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Abstract: Masticatory overload on dental implants is one of the causes of marginal bone resorption.
The implant–abutment connection (IAC) design plays a critical role in the quality of the stress
distribution, and, over the years, different designs were proposed. This study aimed to assess the
mechanical behavior of three different types of IAC using a finite element model (FEM) analysis.
Three types of two-piece implants were designed: two internal conical connection designs (models
A and B) and one internal flat-to-flat connection design (model C). This three-dimensional analysis
evaluated the response to static forces on the three models. The strain map, stress analysis, and safety
factor were assessed by means of the FEM examination. The FEM analysis indicated that forces
are transmitted on the abutment and implant’s neck in model B. In models A and C, forces were
distributed along the internal screw, abutment areas, and implant’s neck. The stress distribution in
model B showed a more homogeneous pattern, such that the peak forces were reduced. The conical
shape of the head of the internal screw in model B seems to have a keystone role in transferring the
forces at the surrounding structures. Further experiments should be carried out in order to confirm
the present suppositions.
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1. Introduction

Dental implantology is a well-established treatment option in cases of missing teeth, showing
good results in terms of long-term success rates [1]. However, failures are still encountered in early and
late time-points [2]. Several causes were addressed for implant failure and the implant biomechanical
behavior is considered one of the determining factors affecting the implant longevity [3]. Masticatory
overloads on an implant were pointed out as a possible cause of marginal bone resorption, due to
the excessive stresses generated in the peri-implant tissue [4]. The transfer and the distribution of
biomechanical loads are highly affected by the design of the constituting components and materials [5–8].
The implant–abutment connection (IAC) plays a critical role in the quality of the stress distribution,
and, over the years, different designs were proposed in order to control the stress distribution [6,9].

Implants have a rigid and tight interface because of the absence of a periodontal ligament; thus,
loading applied to the implant system is directly transferred to the bone [10,11]. The reduction of
stresses at the IAC interface may prevent biomechanics features of the rehabilitation, such as component
fracture, screw loosening, and augmented leaking at the connection interfaces [12].
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Finite element method (FEM) analysis is a common procedure in order to study the mechanical
behavior of dental implants, especially the stress distribution generated at the IAC interface. Previous
studies observed how a particular design may affect the stress distribution at the connection
interface [12–19].

For this reason, three different types of IAC were compared in an FEM analysis. The aim of this
study was to determine how the IAC design may affect the stress distribution among different implant
components and peri-implant tissues.

2. Materials and Methods

Three types of implants were considered: two internal 11◦ conical connections (model A and
model B) and one internal flat-to-flat connection implant (model C) (Figure 1). The outline shape of all
samples was in root form.
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Figure 1. The three types of implant connections evaluated: two internal 11◦ conical connections
(models A and B) and one internal flat-to-flat connection implant (model C).

All of the implants compared in this study were chosen with similar diameters at the implant
neck such to reduce the bias. The diameters of models A, B, and C were respectively 4 mm, 4.2 mm,
and 3.8 mm. Moreover, the position of the screw head inside the abutment and the angle of contact
between the screw and the abutment were different between model A and model B. The angles were
respectively 59◦ and 15◦; the contact between the screw and abutment in model A was designed more
distant from the connection, and the screw was consequently higher.

The average thickness of the connection stress zone was equal to 0.55 mm for all models.
The loading geometry simulated through the FEM models was chosen in order to emulate the

experimental set-up prescribed by the standard UNI-EN-ISO 14801:2008 (Figure 2). The examined
samples presented no threads so as to exclude the latter’s influence when comparing the
connection’s biomechanics.

Each model was composed of a cylindrical holder, where the implant was inserted and connected
with a straight abutment through the internal screw. The material compositions of the implant,
abutment, screw, and holder were respectively titanium grade 4, titanium grade 5, titanium grade
5, and 1060 aluminum alloy. For the holder, aluminum alloy was chosen in order to have a Young’s
modulus lower than that of titanium, the material used for the implant–abutment system. Models A
and B are prototype projects (Prodent Italia S.r.l, Pero, Milan, Italy), and model C is a commercialized
implant (Prime, Prodent Italia S.r.l Pero).

As requested by the standard, the holder should be chosen in order to ensure that no permanent
deformation occurs, but this material does not simulate the bone. The FEM comparisons performed on
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different types of connections are meant to be static and qualitative with the purpose of forecasting
different possible mechanical characteristics.
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Figure 2. Loading geometry in accordance with standard UNI-EN-ISO 14801:2008 (1: loading device,
2: nominal bone level, 3: abutment, 4: hemispherical loading member, 5: dental implant body,
6: specimen holder, F: loading force, C: loading center, AB: loading axis, DE: dental implant axis). In the
FEM simulation set-up, the loading geometry was modeled with a point load in the position shown on
the right.

The geometry of all components was shaped with SolidWorks 2016 (SolidWorks Corp,
Waltham, MA, USA). For simplification reasons, the threaded parts of the system were neglected, and
the implants were shaped considering the dimension of the pitch diameter.

This may be a valid simplification because this study does not focus on the interaction of the
implants with bone, but just on the mechanical behavior of the IAC. Furthermore, the threaded part
makes the FEM calculation more complex without having additional value; thus, it was omitted in all
the models, neglecting its influence for the comparison between implant geometries.

In accordance with the standard, in the coronal portion of the abutments, a 30◦ cut was present,
referred to the main axis of the implant, so as to introduce a 30◦ tilting force when an axial force was
applied. The force was applied at a distance of 11 mm from the connection (Figure 2).

The geometries were imported into the finite element software SolidWorks Simulation (SolidWorks
Corp, Waltham, MA, USA) in order to generate the meshes with tetrahedral solid elements. The total
numbers of nodes and elements of each model are described in Table 1; the mechanical properties of
the implant, abutment, screw, and holder are summarized in Table 2. All materials were considered
isotropic and linearly elastic. Further specific material characterizations were set according to the
software libraries.

Table 1. Nodes and elements.

Model Nodes Elements

A 432,329 296,377
B 253,773 164,806
C 173,404 111,916
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Table 2. Materials and mechanical properties.

Structures Material Young’s Modulus (GPa) Poisson’s Ratio

Implant Titanium grade 4 105 0.37
Abutment Titanium grade 5 110 0.3

Screw Titanium grade 5 110 0.3
Holder 1060 aluminum alloy 69 0.33

No-penetration contacts were set between the surfaces of the screw and implant–abutment, the
surfaces of the implant and abutment, and among implant–holder components. Symmetry boundary
conditions were used, because of the mirror symmetry of the geometry of interest. A compression load
of 175 N was applied to the surface of the abutment.

The following qualitative analyses were performed in the FEM: deformation maps, von Mises
stress maps, and safety factor maps. These tests were not suitable for quantitative measurements, due
to the simplifications considered during the setting phase of the analysis.

3. Results

3.1. Strain Map

The FEM analysis (Figure 3) showed that model A presented two critical points where the local
values of strain were highest. These points were the fulcrum zone located at the coronal junction
between the abutment and implant, in the area corresponding to the direction of the driving force vector
(arrow 1), and the area opposed to the direction of this force was represented by the connection part of
the abutment (arrow 2). In model B, the lowest resistance appeared at two points, both corresponding
to the connection surfaces: one located at the coronal level (arrow 3) and one at the apical level (arrow
4). The position of the weakest points seemed to be similar to model A, with a lower strain value.
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3.2. Stress Analysis

The von Mises stress (Figure 4) indicated how the load was distributed on the different surfaces
and, consequently, which areas were more susceptible to stress. Load was mostly distributed on the
implant connection area for all three models (arrows shown in Figure 4). However, it can be seen that
model B appeared to achieve lower von Mises values than the other two models, as well as a reliable
connection. The forces were more distributed on a wider surface, and the internal screw seemed less
affected by mechanical stresses.
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In model A, the most critical areas appeared to be the most coronal part of the implant–abutment
interface according to the force vector appliance (arrow 7) and the most apical site of the connection in
the contralateral zone at the neck of the implant (arrow 8). In model B, the most critical parts were
represented by the neck of the implant (arrow 9) and in the most apical portion of the connection in the
contralateral side. In model C, the most dangerous zones were at the implant neck and at the coronal
part of the body (arrow 10).

3.4. Implant Model Comparison

Model A showed less dissipation of forces, resulting in a decrease in total resistance. In addition,
the internal screw acted as a retentive element counteracting the force. The internal screw, which
represented an effective but isolated point of resistance, seemed to be hollow, further reducing
stress distribution.

The model A design has a power arm (distance between fulcrum and driving force) longer than
the resistance arm (distance between fulcrum and resistance), which turned out to be an advantageous
lever, avoiding internal screw potential problems. Furthermore, the stabilization cone positioned
under the anti-rotational element seemed to not be thick enough in order to manage the loads at an
angled vector application.

In model B, the distribution of stress seemed to show no overload peaks with no particularly
risky areas.

The lever arm, although shorter than that in model A (power arm), was greater than the resistance
arm, and it resulted in a favorable configuration.

In model C, the abutment–implant connection was guaranteed by the internal screw, as this
connection was not provided with an intrinsic retention. Thus, any tilting force and micromotion
seemed to affect the resistance and mechanical stability of this internal screw.

This last connection showed a tendency to transmit loads and deformations in depth and along
the body of the internal screw, as well as having a risk of overloading concentrated in a single area.

4. Discussion

From the present qualitative and comparative FEM analysis, it could be observed that the model
B connection seemed to show better mechanical behavior compared to the conical connection of model
A and the internal flat-to-flat connection of model C.

The FEM analysis indicated that most of the forces were transmitted on the abutment and implant’s
neck in model B, whereas, in model A and model C, forces were distributed along the internal screw,
abutment areas, and implant’s neck.

Stress distribution at the level of the implant abutment connection is strongly associated with
the design characteristics of the interface [14,20]. The chosen models presented minimal diameter
differences at their widest point, which may have partially affected the results [21]. Moreover, it may
be considered that the outline of different implant projects differed not only in the widest measurable
diameter, but also in the average thickness of the connection stress zone. Due to this reason, the
three models were evaluated to be compatible to a comparison because the average thickness of the
connection stress zone, belonging to all the three, was equivalent, despite the wider diameter.

The advantages and disadvantages of the different connection types were studied by several
authors [22–25].

Coppede et al. demonstrated that the friction-locking mechanics of the internal conical connections
provided greater resistance to deformation and fracture under oblique compressive loading when
compared to the internal hexagon connections [23].

Balik et al. showed that a screw tapered connection compared with an internal connection,
external connection, and cone Morse connection revealed the lowest strain values. These previous
reports are consistent with the present FEM analysis study where the conical hex connection of model
B showed the lowest strain values [14].
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Norton et al. reported that internal conical connections increased resistance to bending moments
at the fixture–abutment interface when compared to a butt joint interface [25].

Moreover, the micro gap between the implant and the abutment causes an increase of stress
distribution on the connection components, implant, and surrounding bone [26–28]. The gap between
the implant and abutment interface depends on the connection’s design [29,30]. This affects the implant
connection from both a biological and mechanical point of view.

The biological problem is related to potential risk for invasion of oral microorganisms into the
fixture–abutment microgap, allowing bacteria to penetrate and colonize the inner part of the implant,
and this fact, in vivo, produces a bacterial reservoir that could interfere with the long-term health of
the peri-implant tissues [31–33].

The mechanical problem of the microgap is related to a possible loosening or fracture of the
internal screw caused by micro movements. Several studies [23,34] demonstrated that the internal
conical implant–abutment connection is mechanically more stable than a flat-to-flat one, and able to
provide a better seal [35].

The present FEM analysis showed that the seal quality of model C, for the deformations shown
during force loading, seemed reduced, even if the present study represents a qualitative assessment
rather than a quantitative measure. According to the present study and the literature, the relative risks
that could develop on this kind of connection are represented by the unscrewing of the internal screw
or its breaking, the fracture of the implant, and the bacterial infiltration [32,36].

Scarano et al. observed that, in the area of the internal conical connection implants, there was no
detectable separation at the implant/abutment, and no presence of a microgap [37]. Farronato et al.
observed the same for a static angled force application [38]. However, in the internal hexagon
connection, numerous voids were present between the implant and abutment interface.

In an in vitro study, Scarano et al. observed that conical Morse taper connections were shown to
be tighter and more stable from a biomechanical point of view than flat-to-flat connections [39].

According to these studies, model B’s conical connection showed better distribution of the force
along the whole connection caused by high contact between the abutment and internal surface of the
implant. Although model A had an internal conical connection, the strain map (Figure 3) seemed to
show a lower seal quality than in model B.

On the other hand, Coelho et al. demonstrated that micro-leakage at the implant/abutment
interface was shown to occur in all implant systems with variability between the different systems.
The presence of a microgap could be due to an incorrect machining of the component parts and to
excessive torque forces during the insertion of the fixture [27].

The FEM analysis of the present study showed that loading forces could affect the internal
screw. The strain map (Figure 3) reported deformation of the internal screw in model A and model C,
compatible with traction and bending. The conical internal screw of model B seemed not to be involved
during loading forces, avoiding risks of screw overloading or loosening. Coppede et al. observed in
an in vitro study that the use of conical-head abutment screws with frictional locking action resulted
in greater connection stability and mechanical resistance compared to conventional flat-head screws,
regardless of the connection design [40].

The model B connection has a design comparable to a keystone arch (Figure 6).
This system, known for millennia and used in buildings to dissipate the forces, is the result of the

union between implant, abutment, and conical internal screw. A different inclination degree between
implant and abutment (11◦) and between abutment and internal screw (15◦) seems to represent a
key factor for the distribution of forces in a homogeneous way. Specifically, the shape of the head of
the internal screw seems to have a role akin to a keystone in an arch so as to transfer forces at the
surrounding structures without interposed gaps. It is assumed that this design can subdivide the forces
between the various components of the connection in such a way that the resultant of the forces does
not develop and concentrate in a single point but at different points, reducing the risk of overloading.
Moreover, during mechanical loads, model B acts as a single body, reducing possible tilting forces
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that could create a gap between the structures of the connection, which is why it differs from the
taper-locking model A. According to the literature, a conical-head internal screw prevents microbial
leakage through the implant–abutment interface, ensuring a better seal [41]. One of the limitations of
this study is that we focused exclusively on implant connections and, for this reason, the threaded
parts of the system were neglected. In addition, further investigations may be encouraged so as to
evaluate the effect of different combinations of angles between the implant and abutment and between
the abutment and internal screw, in order to detect the most efficient load distribution.Materials 2019, 12, x FOR PEER REVIEW 8 of 11 
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those to be subjected to experimental tests. 
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safer. Further experimental load tests should be carried out in order to confirm the present
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