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Abstract: Our prior screening of microRNAs (miRs) identified that miR-199a-3p expression 

is reduced in osteosarcoma cells, one of the most common types of bone tumor. miR-199a-3p 

exhibited functions of tumor cell growth inhibition, suggesting the potential application of 

miR-199a-3p as an anticancer agent. In the study reported here, we designed and developed a 

lipid-modified dextran-based polymeric nanoparticle platform for encapsulation of miRs, and 

determined the efficiency and efficacy of delivering miR-199a-3p into osteosarcoma cells.  

In addition, another potent miR, let-7a, which also displayed tumor suppressive ability, was 

selected as a candidate miR for evaluation. Fluorescence microscopy studies and real-time 

polymerase chain reaction results showed that dextran nanoparticles could deliver both miR-

199a-3p and let-7a into osteosarcoma cell lines (KHOS and U-2OS) successfully. Western blot-

ting analysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays 

demonstrated that dextran nanoparticles loaded with miRs could efficiently downregulate the 

expression of target proteins and effectively inhibit the growth and proliferation of osteosarcoma 

cells. These results demonstrate that a lipid-modified dextran-based polymeric nanoparticle 

platform may be an effective nonviral carrier for potential miR-based anticancer therapeutics.
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Introduction
Osteosarcoma is the most common primary malignant tumor of bone. It usually 

occurs in the developing bones of children and adolescents.1 Currently, the treatment 

of osteosarcoma involves surgery, radiation therapy, and adjuvant chemotherapy.2 

Despite recent advances in chemotherapy, the 5-year event-free survival and overall 

survival rates are still around 60%.2,3 Furthermore, drug resistance to chemotherapy 

frequently develops in osteosarcoma and dose-limiting toxicity restricts the utility of 

chemotherapeutic drugs. Thus, more selective and effective therapeutic strategies are 

required for the treatment of osteosarcoma.3–6

Recent years have seen remarkable progress made in basic understanding of the 

disease and in deciphering the role of microRNAs (miRs) in cancer. “miRs” are a sub-

set of small noncoding RNA molecules that influence tumor formation, maintenance, 

metastasis, apoptosis, and drug resistance. Mature miRs bind to the 3′ untranslated 

regions of target genes and inhibit gene expression by degradation or repress translation 

of the target messenger RNA. There has been great interest in the function of miRs 

in human cancers and numerous studies have observed the dysregulation of miRs in 

different tumors, including osteosarcoma.7–12 In this regard, we recently demonstrated 

that the expression of miR-199a-3p is remarkably decreased in osteosarcoma cell lines. 
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The transfection of miR-199a-3p into osteosarcoma cells can 

significantly decrease cell growth and proliferation.11 The 

expression of miR-199a-3p is also downregulated in several 

human malignancies including colon and hepatocellular 

carcinoma.13–15 Restoring the expression of miR-199a-3p 

in these tumor cells led to a reduced invasive capability of 

cancer cells and increased sensitivity to chemotherapeutic 

drugs.13 These results suggest that miR-199a-3p can be used 

as a potential treatment target for such cancers. Similarly, 

another tumor suppressor miR, let-7a, has been found down-

regulated or completely repressed in many types of human 

cancers.16–19 Accordingly, the restoration of let-7a expression 

has been found to inhibit the proliferation of many cancer 

cells.17,20–23 Thus, the exogenous transfection of specific miR 

into tumor cells may open up newer avenues for the effective 

treatment of several human cancers.

Although miR-based anticancer strategies are emerging 

as a highly promising therapeutic approach, their systemic 

delivery still remains a great challenge. Similar to small inter-

fering RNA (siRNA) molecules, miRs are highly unstable 

in the cell environment and must be delivered by effective 

carrier vectors.24 While viral vectors may also be used for 

proof-of-concept experimental approaches to the cellular 

delivery of miRs, safe and efficient nonviral delivery systems 

are required in order to translate their utility into clinically 

viable therapeutic strategies that can benefit cancer patients. 

In this regard, polymeric nanoparticle-based delivery serves 

as a promising platform with several advantages, including 

higher transfection efficiencies, targeted delivery, and ease of 

modification or functionalization, and has the added benefit 

of safety and nontoxicity.25 Several reports have shown that 

miRs can be delivered into the cancer cell by nano-sized non-

viral vectors. For example, liposome-polycation-hyaluronic 

acid modified with a GC4 single-chain variable antibody 

(scFv) was used to deliver miR-34a into B16F10 lung cancer 

cells.26 Cysteamine-functionalized gold nanoparticles were 

able to deliver miRs into two different tumor models, and 

the results showed that a 96% transfection rate of miRs into 

cells was achieved and 98% of cells showed good viabil-

ity following treatment. The data also showed these gold 

nanoparticles had a ten- to 20-fold higher payload capacity 

than Lipofectamine®.27 Several novel nanotechnology-based 

miR/siRNA delivery platforms are still in the early stages 

of development.28–30

In our previous studies, we used dextran as a starting 

block for the fabrication of nanosystems because the base 

polymer of dextran is a glucan-based nontoxic material that 

has been approved as a plasma expander for human use by 

the US Food and Drug Administration. We also demon-

strated that a dextran backbone can be functionalized with 

lipid chains to enable self-assembly to form nanoparticles.31  

In different cancer model systems, dextran-based nano-

particles have been able to transport drugs and multidrug 

resistance (MDR1) siRNA efficiently into tumor cells to 

overcome drug resistance.32,33 We hypothesize that dextran-

based nanoparticles could also be an ideal carrier for the 

delivery of therapeutic miRs into cancer cells. In the study 

reported here, we employed miR-199a-3p and let-7a as 

candidate miRs to determine the efficiency of miR delivery 

in osteosarcoma cells using a dextran-based self-assembling 

nanoparticle platform.

Materials and methods
The chemical reagents and polymers for synthesis, such 

as dextran, stearyl amine, cystamine, pyridine, sodium 

periodate, sodium cyanoborohydride, potassium sulfate, and 

azo-bis-isobutyronitrile were purchased from Sigma-Aldrich 

Co  (St Louis, MO, USA). Dithiol-modified poly(ethylene 

glycol) (PEG-[SH]
2
, molecular weight (MW) 2,000) was 

purchased from SunBio, Inc. (Seoul, South Korea). Anhydrous 

lithium chloride (LiCl) was from Fisher Scientific (Philadel-

phia, PA, USA). Dehydrated dimethyl formamide (DMF) 

and dimethyl sulfoxide (DMSO) with molecular sieves were 

obtained from Acros Organics (Parsipanny, NJ, USA). Acry-

loyl chloride, pyridine, and other reagents and solvents were 

from Sigma-Aldrich Co and were used as received without 

further purification.

Synthesis of dextran acrylate
The synthesis of dextran acrylate was based on a previously 

described procedure with modifications.31 In brief, a fixed 

amount of dextran (MW ~40 kDa, 2 g) was added to an 

LiCl/DMF (4% w/v, 50 mL) solvent mixture in a round-

bottom flask (200 mL). The temperature of the oil bath was 

raised from room temperature to 120°C over a period of 2 

hours. The resultant mixture became a homogeneous golden-

yellow-colored solution. The solution was cooled to room 

temperature, and pyridine (500 µL) was added and stirred. 

The reaction mixture was cooled to 0°C using an ice bath, 

and varying amounts of acryloyl chloride (1.0–1.5 molar 

excess) was added drop-wise using an addition funnel. The 

reaction was maintained at 0°C until total addition of acryloyl 

chloride was complete, over a period of 1–2 hours. The reac-

tion was allowed to continue overnight with stirring.

The dextran acrylate obtained was precipitated in 

excess cold ethanol and washed three times with absolute 
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ethanol. For confirmation of the formation of dextran 

acrylate, a small portion of the acrylate monomer was 

polymerized using 0.001% azo-bis-isobutyronitrile ini-

tiator in DMSO at 60°C for 24 hours, which resulted in 

formation of the acrylate polymer, confirming the reaction. 

Alternately, for lipid modification, the dextran acrylate 

was directly used as the monomer for the next step, in a 

one-pot synthesis.

Synthesis of lipid-modified dextran
Dextran acrylate synthesized in the previously described step 

was dissolved in dry DMF and stirred in a glass vial with 

varying amounts (5–10 mole %) of stearyl amine and a cata-

lyst (0.01 mole % AlCl
3
). The reaction mixture was heated to 

40°C–50°C in an oil bath for 24 hours. The product obtained 

(stearyl amine-modified dextran) was precipitated and 

washed in cold ethanol several times to purify the product. 

Finally, the lipid-modified dextran derivative was dissolved 

in a small amount of deionized water and lyophilized to 

yield the pale-yellow-colored final product. The stearyl 

modification of dextran was confirmed by nuclear magnetic 

resonance spectroscopy and the percent lipid modification 

was estimated to be 5–7 mole %.

Synthesis of thiolated dextran
The dextran backbone was oxidized based on a reported pro-

cedure.34 In brief, NaIO
4
 was dissolved in 60 mL of deionized 

water. The solution was added to a solution containing 4 g 

of dextran in 30 mL of deionized water. The reaction was 

stirred in the dark for 2 hours at room temperature. At the end 

of the reaction, the solution was dialysed extensively against 

deionized water, using Spectra/Por® dialysis membranes 

(MW cutoff 12–14 kDa; Spectrum Labs, Rancho Dominguez, 

CA, USA) extensively against deionized water (2 L) for  

4 days with several water replacements. A powdery, free-

flowing sample was obtained after freeze-drying (yield 3.7 g  

[92.5%]).

A 500 mg portion of the oxidized dextran was dissolved 

in 50 mL of pH 5.2 buffer containing K
2
SO

4
 and NaCNBH

3
. 

Then, 50 mg of cystamine was added and the mixture 

stirred at 40°C for 4 days. The product was subjected to 

extensive dialysis and then lyophilized to yield thiolated 

dextran. All compounds synthesized were routinely charac-

terized by high-performance liquid chromatography, liquid 

chromatography–mass spectrometry, proton- and carbon-13 

nuclear magnetic resonance spectroscopy, Elman assay, and 

Fourier transform infrared spectroscopy to assure chemical 

identity and purity.

Encapsulation of microRNAs 
in functionalized dextran-based 
nanoparticles
The miR-containing dextran nanoparticles were fabricated in 

a similar fashion to the siRNA-loaded dextran nanosystems 

reported by our group recently.32,33 Briefly, a stock solution 

of 5 mg/mL (~2.5 mM) dextran thiol, 5 mg/mL (~2.5 mM) 

dextran hexylamine, 5 mg/mL (125 µM) PEG-thiol, and 

2 µM miR solution was prepared. For obtaining a 100 nM 

miR concentration, a 120 µL stock solution of miR was 

mixed with 40 µL of dextran-thiol stock solution using a 

vortex shaker. It was then incubated for 5 minutes. To this 

mixture, 40 µL of dextran-hexylamine derivatives were 

added and incubated for another 5 minutes. Finally, 40 µL of 

PEG-(SH)
2
 was added and incubated for another 15 minutes 

to form the PEGylated nanoparticles.

This method of sequential addition was used so that the 

miR would be entrapped in the interpenetrating dextran 

hydrogel network. Further, a PEG-thiol derivative was used 

to form intermolecular cross-linking of individual nanopar-

ticles decorated with PEG on the surface. The final mixture 

was subsequently diluted with the medium and applied at 

the designated concentrations. Nanoparticles containing 

100 nM of nonspecific miRs were used as negative controls 

in the experiments.

Measurement of size and zeta potentials, 
and transmission electron microscopy of 
microRNA-loaded dextran nanoparticles
The particle size and zeta potentials of the miR-199a-3p- 

loaded dextran nanoparticles were determined with a 

Zetasizer Nano S (Malvern Instruments Ltd, Malvern, UK). 

For light-scattering experiments, the samples were measured 

at fixed angle of 90° at 25°C. The scattering intensity was 

adjusted in the range of 50–200 kcps by diluting the samples 

with phosphate-buffered saline (PBS). For zeta potentials, 

the default parameters of dielectric constant, refractive index, 

and viscosity of water were used based on the electropho-

retic mobility of the nanoparticles. Transmission electron 

micrographs of nanoparticles were obtained using a JEM-

1000 Ultra High Voltage Electron Microscope (JEOL Ltd, 

Tokyo, Japan).

Cell culture and reagents
Osteosarcoma cell lines, KHOS and U-2OS, were cultured 

with Dulbecco’s Modified Eagle’s Medium (DMEM), supple-

mented with 10% fetal bovine serum, 100 U/mL penicillin, and 

100 U/mL streptomycin (Thermo Fisher Scientific, Waltham, 
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MA, USA). The cells were incubated at 37°C in a 5% CO
2
, 95% 

air atmosphere. The fluorescent-labeled AF488-miR-199a-3p 

(sequences: 5′-ACAGUAGUCUGCACAUUGGUUA-3′, 
green color) and A546-labeled let-7a (sequences: 

5′-UGAGGUAGUAGGUUGUAUAGUU-3′, red color) 

were purchased from Qiagen NV (Venlo, the Netherlands). 

The unlabeled miR-199a-3p, let-7a, nonspecific miR mimic, 

and Life Technologies Lipofectamine® RNAiMAX were 

purchased from Thermo Fisher Scientific.

Determination of microRNA cellular 
uptake by dextran nanoparticles
Evaluation of the cellular uptake of miR was based on a 

previously described procedure.35 In brief, osteosarcoma 

cell lines U-2OS and KHOS were seeded at density of 1×105 

cells/well in 24-well plates (three wells per cell line). After 

24 hours’ incubation, 100 nM AF488-miR-199a-3p, or A546-

let-7a encapsulated in dextran-based nanoparticles or  

transfected with Lipofectamine® RNAiMAX (Invitrogen); or 

100 nM AF488-miR-199a-3p or A546-let-7a alone without 

nanoparticles were added into each well of cultured U-2OS 

and KHOS cell plate.

The efficiency of cellular uptake was examined at 2, 4, 

and 24 hours post-transfection. To determine the subcellular 

distributions of miR encapsulated in dextran-based nano-

particles, U-2OS cells transfected with 100 nM A546-let-7a 

encapsulated in dextran-based nanoparticles were visualized 

24 hours post-transfection under a Nikon Eclipse Ti-U fluo-

rescence microscope (Nikon Instruments, Inc., Melville, NY, 

USA) equipped with a SPOT RT™ digital camera (Diagnos-

tic Instruments, Inc., Sterling Heights, MI, USA). Just prior to 

microscopy, the cells were incubated with 1 μg/mL Hoechst 

33342 (Thermo Fisher Scientific) for 1 minute for nuclear 

counterstaining. Then, the cells were washed with PBS and 

visualized under microscope. Fluorescence intensity and 

cellular localization was analyzed in triplicate at different 

fields of view randomly.

MicroRNA real-time polymerase chain 
reaction assay
Osteosarcoma U-2OS cells were transfected with 100 nM of 

miR-199a-3p or let-7a encapsulated in dextran-based nano-

particles, or tranfected with Lipofectamine® RNAiMAX, or 

miR-199a-3p, or let-7a alone. The total RNA (including miRs) 

was extracted using an miRNANeasy Mini Kit (Qiagen NV) 

by following the manufacturer’s instructions 48 hours post-

transfection. The concentration of RNA was evaluated using a 

Beckman DU-640 spectrophotometer (Beckman Instruments, 

Inc., Fullerton, CA, USA). The quality of RNA was determined 

by 1% formaldehyde-agarose gel electrophoresis. An Applied 

Biosystems® TaqMan® MicroRNA Reverse Transcription Kit 

(Thermo Fisher Scientific) was used for quantification of miR 

expression. Complementary DNA reverse transcription was 

performed from total miR samples using specific miR primers 

of miR-199a-3p or let-7a from the TaqMan MicroRNA Assay 

Kits. Quantitative real-time polymerase chain reaction (PCR) 

was performed on an Applied Biosystems StepOne™ Real-

Time PCR System (Thermo Fisher Scientific) for 40 cycles 

(of 95°C for 15 seconds, 60°C for 15 seconds, and 72°C for  

30 seconds). Applied Biosystems RNU48 miR (Thermo 

Fisher Scientific) was used as endogenous control of miR 

expression. Untreated cells were used as reference samples. 

The relative gene-expression levels were then normalized by 

RNU48 and calculated using the Comparative CT (2^−ΔΔCt) 

method. The relative gene-expression levels were log10 

transformed prior to analysis. All experiments were carried 

out in triplicate.

Western blot analysis
Osteosarcoma U-2OS and KHOS cells were transfected with 

100 nM of miR-199a-3p encapsulated in dextran-based nano-

particles or transfected with Lipofectamine® RNAiMAX; or 

transfected with 100nM of Met siRNA (positive control) with 

Lipofectamine® RNAiMAX, nanoparticle or miR-199a-3p 

alone. Proteins were extracted from the transfected cells 

using 1× radioimmunoprecipitation assay (RIPA) lysis buf-

fer (Upstate Biotechnology, Lake Placid, NY, USA). The 

protein concentration was determined using protein assay 

reagents and standard protocols (Bio-Rad Laboratories, 

Hercules, CA, USA). Briefly, 25 μg of total protein was 

processed on Life Technologies NuPAGE® 4%–12% Bis-

Tris gel (Thermo Fisher Scientific) and transferred to a pure 

nitrocellulose membrane (Bio-Rad Laboratories, Hercules, 

CA). After transfer, the membranes were blocked with 

Odyssey® Blocking Buffer (LI-COR Biosciences, Lincoln, 

NE, USA), and then incubated in primary antibodies buf-

fer (primary antibodies, Odyssey Blocking Buffer, 0.1% 

Tween® 20) overnight at 4°C. Three primary antibodies, 

insulin-like growth factor 1 receptor (IGF-1R), mammalian 

target of rapamycin (mTOR), and Met were purchased 

from Cell Signaling Technology, Inc. (Beverly, MA, 

USA). The following day, membranes were washed four 

times for 5 minutes in Tris-buffered saline and Tween 20  

(TBST). Subsequently, membranes were incubated  

in secondary antibodies IRDye® 680LT Goat Anti-Mouse 

lgG or IRDye 680LT Goat Anti-Rabbit lgG (LI-COR 
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Biosciences) plus Odyssey Blocking Buffer and 0.1% 

Tween 20 at 1:20,000 dilution for 1 hour. Finally, the mem-

branes were scanned on an Odyssey CLx imaging system, 

model:Ody-3086 (LI-COR Inc., Lincoln, NE).

Cell proliferation assay
The effects of overexpression of miR delivered by dextran-

based nanoparticles on osteosarcoma cell proliferation were 

determined by 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltet-

razolium bromide (MTT) assay. The cells were seeded at a 

density of 2,000 cells/well in 96-well culture plates and incu-

bated for 24 hours at 37°C prior to transfection. The follow-

ing day, cells were transfected with miR-199a-3p or let-7a 

encapsulated in dextran-based nanoparticles, or transfected 

with miR-199a-3p or let-7a Lipofectamine® RNAiMAX. 

After 96  hours, 20 mL of MTT solution (5 mg/mL  

in PBS) was added to each well. Samples were further 

incubated for 4 hours. The resulting formazan product 

was dissolved with HCL-isopropanol and the absorbance 

was read on a SpectraMax® microplate spectrophotom-

eter (Molecular Devices, LLC, Sunnyvale, CA, USA) at 

a wavelength of 490 nm. Experiments were carried out 

in triplicates. Cell growth curves were fitted with use of 

GraphPad PRISM4 software (GraphPad Software, Inc., 

La Jolla, CA).

Statistical analysis
Student’s t-test was used to compare the differences between 

groups. Results are given as mean ± standard deviation and 

results with P0.05 are considered statistically significant.

Results
Characterization of dextran nanoparticles 
encapsulated with microRNA
We previously developed a polymeric self-assembling 

nanoparticle system based on a functionalized dextran 

macrostructure to stably encapsulate siRNA molecules. 

In the current study, we used a similar method to encap-

sulate miRs. The selected miRs were incubated with the 

lipid-modified dextran (dextran-hexyl amine) derivative in 

deionized water at room temperature to form nanoparticles 

by self-assembly. Further, a thiolated-dextran derivative 

and a PEGylated-dextran
 
derivative were sequentially 

mixed with the miRs containing lipid-modified dextran to 

form intramolecular disulfide cross-linking of the dextran 

hydrogel network with protruding PEG chains to stabilize 

the individual nanoparticles. The method of sequential addi-

tion helped in the formation of stable nanoparticles with 

good miR entrapment.

The mean Z-average particle size (nm) of the miR-199a- 

3p-loaded nanoparticles was 351.6±2.5 nm (Figure 1A), as 

25
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Figure 1 Characterization of microRNA encapsulated dextran nanoparticles.
Notes: (A) Z -average particles size (nm) and (B) apparent zeta potentials (mV) was determined by dynamic light scattering (Malvern Instuments Inc., Westborough, MA) 
and (C) transmission electron microscopy of miR-199q-3p-loaded dextran nanoparticles was recorded using a JEM-1000 electron microscope ( JEOL Ltd, Tokyo, Japan).
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determined by dynamic light scattering measurement, and 

the zeta potential was -25.3±7.47 mV (Figure 1B). The size 

of miR-199a-3p-loaded dextran nanoparticles was also char-

acterized and confirmed by transmission electron micrograph 

(Figure 1C). The miR particles were stable at room tempera-

ture and there was no significant change in particle size or 

zeta potential from storage (for up to 1 week at 4°C) in PBS. 

In addition the miR-loaded nanoparticels were amenable to 

lyophilization and stored at 4°C for prolonged periods.

Cellular uptake of microRNAs transfected 
with dextran-based nanoparticles
To assess the transfection efficacy of miR-loaded dextran 

nanoparticles on osteosarcoma cells, the cellular uptake of 

fluorescently labeled miR was assessed using a fluorescence 

microscope. Cells transfected with fluorescently labeled 

(AF488)-miR-199a-3p or (A546)-let-7a mixed with Lipo-

fectamine RNAiMAX were used as positive controls, and 

cells treated with AF488-miR-199a-3p or A546-let-7a alone 

were used as negative controls.

The results demonstrated that the dextran nanoparticles 

could efficiently transfect AF488-miR-199a-3p into U-2OS 

cells after 2 hours’ incubation, and the fluorescence signal 

increased with increasing duration of incubation time 

(Figure 2A–C). Interestingly, in comparison with miR trans-

fected using the commercial transfection agent (Lipofectamine; 

Figure 2D–F), dextran-based nanoparticles did not exhibit any 

apparent toxicity to the tumor cells and could promote miRs’ 

transfection into cells for longer duration of time. Similar 

results were observed for U-2OS cells transfected with A546-

let-7a miRs loaded in dextran nanoparticles (Figure S1).

In addition, subcellular distributions of A546-let-7a in 

dextran-based nanoparticle-transfected cells were also ana-

lyzed under fluorescence microscope. The results showed 

clear cytoplasmic distribution of fluorescently labeled A546-

let-7a miR. Similar to the observation with cells treated 

with miR-199a-3p loaded in dextran nanoparticles, cells 

transfected with dextran nanoparticles encapsulated with 

A546-let-7a miR also exhibited negligible toxicity com-

pared with cells transfected with miRs using Lipofectamine 

RNAiMAX (Figure S2).

These results demonstrate the advantages of using non-

toxic dextran-based nanoparticles for the efficient transfec-

tion of miRs into cancer cells.

2 h

AF488-miR199a-
3p/Nanoparticles

AF488-miR199a-
3p/Lipofectamine

4 h

24 h

miR199a-3p alone

A D G

C F I

B E H

Figure 2 Intracellular trafficking of microRNA encapsulated dextran nanoparticles in osteosarcoma cells.
Notes: Cellular uptake of fluorescently labeled AF488-miR-199a-3p encapsulated with dextran nanoparticles. U-2OS cells were transfected with AF488-miR199a-3p (green)  
encapsulated with dextran nanoparticle (A–C), with LipofectamineTM RNAiMax (D–F), or AF488-miR199a-3p alone (G–I). The cells were visualized by florescence 
microscopy at 2, 4, and 24 hours after transfection.

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2015:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2919

Nanoparticle delivery of miR in osteosarcoma

MicroRNA expression in dextran 
nanoparticle-transfected cells
After fluorescence microscopy showed that dextran nano-

particles are able to deliver fluorescently labeled miR into 

osteosarcoma cells, the expression of miR was further 

determined by real-time PCR with total RNA isolated from 

the osteosarcoma cells, as described in the “Materials and 

methods” section. The results indicate that miR-199a-3p 

(Figure 3A) and let-7a miR (Figure 3B) were significantly 

expressed in dextran nanoparticle-transfected osteosarcoma 

cells. The expression level of let-7a in U-2OS cells was 

also evaluated and confirmed at 24, 48, and 72 hours post-

transfection (Figure 3C).

MicroRNA-targeted gene protein 
expression in dextran nanoparticle-
transfected cells
It has been shown that mTOR and Met are direct targets of 

miR-199a-3p.11,13–15 To assess the functional role of miR 

delivered by dextran nanoparticles, the expression of target 

gene proteins in miR-199a-3p nanoparticle-transfected cells 

was measured using Western blotting. Relative mTOR and 

Met expression levels from the Western blot were analyzed 

by densitometry. The results show that nanoparticles encap-

sulated with miR-199a-3p can inhibit the expression of 

mTOR and Met in both U-2OS (Figure 4A and C) and KHOS 

(Figure 4B and D) osteosarcoma cell lines. As a control, Met 

siRNA can also decrease the expression of Met and have no 

effect on the expression of mTOR in both U-2OS and KHOS 

cell lines, as expected (Figure 4A–D).

Effect on osteosarcoma cell growth 
and proliferation in dextran nanoparticle-
transfected cells
To determine whether transfection of dextran nanoparticles 

encapsulated miR-199a-3p or let-7a is able to alter the rate 

of cell proliferation and growth, osteosarcoma U-2OS and 

KHOS cells were transfected with miR-199a-3p or let-7a 

encapsulated with dextran-based nanoparticles, or trans-

fected with Lipofectamine® RNAiMAX. Non-specific miR 

mimic loaded in dextran based nanoparticles or mixed with 

Lipofectamine® RNAiMAX were used as controls. MTT 

assay showed that the delivery of miR-199a-3p (Figure 5A 

and C) or let-7a (Figure 5B and D) using dextran nano-

particles significantly decreased cell proliferation in both 

U-2OS (Figure 5A and B) and KHOS (Figure 5C and D) 

osteosarcoma cell lines. Furthermore, the inhibition of cell 

growth was dependent on the dose of miR, with the 100 nm 

concentration of miR exhibiting more potent inhibition than 

the 50 nm dose (Figure 5).

Discussion
miRs have been identified as playing a pivotal role in the 

regulation of key genes implicated in cancer maintenance, 

progression, and drug resistance.36 More recently, a number 

of research studies, both laboratory and clinic based, have 
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Figure 4 Protein expression levels in osteosarcoma cells transfected with microRNAs delivered using dextran nanoparticles.
Notes: Protein expression in miR-199a-3p dextran nanoparticle transfected osteosarcoma cells. U-2OS (A) and KHOS (B) cells were transfected with miR-199a-3p 
encapsulated with dextran-based nanoparticles, or transfected with Lipofectamine® RNAiMAX. The expression of mTOR and Met were determined by Western blots, and 
the data were analyzed by densitometry (C and D).
Abbreviation: β-actin, beta-actin.
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reported on the implications of miRs in osteosarcoma.7,8,10,11 

Several research groups have shown that the expressions of 

miRs in osteosarcoma cells and in normal cells are signifi-

cantly different. Although these studies suggest that miRs 

have important roles in the development of osteosarcoma, 

the potential development of miRs as a therapeutic agent 

is largely unexplored. In this study, we demonstrated the 

exogenous transfection of miR-199a-3p into osteosarcoma 

cells using a dextran nanoparticle-based delivery system. 

The miR-199a-3p-encapsulated nanoparticles showed high 

miR transfection efficiency, significantly increased miR-

199a-3p expression, and decreased mTOR and Met expres-

sion, resulting in a suppression effect on osteosarcoma cell 

proliferation and growth. The dextran nanoparticles also 

showed good delivery efficiency for let-7a, another tumor-

suppressing miR.

Our group and others have previously shown that 

dextran-based nanoparticles are able to efficiently deliver 

both the chemotherapy drug doxorubicin as well as siRNA 

to osteosarcoma cells with no apparent toxicity.31–33,37 We 

also previously found that dextran-based nanoparticles 

can efficiently transport siRNA into tumor cells.32,33 More 

recently, cationized dextran nanoparticles encapsulated 

with C-X-C chemokine receptor type 4 (CXCR4) siRNA 

have been shown to significantly downregulate CXCR4 

expression in colorectal cancer, both in vitro and in vivo.38 

CXCR4 is highly overexpressed in various types of cancers. 

A dextran-based nanosystem containing epidermal growth 

factor receptor siRNA has also been successfully developed.39 

Furthermore, folates have been introduced as an active tumor-

targeting moiety to the hydroxyl groups of dextran to form 

dextran-siRNA conjugates. The data show that these dextran-

based nanosystems are very efficiently targeted to cancer cells 

and induce sequence-specific gene silencing.40

Our current study demonstrates – for the first time, as 

far as we are aware – that dextran nanoparticles are also 

capable of delivering miRs- with an efficiency similar to 

delivering siRNAs to cancer cells. By using two different 
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Figure 5 Osteosarcoma cell growth inhibition using microRNA encapsulated dextran nanoparticles.
Notes: Effect on osteosarcoma cell growth and proliferation in dextran nanoparticle transfected cells. U-2OS (A and B) and KHOS (C and D) cells were transfected with 
miR-199a-3p (A and C) or let-7a (B and D) encapsulated with dextran-based nanoparticles, or transfected with Lipofectamine® RNAiMAX. MTT assay was performed by 
measuring the absorbance at a wavelength of 490 nm. Data are represented as means ± SD and analyzed using Student’s t-test. *indicates P0.05.
Abbreviation: MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.
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fluorescently labeled miRs, AF488-miR-199a-3p (green) 

and A546-let-7a (red) encapsulated in dextran nanopar-

ticles, we tracked the intracellular uptake of miRs using 

fluorescence microscopy. Both AF488-miR-199a-3p 

and A546-let-7a could be visualized in the cytoplasm of 

osteosarcoma cells after transfection. miR-199a-3p and 

let-7a miRs were significantly expressed in the different 

dextran nanoparticle-transfected osteosarcoma cells, as 

demonstrated by real-time PCR.

More studies are needed to test the delivery efficiency 

of miR in vivo using these dextran nanoparticles. These 

studies will represent the first step toward the advancement 

of miR- and nanotechnology-based therapy strategies in 

combating osteosarcoma. In addition, the ability of dextran 

nanoparticles to transfect both miRs and siRNAs, as well 

as chemotherapy drugs, into cancer cells may represent a 

favorable multi-pronged approach to treating virulent dis-

eases such as multidrug-resistant tumors.

Conclusion
This study demonstrates the utility of using dextran-based 

nanoparticles to deliver miRs in cancer cells. Dextran-

based nanoparticles portend to be a promising platform to 

overcome the current limitations of miR delivery for the 

treatment of human cancers. However, the translation of 

these nanosystems for clinical use can be determined only 

after thorough in vivo evaluation in appropriate animal 

tumor models. The feasibility of such studies is underway 

in our laboratory.
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Supplementary materials

Figure S1 Cellular uptake of fluorescently labeled A546-let-7a encapsulated with dextran nanoparticles. U-2OS cells were transfected with 100 nM A546-let-7a (red) 
encapsulated with (A–C) dextran nanoparticles, (D–F) 100 nM A546-let-7a mixed with Life Technologies Lipofectamine® RNAiMAX (Thermo Fisher Scientific, Waltham, 
MA, USA), or (G–I) 100 nM A546-let-7a alone. The cells were washed with phosphate-buffered saline and visualized by fluorescence microscopy at 2, 4, and 24 hours after 
transfection.

Figure S2 (Continued)
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Figure S2 Subcellular distributions of fluorescently labeled A546-let-7a. U-2OS cells were transfected with (A–C) dextran-based nanoparticles or (D–F) Life Technologies 
Lipofectamine® RNAiMAX (Thermo Fisher Scientific, Waltham, MA, USA). Twenty-four hours after transfection, the cells were incubated with 1 μg/mL Hoechst 33342 for 
1 minute for nuclear counterstaining. Then, the cells were washed with phosphate-buffered saline and visualized under fluorescence microscope.
Abbreviation: miR, microRNA.
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