149 50.33

ANN_EBP 189 111 63

GP

ANNTR 87 13 87

SVM 72 28 72

DT 57 43 57

ANNEBP 75 25 75

NR

ANNTR 16 4 80

SVM 15 5 75

DT 13 7 65

ANNEBP 15 5 75

Table 5.  Acquired results using 10-fold cross-validation test on the generated datasets. ANNTR: Trader-based 
Artificial Neural Network; ANN: Artificial neural network; SVM: Support Vector Machine; DT: Decision Tree; 
ANNEBP: ANN based on Error Back-Propagation.

Figure 8.  The convergence behavior of Trader on all the generated datasets in training of the ANN. (a) 
The Convergence of Trader on the EN dataset. (b) The Convergence of Trader on the IC dataset. (c) The 
Convergence of Trader on the GP dataset. (d) The Convergence of Trader on the NR dataset. The results relate 
to the best-obtained outcomes from 50 distinct executions. For all the datasets, Trader has led to an acceptable 
value of the RMSE.
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Conclusion
A new optimization algorithm, named Trader, was introduced and compared with ten state-of-art optimization 
algorithms based on various statistical criteria. The results show that Trader outperforms other optimization 
algorithms and eliminates their limitations. As an empirical, yet smart evaluation, we examined the performance 
of Trader in the training of a multi-layer perceptron artificial neural network to discover potential DTIs on the 
gold-standard and generated datasets. The predicting model obtained from Trader achieved 94.62%, 94.24%, 
94.80%, and 94.10% of the average 5-fold cross-validation respectively for the accuracy, sensitivity, specificity, 
and precision of the model. These values appeared to be better than the acquired results from other methods. 
Furthermore, the proposed method predicted 47 potential DTIs. We envision that the outcomes obtained by 

No Drug ID Drug name Target ID Target function

1 D00086 Thimerosal hsa5152 Phosphodiesterase 9A [EC:3.1.4.17]

2 D00145 Trimethoprim hsa5152 Phosphodiesterase 9A [EC:3.1.4.17]

3 D00160 Epsilon-Aminocaproic acid hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

4 D00169 Meclofenamate sodium hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

5 D00227 Aminophylline hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

6 D00231 Amrinone hsa3156 3-hydroxy-3-methylglutaryl-Coenzyme A reductase [EC:1.1.1.34]

7 D00294 Diazoxide hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

8 D00325 Fluocinonide hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

9 D00380 Tolbutamide hsa43 Acetylcholinesterase (Yt blood group) [EC:3.1.1.7]

10 D00394 Trimipramine hsa231 Aldo-keto reductase family 1, member B1 (aldose reductase)

11 D00394 Trimipramine hsa239 Arachidonate 12-lipoxygenase [EC:1.13.11.31]

12 D00394 Trimipramine hsa242 Arachidonate 12-lipoxygenase, 12 R type [EC:1.13.11.-]

13 D00410 Metyrapone hsa246 Arachidonate 15-lipoxygenase [EC:1.13.11.33]

14 D00437 Nifedipine hsa247 Arachidonate 15-lipoxygenase, type B [EC:1.13.11.33]

15 D00451 Sumatriptan hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

16 D00459 Quinapril hydrochloride hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

17 D00475 Probenecid hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

18 D00505 Phenelzine sulfate hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

19 D00566 Sodium salicylate hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

20 D00577 Diethylstilbestrol hsa43 Acetylcholinesterase (Yt blood group) [EC:3.1.1.7]

21 D00596 Rosiglitazone maleate hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

22 D00623 Moexipril hydrochloride hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

23 D00650 Bendroflumethiazide hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

24 D00749 Leflunomide hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

25 D00781 Entacapone hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

26 D00813 Ketorolac tromethamine hsa231 Aldo-keto reductase family 1, member B1 (aldose reductase)

27 D00885 Oxiconazole nitrate hsa239 Arachidonate 12-lipoxygenase [EC:1.13.11.31]

28 D00960 Anastrozole hsa476 ATPase, Na + /K + transporting, alpha 1 polypeptide [EC:3.6.3.9]

29 D00969 Meloxicam hsa242 Arachidonate 12-lipoxygenase, 12 R type [EC:1.13.11.-]

30 D01276 Atazanavir sulfate hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

31 D01332 Ketotifen fumarate hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

32 D01364 Ciclopirox olamine hsa246 Arachidonate 15-lipoxygenase [EC:1.13.11.33]

33 D01811 Salicylamide hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

34 D02290 Flurbiprofen sodium hsa247 Arachidonate 15-lipoxygenase, type B [EC:1.13.11.33]

35 D02323 Tolrestat hsa3156 3-hydroxy-3-methylglutaryl-Coenzyme A reductase [EC:1.1.1.34]

36 D02375 Terbinafine hsa43 Acetylcholinesterase (Yt blood group) [EC:3.1.1.7]

37 D02451 Fadrozole hydrochloride hsa5152 Phosphodiesterase 9A [EC:3.1.4.17]

38 D02559 Toloxatone hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

39 D02563 Befloxatone hsa43 Acetylcholinesterase (Yt blood group) [EC:3.1.1.7]

40 D03601 Crilvastatin hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

41 D03689 Deracoxib hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

42 D03717 Parecoxib sodium hsa4593 Muscle, skeletal, receptor tyrosine kinase [EC:2.7.10.1]

43 D03787 Nepicastat hydrochloride hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

44 D03806 Ponalrestat hsa476 ATPase, Na+/K+ transporting, alpha 1 polypeptide [EC:3.6.3.9]

45 D04023 Erlotinib hydrochloride hsa4593 Muscle, skeletal, receptor tyrosine kinase [EC:2.7.10.1]

46 D05341 Palmitic acid hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

47 D06238 Trimetrexate hsa1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

Table 6.  The detected drug-target interactions.
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the proposed model may be used for managing possible side-effects of medications, understanding the MOA of 
drugs, and finding new research opportunities. Taken all, this study may pave the way in terms of de novo appli-
cations of computer-aided methods in drug discovery and development.

Data Availability
All the source codes and the datasets are available in the following link: https://github.com/LBBSoft/Trader.

References
	 1.	 Csermely, P., Korcsmáros, T., Kiss, H. J., London, G. & Nussinov, R. Structure and dynamics of molecular networks: a novel 

paradigm of drug discovery: a comprehensive review. Pharmacology & therapeutics 138, 333–408 (2013).
	 2.	 Luo, H., Mattes, W., Mendrick, D. L. & Hong, H. Molecular docking for identification of potential targets for drug repurposing. 

Current topics in medicinal chemistry 16, 3636–3645 (2016).
	 3.	 Wu, Z., Wang, Y. & Chen, L. Network-based drug repositioning. Molecular BioSystems 9, 1268–1281 (2013).
	 4.	 Qu, X. A. & Rajpal, D. K. Applications of Connectivity Map in drug discovery and development. Drug discovery today 17, 1289–1298 

(2012).
	 5.	 Zhang, M., Luo, H., Xi, Z. & Rogaeva, E. Drug repositioning for diabetes based on’omics’ data mining. PloS one 10, e0126082 (2015).
	 6.	 You, J., McLeod, R. D. & Hu, P. Predicting Drug-Target Interaction Network Using Deep Learning Model. Computational Biology 

and Chemistry (2019).
	 7.	 Xie, L., He, S., Song, X., Bo, X. & Zhang, Z. Deep learning-based transcriptome data classification for drug-target interaction 

prediction. BMC genomics 19, 667 (2018).
	 8.	 Ho, Q.-T., Phan, D.-V. & Ou, Y.-Y. Using word embedding technique to efficiently represent protein sequences for identifying 

substrate specificities of transporters. Analytical Biochemistry (2019).
	 9.	 Song, D. et al. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved 

accuracies. Journal of clinical pharmacy and therapeutics 44, 268–275 (2019).
	10.	 Keum, J. & Nam, H. Self-blm: Prediction of drug-target interactions via self-training svm. PloS one 12, e0171839 (2017).
	11.	 Wang, L. et al. Rfdt: A rotation forest-based predictor for predicting drug-target interactions using drug structure and protein 

sequence information. Current Protein and Peptide Science 19, 445–454 (2018).
	12.	 Cichonska, A. et al. Computational-experimental approach to drug-target interaction mapping: a case study on kinase inhibitors. 

PLoS computational biology 13, e1005678 (2017).
	13.	 Cai, C. et al. In silico prediction of ROCK II inhibitors by different classification approaches. Molecular diversity 21, 791–807 (2017).
	14.	 Meng, F.-R., You, Z.-H., Chen, X., Zhou, Y. & An, J.-Y. Prediction of drug–target interaction networks from the integration of protein 

sequences and drug chemical structures. Molecules 22, 1119 (2017).
	15.	 Masoudi-Sobhanzadeh, Y., Motieghader, H. & Masoudi-Nejad, A. FeatureSelect: a software for feature selection based on machine 

learning approaches. BMC bioinformatics 20, 170 (2019).
	16.	 Lee, I. & Nam, H. Identification of drug-target interaction by a random walk with restart method on an interactome network. BMC 

bioinformatics 19, 208 (2018).
	17.	 Yan, X.-Y., Zhang, S.-W. & He, C.-R. Prediction of drug-target interaction by integrating diverse heterogeneous information source 

with multiple kernel learning and clustering methods. Computational biology and chemistry 78, 460–467 (2019).
	18.	 He, L. et al. Patient-customized drug combination prediction and testing for t-cell prolymphocytic leukemia patients. Cancer 

research 78, 2407–2418 (2018).
	19.	 Zheng, Y. et al. Predicting adverse drug reactions of combined medication from heterogeneous pharmacologic databases. BMC 

bioinformatics 19, 517 (2018).
	20.	 Lu, Y., Guo, Y. & Korhonen, A. Link prediction in drug-target interactions network using similarity indices. BMC bioinformatics 18, 

39 (2017).
	21.	 Ji, X., Freudenberg, J. M. & Agarwal, P. In Computational Methods for Drug Repurposing 203–218 (Springer, 2019).
	22.	 Peska, L., Buza, K. & Koller, J. Drug-target interaction prediction: A Bayesian ranking approach. Computer methods and programs in 

biomedicine 152, 15–21 (2017).
	23.	 Ezzat, A., Zhao, P., Wu, M., Li, X.-L. & Kwoh, C.-K. Drug-target interaction prediction with graph regularized matrix factorization. 

IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 14, 646–656 (2017).
	24.	 Gu, W., Xie, X., He, Y. & Zhang, Z. Drug-target protein interaction prediction based on AdaBoost algorithm. Sheng wu yi xue gong 

cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi 35, 935–942 (2018).
	25.	 Ezzat, A., Wu, M., Li, X. & Kwoh, C.-K. In Computational Methods for Drug Repurposing 239–254 (Springer, 2019).
	26.	 Sharma, A. & Rani, R. BE-DTI’: Ensemble framework for drug target interaction prediction using dimensionality reduction and 

active learning. Computer methods and programs in biomedicine 165, 151–162 (2018).
	27.	 Rifaioglu, A. S. et al. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and 

databases. Brief. Bioinform 10 (2018).
	28.	 Ding, Y., Tang, J. & Guo, F. The computational models of drug-target interaction prediction. Protein and peptide letters (2019).
	29.	 Lai, H.-Y. et al. A Brief Survey of Machine Learning Application in Cancerlectin Identification. Current gene therapy 18, 257–267 

(2018).
	30.	 Zhang, W. et al. Recent Advances in the Machine Learning-Based Drug-Target Interaction Prediction. Current drug metabolism 

(2019).
	31.	 Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W. & Kanehisa, M. Prediction of drug–target interaction networks from the 

integration of chemical and genomic spaces. Bioinformatics 24, i232–i240 (2008).
	32.	 Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research 28, 27–30 (2000).
	33.	 Wishart, D. S. et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic acids research 34, 

D668–D672 (2006).
	34.	 Masoudi-Sobhanzadeh, Y., Omidi, Y., Amanlou, M. & Masoudi-Nejad, A. DrugR+: A comprehensive relational database for drug 

repurposing, combination therapy, and replacement therapy. Computers in Biology and Medicine (2019).
	35.	 Smith, T. F. & Waterman, M. S. Comparison of biosequences. Advances in applied mathematics 2, 482–489 (1981).
	36.	 Coello Coello, C. & Lechuga, M. In Proc., Evolutionary Computation, 2002. CEC'02. Proceedings of the 2002 Congress on. 1051–1056.
	37.	 Masoudi-Sobhanzadeh, Y. & Motieghader, H. World Competitive Contests (WCC) algorithm: A novel intelligent optimization 

algorithm for biological and non-biological problems. Informatics in Medicine Unlocked 3, 15–28 (2016).
	38.	 Cheraghalipour, A., Hajiaghaei-Keshteli, M. & Paydar, M. M. Tree Growth Algorithm (TGA): A novel approach for solving 

optimization problems. Engineering Applications of Artificial Intelligence 72, 393–414 (2018).
	39.	 Kaveh, A. & Dadras, A. A novel meta-heuristic optimization algorithm: thermal exchange optimization. Advances in Engineering 

Software 110, 69–84 (2017).
	40.	 Dhiman, G. & Kumar, V. Emperor Penguin Optimizer: A Bio-inspired Algorithm for Engineering Problems. Knowledge-Based 

Systems (2018).

https://doi.org/10.1038/s41598-019-45814-8
https://github.com/LBBSoft/Trader


1 4Scientific Reports |          (2019) 9:9348  | https://doi.org/10.1038/s41598-019-45814-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

	41.	 Javidy, B., Hatamlou, A. & Mirjalili, S. Ions motion algorithm for solving optimization problems. Applied Soft Computing 32, 72–79 
(2015).

	42.	 Jaderyan, M. & Khotanlou, H. Virulence Optimization Algorithm. Applied Soft Computing 43, 596–618 (2016).
	43.	 Topal, A. O. & Altun, O. A novel meta-heuristic algorithm: Dynamic Virtual Bats Algorithm. Information Sciences 354, 222–235 

(2016).
	44.	 Patel, V. K. & Savsani, V. J. Heat transfer search (HTS): a novel optimization algorithm. Information Sciences 324, 217–246 (2015).
	45.	 Han, X., Liu, Q., Wang, H. & Wang, L. Novel fruit fly optimization algorithm with trend search and co-evolution. Knowledge-Based 

Systems 141, 1–17 (2018).
	46.	 Mernik, M., Liu, S.-H., Karaboga, D. & Črepinšek, M. On clarifying misconceptions when comparing variants of the Artificial Bee 

Colony Algorithm by offering a new implementation. Information Sciences 291, 115–127 (2015).
	47.	 Abdi, Y. & Seyfari, Y. Search Manager: A Framework for Hybridizing Different Search Strategies. International journal of advanced 

computer science and applications 9, 525–540 (2018).
	48.	 Yamanishi, Y., Kotera, M., Kanehisa, M. & Goto, S. Drug-target interaction prediction from chemical, genomic and pharmacological 

data in an integrated framework. Bioinformatics 26, i246–i254 (2010).
	49.	 Baker, N. C., Ekins, S., Williams, A. J. & Tropsha, A. A bibliometric review of drug repurposing. Drug discovery today (2018).
	50.	 Sridharan, K. & Sequeira, R. P. Drugs for treating severe hypertension in pregnancy: a network meta-analysis and trial sequential 

analysis of randomized clinical trials. British journal of clinical pharmacology 84, 1906–1916 (2018).
	51.	 Tartibian, B., Botelho Teixeira, A. M. & Baghaiee, B. Moderate Intensity Exercise is Associated With Decreased Angiotensin-

converting Enzyme, Increased β2-adrenergic Receptor Gene Expression, and Lower Blood Pressure in Middle-Aged Men. Journal 
of aging and physical activity 23, 212–220 (2015).

	52.	 Altszuler, N., Hampshire, J. & Moraru, E. On the mechanism of diazoxide-induced hyperglycemia. Diabetes 26, 931–935 (1977).
	53.	 Sánchez-Patán, F. et al. Mast cell inhibition by ketotifen reduces splanchnic inflammatory response in a portal hypertension model 

in rats. Experimental and Toxicologic Pathology 60, 347–355 (2008).
	54.	 Celik, T. & Kosker, M. Ocular side effects and trichomegaly of eyelashes induced by erlotinib: a case report and review of the 

literature. Contact Lens and Anterior Eye 38, 59–60 (2015).

Author Contributions
Yosef Masoudi-Sobhanzadeh: Conceptualization, implementation, formal analysis, investigation, writing, editing, 
and revising the manuscript. Yadollah Omidi: Results analysis, validation, Conceptualization, writing, editing, 
and revising the manuscript. Massoud Amanlou: Validation, data analysis, Editing-manuscript. Ali Masoudi-
Nejad: Conceptualization, Supervision, Project administration, writing, editing, and revising the manuscript. All 
authors have read and approved the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-45814-8.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-45814-8
https://doi.org/10.1038/s41598-019-45814-8
http://creativecommons.org/licenses/by/4.0/

	Trader as a new optimization algorithm predicts drug-target interactions efficiently

	Related Works

	Methods and Materials

	Preparing the datasets. 
	The machine learning approach. 
	Trader optimization algorithm. 

	Results

	Trader in comparison with the other optimization algorithms. 
	The proposed machine learning method against the others. 
	The acquired results on the generated datasets. 

	Discussion

	Conclusion

	Figure 1 Pseudocodes for generating the dataset.
	Figure 2 The framework of the proposed method for drug repurposing.
	Figure 3 The flowchart of Trader: The proposed optimization algorithm starts with some candidate solutions which each of them determine the weights of the ANN.
	Figure 4 The pseudocode of Trader.
	Figure 5 The convergence of the algorithms on different test functions shown by F.
	Figure 6 The ROC curve of the methods on the four gold-standard datasets.
	Figure 7 The PR curve of the methods on the gold-standard datasets.
	Figure 8 The convergence behavior of Trader on all the generated datasets in training of the ANN.
	Table 1 Properties of the generated datasets.
	Table 2 The obtained P-values of the algorithms based on their best results in different executions with Trader as a test base.
	Table 3 The obtained mean and standard deviation values of the algorithms with [mean] ± [standard deviation] pattern.
	Table 4 A comprehensive comparison between the 5-fold cross-validation results of the proposed method and the others.
	Table 5 Acquired results using 10-fold cross-validation test on the generated datasets.
	Table 6 The detected drug-target interactions.




