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ABSTRACT

High-throughput chromatin immunoprecipitation
has become the method of choice for identifying
genomic regions bound by a protein. Such regions
are then investigated for overrepresented sequence
motifs, the assumption being that they must corres-
pond to the binding specificity of the profiled
protein. However this approach often fails: many
bound regions do not contain the ‘expected’ motif.
This is because binding DNA directly at its recogni-
tion site is not the only way the protein can cause
the region to immunoprecipitate. Its binding
specificity can change through association with
different co-factors, it can bind DNA indirectly,
through intermediaries, or even enforce its function
through long-range chromosomal interactions.
Conventional motif discovery methods, though
largely capable of identifying overrepresented
motifs from bound regions, lack the ability to char-
acterize such diverse modes of protein–DNA binding
and binding specificities. We present a novel
Bayesian method that identifies distinct protein–
DNA binding mechanisms without relying on any
motif database. The method successfully identifies
co-factors of proteins that do not bind DNA directly,
such as mediator and p300. It also predicts
literature-supported enhancer–promoter inter-
actions. Even for well-studied direct-binding pro-
teins, this method provides compelling evidence
for previously uncharacterized dependencies
within positions of binding sites, long-range
chromosomal interactions and dimerization.

INTRODUCTION

Transcriptional regulation is largely governed by inter-
actions between proteins called transcription factors

(TFs) and DNA. A TF–DNA interaction can either be
direct or indirect through contact with other proteins.
In both situations, the protein–DNA complex usually
plays a role in regulating the transcription of a target
gene. Identifying protein–DNA binding events on a
genome-wide scale is therefore crucial for understanding
transcriptional regulation.
TF binding sites are commonly identified in vivo

through chromatin immunoprecipitation (ChIP) targeting
the protein of interest (POI), followed by sequencing
(ChIP-Seq) (1) or microarray hybridization (ChIP-chip)
(2). A typical ChIP-Seq or ChIP-chip experiment reports
regions of length between 50 and 2000 bp, with the reso-
lution depending on the sequencing depth, or the design of
the microarray, respectively. The actual TF binding site,
however, is far shorter, usually <20 bp (3). Therefore, to
identify the precise location of the binding site, the bound
regions are fed to de novo motif discovery programs such
as MEME (4) or Weeder (5). These tools attempt to find
statistically enriched sequence motifs and their locations
within the bound regions. However, they suffer from two
limitations when applied to ChIP data from higher eu-
karyotes. First, although the total number of genomic
regions may be in thousands, only the top 500 or so
regions are typically analyzed to find enriched motifs. As
a result, the final motif is indicative of only the
high-affinity binding sites and often explains only a
fraction of all the bound sequences (6). Although compu-
tational constraint is one reason for limiting the number of
analyzed regions, the other reason is that increasing the
number often does not yield a ‘significantly enriched’
motif. Consider the following scenario: the POI binds
with higher affinity to a large, possibly palindromic site
through homodimerization, but with a lower affinity to a
half-site (Figure 1A and B). In this case, the palindromic
site will be enriched in the top few sequences, but will not
explain the rest of the sequences. To further complicate
matters, the distance between the half-sites may be
variable, with each variation having an effect on binding
affinity. Figure 1C shows an instance when the POI forms
a heterodimer, which could result in yet another binding
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specificity. Although a traditional motif discovery method
may report the half-site in the full set, these variations in
the binding modes would be missed. Leucine zipper
proteins are classic examples of this kind: they can form
homodimers and/or dimerize specifically with other
leucine zipper proteins resulting in dimers with different
DNA-binding specificities and affinities (7).
The second limitation pertains to a POI that is not a

direct DNA-binder and has more than one distinct
DNA-binding co-factor (Figure 1D and E). In such situ-
ations, the bound regions are even less likely to be ex-
plained by a single motif. For example, p300, a general
activator, binds to several different DNA-binding proteins
(8), giving rise to structures similar to the complex in
Figure 1E. Assuming that the complex is fairly stable,
all three regions will be reported when any of the four
constituent proteins are profiled. Although most motif dis-
covery methods have the ability to report multiple motifs,
they provide little indication as to how the motifs together
explain the full set. Moreover, many of these methods
report motifs that are highly similar to each other in
content, built from only slightly different subsets of the
bound sequences. As a consequence, the decision as to
which motifs are meaningful is left for the biologist to
make, either through prior expert knowledge or through
some threshold for the significance metric(s) accompany-
ing the reported motifs.
The above limitations stem from the fact that trad-

itional motif discovery methods formulate the problem
as finding one or more motifs each of which individually
explains a majority of the bound sequences. If a subset of
POI molecules forms a complex with a DNA-binding
protein (Figure 1D) and this subset is relatively small,
the motif of the DNA-binding protein will be missed

because in the full set of regions bound by the POI, this
may not appear to be significantly enriched. Even the
faster and specialized motif discovery tools designed to
work on large ChIP-Seq datasets (9–11) use the same
basic principle of identifying motifs.

In this article, we formulate the problem differently: the
goal is to partition the bound sequences such that each
partition contains an instance of a motif enriched in that
partition. Instead of assuming that a single motif is re-
sponsible for the immunoprecipitation of all the regions,
we assume that each region is immunoprecipitated due to
the presence of one of kmotifs. The output therefore, for a
given k, is k de novo motifs and k disjoint subsets of
the original bound set. For example, in the case of the
multi-TF complex in Figure 1E, assuming there are
several such complexes in the nucleus and k is set to 3,
this method will report three different motifs, characteriz-
ing the three DNA-binding proteins interacting with the
POI, along with the three corresponding partitions of
the bound sequences. The appropriate value of k is
determined by applying Bayesian model selection. Since
this method attempts to identify the various modes by
which the POI binds DNA regions causing them to
immunoprecipitate, we call this method MuMoD:
Multi-Mode Detection.

We apply MuMoD to several ChIP-Seq datasets
reported by different laboratories, targeting a wide range
of proteins. In the case of p300, we identify its potential
partners in heart cells. Similarly, for the mediator
complex, which is also a transcriptional co-activator, we
identify co-factors in two different cell types. Further-
more, the identified modes suggest that the mediator
complex connects distant enhancers with promoters.
Comparison with MEME and Weeder, two conventional
motif discovery programs, and with Chipmunk (9) and
PeakMotifs (11), programs specifically designed for large
ChIP datasets, indicates that MuMoD indeed benefits
from this unique approach to motif discovery. Even in
the case of proteins that directly bind DNA, MuMoD
provides several novel insights: the literature consensus
is not necessarily enriched in the very top ChIP regions,
POIs can cause immunoprecipitation of other sequences
that are bound indirectly, Gata3 probably prefers to bind
as a homodimer with an affinity dependent on the gap
between the two half-sites, and CTCF-binding sites
contain dependencies. Notably, MuMoD requires no add-
itional information such as motif libraries or prior know-
ledge of whether the POI is a direct binder.

MATERIALS AND METHODS

Model description

Assume the ChIP experiment reports n genomic regions
X1, . . . ,Xn for some protein. Each Xi ¼ fXi, 1, . . . ,Xi,Li

g is
a DNA sequence of length Li, where each Xi, u 2 {A, C, G,
T}. This set of sequences is the only input to MuMoD. We
now develop a model class M with a vector of model
parameters h to explain the data X. Vector Z of size n
denotes the starting location of the binding site in each
sequence: Zi ¼ j if there is a binding site starting at

Direct DNA-binding

Indirect DNA-binding

monomer binding homodimer binding heterodimer binding

piggyback binding

multi-TF binding

POI

POI

POI POIPOI

POI

A B C
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Figure 1. Different modes of protein–DNA binding. The profiled
protein is shown as an oval and co-factors as polygons. A direct
DNA-binding protein can recognize different sites based on its
partner: (A) a half-site as a monomer, (B) a symmetric motif as a
homodimer, and (C) two different half-sites as a heterodimer. An
indirect DNA-binding protein can immunoprecipitate sequences
containing the consensus of (D) one or (E) several co-factors. See
Farnham (6) for a discussion on why regions arising from ChIP
experiments may not contain a match to the consensus motif.
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location j in sequence Xi. To allow for noise in ChIP ex-
periments, we model the possibility of Xi having no
binding site, which we denote as Zi ¼ Li+1. This also
accounts for regions that contain binding modes with
too many variations to be modeled comprehensively
with a motif. This assumption is equivalent to the zero
or one occurrence per sequence (ZOOPS) model of
MEME (4) or PRIORITY (12). Alternatively, one occur-
rence per sequence (OOPS) model can be followed by not
allowing Zi to lie outside the sequence.

Model Mw
m 2 M assumes there are m different modes in

which the POI can bind the sequences: each sequence is
explained by the presence of a binding site matching one
of m different motifs. The vector w represents the widths
of the m motifs, which are modeled with m individual
position-specific scoring matrices (PSSMs): /1, . . . , /m.
Specifically, motif k with width wk is described by /k,
where �ka, b is the probability of finding nucleotide b at
location a for b 2 {A, C, G, T} and 1 � a � wk. We use
/0, a second-order Markov model built from the input
sequences, as the background model. To accommodate
the vast heterogeneity in eukaryotic sequences, each
sequence has its own background model built from its
3-mers. Indicator vector I denotes the type of binding
site present in each sequence: Ii 2 f1, . . . ,mg. We use c
to represent the multinomial parameters of I: �k represents
the probability of the mode being k. Therefore, the par-
ameter vector hwm for the model Mw

m contains /1, ...,m, Z, c
and I.

We can compute the likelihood of a sequence Xi as:

PðXij/
0, hwm,Mw

mÞ ¼PðXi, 1, . . . ,Xi,Zi�1j/
0
Þ

�
YwIi

a¼1

�Iia,Xi,Zi+a�1
�PðXi,Zi+wIi

, . . . ,Xi,Li
j/0
Þ:

ð1Þ

The likelihood of the full data is

PðXj/0, hwm,Mw
mÞ ¼

Yn
i¼1

PðXij/
0, hwm,Mw

mÞ: ð2Þ

We need to find optimal parameters for model

Mw
m 2 M

that maximize the posterior distribution:

bh w
m ¼ argmax

hwm

PðhwmjX, /0,Mw
mÞ

¼ argmax
hwm

PðXj�0, hwm,Mw
mÞ � PðhwmjM

w
mÞ:

ð3Þ

Model learning

Gibbs sampling is a popular technique for parameter
estimation: it approximates sampling from the posterior
distribution by drawing samples from individual condi-
tional distributions. We use collapsed Gibbs sampling
(13) for faster convergence, where /1, ..., m and c are
integrated out from the conditional distributions of Z
and I. Furthermore, rather than sampling the full
vectors Z and I, we iteratively sample Zi and Ii for each
sequence Xi.

Assuming a Dirichlet prior over all /1, ..., m, given the
current values of parameters in hwm except Zi, the expres-
sion for sampling a value j for Zi reduces to:

PðZi ¼ jÞ � PðXi, 1, . . . ,Xi, j�1j/
0
Þ �

YwIi

a¼1

/
Ii
a,Xi, j+a�1

� PðXi, j+wIi
, . . . ,Xi,Li

j/0
Þ,

ð4Þ

where /Ii is calculated from the nucleotide counts of the
sites in all sequences except Xi having mode Ii. The prior
probability over positions PðZiÞ can be uniform, as used
here, or user-defined (‘Discussion’ section).
Similarly, assuming a Dirichlet prior over c, if Zi < Li,

that is, the sequence Xi contains a binding site of some
mode, the expression for sampling the value of k for mode
Ii reduces to:

�k � PðXi, 1, . . . ,Xi,Zi�1j/
0
Þ �

Ywk

a¼1

/k
a,Xi,Zi+a�1

� PðXi,Zi+wk
, . . . ,Xi,Li

j/0
Þ:

ð5Þ

Here /k is calculated from the nucleotide counts of the
sites in all sequences including Xi which have mode k,
while c is calculated from the counts of all m types of
modes in all sequences, except Xi. In case Zi ¼ Li+1,
that is, the sequence Xi does not contain a binding site
of any kind, this sampling step is omitted.

Model selection

Choosing the optimal number of modes m is equivalent to
selecting the optimal model Mw

m 2 M. We start with
learning all models Mw

1 to Mw
mmax

for a predetermined
maximum number of modes mmax and w drawn from a
set of widths. We can compute the probability of a
model with m modes with w widths as

PðMw
mjX,MÞ ¼

PðXjMw
m,MÞPðMw

mjMÞ

PðXjMÞ
: ð6Þ

We assume an exponential prior on the number of free
parameters in the model:

PðMw
mjMÞ / expð��jMw

mjÞ, ð7Þ

where � is the hyperparameter that controls the penalty
given to complex models. The number of free parameters
inMw

m is the number of free parameters in the PSSMs used
to represent the motifs:

jMw
mj ¼ 3

Xm
k¼1

wk: ð8Þ

The first term in Equation (6) can be written as:

PðXjMw
m,MÞ ¼

Z
hwm

PðXjhwm,Mw
mÞPðh

w
mjM

w
mÞdh

w
m: ð9Þ

We approximate the integral with the mode of the dis-
tribution, which is achieved at bhwm in Equation (3),
computed using Gibbs sampling. For selecting the best
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Mw
m, the normalization term in Equation (6), which is the

same for all models, is ignored.
For the datasets investigated here, we built models for

m ¼ 1, . . . , 6 and widths were varied between 8 and 16.
The optimal number of modes depends on the value of �,
with a value >10 resulting in fewer and less informative
motifs, while a value <3 leading to overfitting (Figure 2
and Supplementary Table S1). We obtained reasonable
modes with a value of 5, which we use throughout this
work. It should be noted, however, that datasets/organ-
isms not explored here may warrant a different value of �
(‘Discussion’ section). The prior probability of a sequence
not containing a binding site, i.e. PðZi ¼ Li+1Þ was set to
0.1. MuMoD is written in C and is available upon request.

Datasets and comparison with other programs

A total of 21 murine datasets were compiled from ChIP
experiments conducted at three laboratories:

(1) HL1 cardiomyocyte cell line (14): Gata4, Mef2, p300,
Nkx2-5, Srf and Tbx5.

(2) Murine embryonic stem (ES) cells and murine em-
bryonic fibroblasts (MEFs) (15): Subunits Med1 and
Med12 of the mediator complex in ES cells and
MEFs, subunit Smc1a of the cohesin complex in
ES cells.

(3) Ten types of T-cells (16): Gata3.

Processed output after application of peak-calling
programs was used directly as reported by the respective
laboratories. These programs also report a ChIP enrich-
ment score or peak height. The repeats in the sequences
were masked and sequences that contained at least 100
unmasked nucleotides were retained for analysis. The
top 5000 sequences based on ChIP enrichment scores
were used for all sets except those that reported fewer
total sites, in which case all sequences were used. The
only exception was the set of sequences that were bound
by both cohesin and mediator in ES cells, which contained
11 865 sequences.
Conventional motif discovery programs MEME,

Weeder, PeakMotifs and Chipmunk were applied to the
same datasets (Supplementary Figures S1–S3). All were
asked to report top five motifs. MEME was run with
motif widths 8–16, ZOOPS model, E-value <10. Weeder
was run with its ‘large’ setting that allows motifs up to
width 12 to be discovered. PeakMotifs was run with
default parameter settings, and results reported here are
using their web-based oligo-analysis tool. Chipmunk was
run with its ‘ChIPHorde’ option that allows for multiple
motifs to be discovered, with the filter criterion.
Web-based tools STAMP (17) and TOMTOM (18) were
used to make motif comparisons. Weblogo (19) was used
to create logos from identified motifs.

RESULTS

Identifying different modes of TF–DNA binding

MuMoD models the problem as that of identifying the
distinct modes by which the POI binds DNA, causing a

set of n sequences to be reported by the ChIP experiment.
Here, a mode is defined as the motif and the sequences
contributing to it. A motif is represented with the
commonly used PSSM that records the probability of
each nucleotide in every position of the binding site (20).
For a predetermined number of modes k, the sequences
are partitioned into k sets and the motif most enriched
within each set is simultaneously identified (Figure 2).
This is done using an iterative algorithm, based on
Gibbs sampling (‘Materials and Methods’ section).
When k=1, this is similar to the regular motif discovery
problem, where the goal is to find one motif most enriched
in the whole set. Even in conventional programs that
report multiple motifs, k is implicitly set to 1: additional
motifs are identified by masking occurrences of previously
found motifs or by exploring different motif lengths. The
other extreme case in MuMoD is when k= n, i.e. n dif-
ferent motifs are identified, each derived from exactly one
sequence. In addition, a bound sequence is allowed to not
contribute to any mode. This accounts for experimental
errors and the possibility of the POI binding DNA in a
manner that is supported by few instances.

Figure 2 shows models learned from the p300 dataset in
the murine HL1 cardiomyocyte cell line (14) containing
1282 sequences. This POI is a transcriptional co-activator
that does not bind DNA directly, but instead serves as an
adaptor protein facilitating protein–protein interaction
and long-range chromosomal (enhancer–promoter)
interactions (21), resembling the multi-TF complex in
Figure 1B. Looking for one mode results in a weak GAT
AA motif. Increasing the number of modes refines it, while
simultaneously introducing other motifs like CATTCC.
This motif closely resembles the binding specificity of
Tead1, also implicated in cardiac-related activity (22)
and shown to co-precipitate with p300 (14). However,
increasing the number of modes beyond a point can
cause overfitting (m modes case in Figure 2): the brown/
magenta motifs and blue/orange motifs are similar to
each other and can perhaps be replaced by one motif
each, if the number of sites that contribute to the individ-
ual motifs is small. In this case, only 37 sequences contrib-
ute to the blue motif in contrast to 362 for the orange
motif. Similarly, 45 sequences contribute to the magenta
motif when compared with 167 in the case of the
brown motif.

The final model selection step identifies the optimal
number of modes based on the number of sequences n,
the size of each partition and the contribution of the
motifs in explaining the dataset. Simply put, models
with highly similar motifs get penalized unless they explain
the dataset better than a merged motif. Mathematically,
the penalty is controlled by a single parameter �; decre-
asing it biases MuMoD to learn more binding modes. In
this specific p300 dataset, MuMoD reports three distinct
modes (output in Figure 2). While the first two motifs
closely resemble binding sites of the Gata family and of
Tead1, the core TGTCA of the third motif matches the
specificity of two three-amino-acid extension loop
(TALE) homeobox proteins Meis2 and TGIF, both of
which may act in competition (23). While both proteins
are known to interact with p300 (24,25), Meis2 has
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also been shown to be active in the heart (26). A total of
187/1282 sequences contain no motif, implying that these
sequences may be bound by p300 through many different
TFs, none yielding enough sequences to create a high-con-
fidence motif. Interestingly, these sequences are more
prevalent in the bottom third of the immunoprecipitated
sequences (Supplementary Figure S4) and have a signifi-
cantly lower ChIP enrichment score (P < 4:5� 10�9) (All
P-values for comparing quantities between two sets are
based on two-sample two-sided Wilcoxon rank sum tests,
unless otherwise indicated.) than the rest of the sequences.
These sequences could therefore be a product of noise: a
higher significance threshold during peak calling may elim-
inate these regions from the original set.

We compared motifs reported by MuMoD with the top
five motifs found by MEME, Weeder, PeakMotifs and
Chipmunk (‘Materials and Methods’ section). These
programs together report motifs for Tead1 and Meis2,
along with low-complexity variants of the same
(Supplementary Figure S1A). Interestingly, none of these
programs reports the Gata motif although 77% of the
sequences belonging to the Gata family mode identified
by MuMoD are indeed bound by Gata4 in the same cell
type (14) (hypergeometric P < 2:0� 10�14).

Looking for more than one mode helps recover known
TF binding specificity

In addition to p300, He et al. (14) have also profiled Tbx5,
Srf, Nkx2-5, Gata4 and Mef2 in the HL1 cell line. The
authors performed motif discovery using MEME and
Weeder on the top 500 sequences from each set. Here, in
order for the motif to not be biased toward the strongly
bound sites, we used the top 5000 sequences. The same set
was also input to the aforementioned conventional
programs.
In the case of Tbx5, the authors report that most of the

sequences bound by Tbx5 are GC-rich and the removal of
these GC-rich sequences results in a motif known to be
bound by Tbx5. Since we do not see a rationale for
removing these sequences, the full set was investigated
here. The optimal number of modes is reported to be 4
(Figure 3A). Motifs corresponding to modes 1 and 3 are
highly GC-rich, while the motif corresponding to the
second largest mode resembles the binding specificity of
Tbx5 (Figure 3D). Interestingly, sequences that are part of
this mode are more likely to be distant from the transcrip-
tion start site (TSS) than other sequences bound by Tbx5
(P < 8:3� 10�24, boxplot in Figure 3A). This suggests
that Tbx5 binds directly to enhancers, which act in a

Figure 2. Identifying different modes of protein–DNA binding. A total of m models having 1 through m modes are learned from the input data.
DNA sequences are shown in gray, the indicator vector I on the left of each sequence marks the mode to which it contributes. The motif logos
displayed at the bottom correspond to the p300-bound sequences in HL1 cardiomyocytes (14). In the final step, the method reports three optimal
partitions, which can be compared with motifs from literature.
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distance-independent manner, but the resulting protein–
DNA complex is close to the TSS causing TSS-proximal
regions to be immunoprecipitated during ChIP. TSS-
proximal regions are primarily GC-rich, which could
explain why the conventional motif discovery methods
used in the original study (14) could identify the Tbx5
motif only after their removal from the dataset. Motif 4
matches the consensus of the sterol regulatory element

binding protein (Srebp1) (Figure 3D), which is known to
be vital for heart function (27,28). None of the conven-
tional motif discovery programs identifies the Tbx5 motif
in these top 5000 sequences (Supplementary Figure S1B).
Interestingly, the mode matching literature consensus is
not especially enriched in the top bound sequences
(density plot in Figure 3A). The mode composed by the
largest number of sequences, mode 1, occurs uniformly

A

D

C

B

Figure 3. Modes in three HL1 ChIP-Seq datasets. (A) Four modes are identified in Tbx5-bound sequences: motif for mode 2 matches the literature
consensus. The distances to the closest TSS of the sequences in this mode (red boxplot) are significantly larger than sequences in other modes (blue
boxplot). The density plot at the bottom illustrates the presence of each mode across sequences sorted by decreasing ChIP enrichment score. (B) Five
modes are identified in Srf-bound sequences: motif for mode 3 matches literature consensus. The distances to the closest TSS of the sequences in this
mode (red boxplot) are significantly larger than sequences in other modes (blue boxplot). The same holds true also for mode 2. Other three modes are
enriched near the TSS. The density plot at the bottom shows that mode 3, which matches the Srf literature consensus, is more prevalent in the top
1000 sequences. (C) Two modes are identified in the Nkx2-5-bound sequences: motif for mode 2 matches literature consensus. The density plot
indicates that this mode is slightly more prevalent in the lower half of the sequences. (D) Literature motifs for Tbx5 (reproduced from 31), Srebp1
(32), Srf (33), Sp1 (34), Nkx2-5 (33) and NF-YA (34).
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throughout the set, and resembles the Sp1 motif, known to
be present in promoters (29,30).

In the case of Srf, we find five modes, of which the
motif for mode 3 matches the literature consensus of Srf
(Figure 3D). As in the case of Tbx5, this mode is more
likely to be present away from the TSS (P < 1:2� 10�36).
However, in contrast to Tbx5, as indicated by the density
plot, this mode is more prevalent in the top sequences and
has a higher ChIP enrichment score than sequences
contributing to other modes (P < 5:4� 10�9). This
explains why the Srf motif is found by other motif finders
when the top 500 sequences are considered (14). However,
none of the four methods used here finds the Srf motif in
the top 5000 sequences (Supplementary Figure S1C).
Furthermore, one of the modes (mode 5) resembles the
Srebp1 motif in this set as well. Motif for mode 4
matches the binding consensus of the nuclear factor Y,
alpha (Figure 3D) also known to bind Srf (35). The mode
composed of the largest number of sequences, mode 1,
resembles the motif for Sp1 here as well (Figure 3D).

In the case of Nkx2-5, we find only two modes in the
top 5000 sequences (Figure 3C). Motif for mode 2 matches
the literature motif (Figure 3D), but the ChIP peak height
of regions in this mode is lower than that of mode 1
(P < 10�3). All four conventional motif finders find
mode 1, possibly because it is present in a larger number
of sequences. Only Weeder additionally finds the literature
consensus, which is part of a 10-bp long, weak motif, built
from only 463 sites (Supplementary Figure S1D).

In the case of Gata4, all programs find the canonical GA
TAA motif (Supplementary Figure S1E). MuMoD finds a
second smaller mode GATTA, also known to be bound by
Gata4 (36). There is no significant difference in the peak
heights or distance from the TSS between the two modes.
In the case of Mef2, MuMoD finds four modes, the
second largest of which matches the known Mef2 consen-
sus (Supplementary Figure S1F). Interestingly, as in the

case of Tbx5 and Srf, sequences in this mode are more
variable in terms of distance from the closest TSS
(P < 9:4� 10�26, not shown), suggesting that this TF
also binds enhancers directly. Similar to the case of Srf,
the mode matching the literature consensus of Mef2 has a
significantly higher ChIP enrichment (P < 2:7� 10�12)
than other sequences. Among the conventional motif
finders, only MEME and PeakMotifs identify the Mef2
consensus.

Modes hint at Gata3 homodimerization in T-cells

Gata3 plays a crucial role during T-cell development and
differentiation (37). Wei et al. (16) profiled Gata3 binding
across 10 different types of T-cells: naive CD4+, Th1, Th2,
Th17, iTreg, nTreg, NKT, CD8+cells, CD4–CD8 double-
positive (DP) and CD3-negative CD4–CD8 double-
negative (DN) thymocytes. We applied MuMoD to each
of the 10 datasets. Not surprisingly, the WGATAA motif
came up in each dataset, a claim that can be made
only for Weeder among the conventional motif discovery
methods (Supplementary Figure S2A–J). In addition, two
related modes were highly prevalent: WGATAnnnATCW was
present in nine cell types and WGATAnnATCW was present
in four cell types (Figure 4). This suggests that Gata3 may
form a homodimer which binds DNA at a palindromic
site composed of two WGAT half-sites separated by three
or four nucleotides. Our results support an earlier conjec-
ture by Zhang et al. (38) based on gel shift assays stating
that Gata3 may bind DNA as a homodimer. However,
without additional experimental studies, we cannot
exclude the possibility of two Gata3 molecules binding
to the half-sites independently, in these cell types.
Interestingly, the A following the half-site WGAT is also

conserved in the two palindromic motifs. Since each motif
is composed of putative binding sites either in the forward
or the reverse strand, this result needs to be interpreted as:
at least one of A after the first half-site WGAT, or T before

Figure 4. Four modes in Gata3-DNA binding across 10 cell types. The optimal number of modes and the number of sequences in each Gata3 set are
shown in the first row of the table. The four motifs on the left are created by aligning sites contributing to similar modes across the different cell
types (Supplementary Figure S2A–J). The percentage of the sequences bound by Gata3 in each cell type contributing to the mode is shown in the
respective row. The last column indicates the average ChIP enrichment across all cell types for regions in each mode. The heights of all peaks
belonging to a mode in each dataset were standardized to remove individual experimental biases. The first palindromic mode has significantly taller
peaks (P < 3:7� 10�7) when compared with other modes.
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the second half-site ATCW is conserved. In contrast,
for the single Gata3 site, this A (or T on the opposite
strand) is almost always conserved. This suggests that
if Gata3 is indeed binding as a dimer, one A at position
5 in either half-site is sufficient to achieve binding in the
full site.
The ChIP enrichment is significantly higher for a palin-

dromic site with a gap of four (last column in Figure 4),
suggesting a preference for this homodimer–DNA
complex. The fourth highly occurring mode, which has
the lowest ChIP enrichment among the four modes, re-
sembles the Ets motif AGGAA. Like Gata3, several
members of the Ets family, namely, Elf1, Erg, Ets1,
Ets2, Fli1, Spi1 and Tel, are also active in the T-cell
lineage (39). Some of these have been shown to bind co-
operatively with Gata3 (40,16). Since all these TFs have a
similar sequence specificity, it is not possible to identify
the specific Ets TF associating with Gata3, without add-
itional information. However, not all Ets TFs are active
simultaneously (39), and it is likely that Gata3 associates
with different Ets TFs at different stages of T-cell differ-
entiation/development.
Some of the motifs identified by MuMoD are also

detected by other motif discovery programs, but these
programs do not report the partitioning of sequences
based on the motifs. Furthermore, many of the reported
motifs are highly similar to each other, with the same
site contributing to more than one motif. This makes it
difficult to assess the significance of each motif. We
believe that all modes described in Figure 4 are signifi-
cant, because together they explain the full set of bound
regions.

Multiple modes reveal correlations among positions

The cohesin protein complex has been implicated in
several cellular processes such as cell division, DNA
repair and DNA loop formation associated with gene
regulation (41). The top 5000 sequences bound by
Smc1a, a cohesin core complex protein, in mouse ES
cells (15) were analyzed by MuMoD. Cohesin has been
shown to occupy sites bound by the CCCTC-binding
factor CTCF (42) and indeed, all conventional motif
discovery methods identify the CTCF motif in this set
(Supplementary Figure S3A). MuMoD, however,
finds two binding modes, differing at positions 13–15
(Figure 5). Note that the combined motif, which is
similar to the canonical CTCF motif (34), has almost
equal proportions of G&A at position 14 and of C&G at
position 15. However, the two different modes clearly split
the sites into two sets, composed of GC and AG at positions
14 and 15, with GG and AC occurring far less often. This
shows the dependencies between these two positions in the
binding preferences of CTCF, which cannot be captured
by a combined motif. Furthermore, an A at position 14 is
almost always (97% of the time) preceded by a C at
position 13. In contrast, a similar G at position 14 is
preceded by a C 78% of the time. This lower enrichment
of CG could have implications in DNA methylation.

Modes reveal mediator interactions in mouse ES cells

In addition to Smc1a, Kagey et al. (15) have profiled
subunits Med1 and Med12 of the mediator complex in
mouse ES cells. The mediator complex is a co-activator
and acts as a bridge between transcriptional activators and
the general transcription machinery (43). MuMoD
identifies five modes in the top 5000 sequences bound by
Med12 in the ES cells (Figure 6A). For brevity, we discuss
results in the Med12-bound regions; we get similar motifs
for Med1 (not shown). The largest mode matches the Klf4
motif, while the second largest matches the Sp1 motif. The
other three modes resemble the Oct4 motif ATGCAAAT,
Sox2 motif CWTTGTT and the motif bound by the Oct4/
Sox2 complex (44). Klf4, Sox2 and Oct4 are all known to
be active in ES cells (44). Moreover, modes 1 and 2 are
significantly closer to the TSS than the other three modes
(P < 3:8� 10�43; Supplementary Figure S5), suggesting
that the mediator complex is indeed connecting distant
enhancers bound by Sox2 and/or Oct4 to promoters
bound by Klf4 and Sp1. This was supported by
ChIP-Seq experiments profiling TFs Sox2, Oct4 and
RNA polymerase II (15): modes 3–5 are significantly
more enriched for Sox2 and Oct4 binding, while
modes 1 and 2 are significantly more enriched for RNA
polymerase II. Interestingly, none of the conventional
motif discovery methods finds all five motifs
(Supplementary Figure S3B): they typically identify only
the Klf4 or the Sp1 motif, possibly because they are the
dominant modes. Of all the motifs reported by other
programs that have a match to JASPAR/TRANSFAC,
only MEME finds a motif that MuMoD does not. It re-
sembles the Srebp1 motif, composed of only 74 sites
(‘Discussion’ section).

Figure 5. Two modes identified in cohesin-bound sequences in mouse
ES cells. Conventional motif discovery programs return a motif similar
to the CTCF motif shown on top. MuMoD identifies two modes,
whose combination also resembles the CTCF motif. The table on the
right describes dependencies within positions 13–15 in the combined
motif. The first column considers different dinucleotide combinations;
the second column shows the expected number of instances of each
combination, assuming that the combined PSSM is an appropriate rep-
resentation of the binding sites; the third column shows the number of
instances actually observed, with the arrows indicating the increase or
decrease in numbers with respect to the expected instances; the fourth
column shows the hypergeometric P-value of observing similar numbers
by chance. The two modes segregate the binding sites into two motifs
(left bottom), which together capture these dependencies.
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Applying the method to the same mediator subunit
Med12 in MEFs gives entirely different modes
(Figure 6B). The resulting motifs match motifs of TFs
known to be active in MEFs: Tead1 (45), Ap1 (46),
NFIC (47) and Runx (48). This corroborates with our
current understanding of the mediator complex acting as
a co-activator for other TFs. Again, none of the conven-
tional motif discovery methods finds all these motifs. They
typically find Tead1 and Ap1 and report several variants
of the same (Supplementary Figure S3C). PeakMotifs
finds two other motifs, one is a weak motif resembling
Sp1, while the other does not match with anything listed
in JASPAR/TRANSFAC.

Through chromosome conformation capture (3C) ex-
periments, Kagey et al. (15) showed interactions between
cohesin and mediator at four different loci. To investigate
this further on a genome-wide scale, we explored the set of
sequences bound by both cohesin and mediator, using the
intersection of regions arising from the two respective
ChIP-Seq experiments. We found five modes in this set
of 11 865 sequences (Figure 6C). Motifs for modes 1, 3

and 5 are similar to those found in the top 5000 Med12
sequences, matching specificities of Klf4, Sp1 and Sox2,
respectively, while motifs for modes 2 and 4 are the two
variants of the CTCF motif found in the top 5000 cohesin
sequences (Figure 5). The overlaps of the modes with
regions bound by CTCF and Sox2 support the discovered
motifs. More interestingly, the heights of the peaks for the
individual cohesin and mediator experiments at the modes
are strikingly different. Cohesin is highly enriched at the
two CTCF motifs, while mediator is enriched at the other
modes. This suggests that cohesin and the mediator target
different sites on the genome, but the DNA loops bring
them together causing them to co-precipitate. The inter-
actions between cohesin and CTCF and those between
mediator and cell type-specific TFs are probably more
persistent and therefore get a stronger ChIP enrichment
score, while the interactions between cohesin and mediator
are more transient in nature. This is further corroborated
when we look at the set of sequences bound by Sox2 and
CTCF. We find three modes, two for the two variants of
CTCF and one matching the Sox2 motif (Supplementary

A

B

C

Figure 6. Modes identified for the mediator complex. (A) Five modes are identified in ES cells, shown on top. The corresponding closest match in
the JASPAR (34)/TRANSFAC (33) is shown below. (B) Four modes are identified in MEF cells, with closest match shown below. The motifs in
MEF and ES cells are different, corresponding to TFs known to be active in the respective cell types. (C) Five modes are identified in the sequences
common to mediator and cohesin. Motifs for modes 1, 3 and 5 match motifs of Klf4, Sp1 and Sox2, respectively. Motifs for modes 2 and 4 resemble
the CTCF motif and differ at positions indicated with asterisks. The pie-charts indicate the percentage of sequences belonging to each mode also
bound by CTCF and Sox2. Around 90% of modes 2 and 4 are bound by CTCF. In contrast, only 12% of mode 5 is bound by CTCF. Similarly,
almost 70% of mode 5 and around 14% of modes 2 and 4 are bound by Sox2. The boxplots indicate the distribution of peak heights resulting from
ChIP experiments profiling Smc1a (blue) and Med12 (red). Smc1a is highly enriched at modes 2 and 4 when compared with the other modes. In
contrast, Med12 is significantly more enriched at modes 1, 3 and 5.
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Figure S3E). Here too, we find differential ChIP enrich-
ment for Sox2 and CTCF, with the former being more
enriched at the Sox2 mode and the latter in the two
CTCF modes.

DISCUSSION

As demonstrated on multiple datasets, MuMoD can be
successfully applied to ChIP regions, to identify multiple
modes of protein–DNA binding. Bais et al. (49) developed
a method that targets the problem of a TF binding to two
different motifs depending on the association of the TF
with one of two different co-factors. Their method is
specific to exactly two co-factors and therefore targets
motif pairs. It cannot automatically determine whether
the set can be explained better with a single or two
motifs. We are not aware of any method designed to
work in situations where there are several distinct modes
of TF–DNA binding. As a result, for such cases, people
typically resort to scanning the regions with motifs from
databases such as JASPAR or TRANSFAC. This
approach has two pitfalls. First, the set of potentially
enriched motifs is restricted to what has been
characterized and entered in these databases so far.
Second, we strongly believe the criterion to call a certain
motif ‘enriched’ is flawed: a motif may appear in very few
sequences, but in conjunction with other motifs may
explain the full set better. We have therefore proposed
an approach here that does not rely on databases, but
instead conducts de novo motif discovery, while simultan-
eously determining the optimal number of modes.
Interestingly, combining sequences from multiple ChIP

experiments for detecting multiple modes can sometimes
yield more informative results. For instance, in the regions
bound by mediator and cohesin in ES cells, MuMoD
identifies modes resembling motifs of CTCF and
ES-specific factors. This indicates that the regions bound
by the mediator and cohesin are likely to not be contigu-
ous regions of DNA, but different pieces of the genome
brought together through looping. In a separate study,
cohesin was shown to co-localize with tissue-specific
TFs, at regions that are not bound by CTCF (50).
Considering that CTCF binding is largely ubiquitous
across cell types (51), we propose that cell type specificity
is attained through cohesin connecting CTCF with
tissue-specific TFs through DNA loops. Furthermore,
the remarkably different ChIP enrichment scores of
these modes in the individual mediator and cohesin
ChIP experiments suggest that cohesin-CTCF binding is
more persistent than the cohesin-mediator binding.
Although the original motivation for this work

came from identifying multi-TF complexes as shown in
Figure 1B, we noticed a lot of unexplored biology even
in datasets bound by well-characterized direct DNA-
binding TFs. Apart from symmetric binding modes for
Gata3, MuMoD identified multiple modes for five TFs
Srf, Tbx5, Nkx2-5, Gata4 and Mef2 including the known
literature motif. None of the conventional motif discovery
methods consistently finds the literature motifs: MEME,
Weeder and PeakMotifs succeed for two, while Chipmunk

for one. Since even these DNA-binding TFs are likely to
be part of multi-TF complexes, the immunoprecipitated
sequences should be expected to contain motifs for the
co-factors. None of the current de novo methods models
this fact explicitly. Interestingly, in the cases of Tbx5 and
Nkx2-5, the modes that do not match the literature con-
sensus have higher ChIP enrichment. This questions the
rationale for selecting the top few enriched sequences
for motif discovery in a traditional setting. Even for
TFs such as Srf and Mef2, where the literature motif has
higher ChIP enrichment, additional insights on possible
co-factors and enhancer–promoter interactions are
missed by conventional motif discovery methods.

That some TFs display dependencies across positions
in their binding sites is now well established (52,53).
However, a PSSM, which cannot describe such
dependencies, is still the model of choice for representing
TF binding sites. This is largely because all other proposed
models that model dependencies are more complex and
using them in de novo motif discovery involves learning a
lot more parameters. By explicitly modeling different
modes, we overcome this limitation: MuMoD indirectly
identifies dependencies across three positions in the
CTCF motif in the cohesin-bound set by identifying two
modes. Dependencies within two of these three positions
have been observed before by Sharon et al. (54) in CTCF-
binding sites in human fibroblast cells. Their method ex-
plicitly models dependencies to learn a ‘feature motif
model’ instead of a PSSM. While a powerful tool to
identify dependencies specifically, it cannot simultaneously
report entirely different binding modes. Such dependencies
were detected by MuMoD in CTCF-bound regions across
11 other cell types (51) as well (not shown here), suggesting
that this is a universal property of CTCF. Given the popu-
larity of PSSMs over all other more complex models,
perhaps a mixture of PSSMs (52) may be the ideal way
of representing the binding specificity of CTCF.

We note that our method does not try to explicitly dis-
tinguish direct from indirect interactions. This has been
attempted in yeast (55) and mammalian cells (56,57)
using libraries of characterized TFs. Our goal is to
identify the reason for each sequence getting pulled down
during the ChIP experiment, by identifying the ‘contact’
site within the bound sequence, while not getting biased by
motifs of already characterized TFs. The resulting site may
be bound directly or indirectly by the profiled protein.

MuMoD is a generalization of conventional motif
discovery methods and works well even when there is a
single mode of binding. Indeed, when applied to
ChIP-chip data from yeast (58), we identified single
modes in almost all cases. This does not imply that all
protein–DNA binding in yeast is direct, but that there is
typically only one primary way in which the POI is
binding DNA in the specific environmental condition.
The smaller sizes of the bound sets (n < 150, typically)
might have influenced the number of modes; lowering
the value of penalty parameter � may be worth exploring
for less complex organisms.

MuMoD does not find co-occurring motifs. However, we
understand that there could be two or more distinct modes
of binding in the same sequence. For example, MEME
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identifies the Srebp1 motif in the Mef2-bound regions in
HL1 cells (30 sites, Supplementary Figure S1F) and
Med12-bound regions in ES cells (74 sites, Supplementary
Figure S3B), which MuMoD does not, possibly because the
same sequences can be explained by other, more prevalent
binding modes. To handle this, the framework can be
generalized to learn co-occurring motifs by performing
soft clustering: each ChIP region can be modeled to have
a multinomial distribution across the motifs. This can
explain a sequence being immunoprecipitated due to the
presence of a collection of motifs. Moreover, if modes are
expected to have different characteristics such as peak
height and distance from TSS a priori, these assumptions
can be included in the learning process itself. The prior
probability of each sequence contributing to a particular
mode is currently uniform, but can be changed to reflect
prior beliefs. Finally, incorporation of positional informa-
tion such as sequence conservation (59), chromatin struc-
ture (60), distance from the center or end of the genomic
regions (11,61), etc. have been shown to benefit motif dis-
covery; these can easily be incorporated into MuMoD as
well. While these modifications will no doubt help, the con-
tribution of MuMoD is the fundamental change in the
manner in which the problem of motif discovery is
formulated. Keeping an open mind with regard to
multiple possible modes of protein–DNA interactions can
provide novel insights from ChIP experiments.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1 and Supplementary Figures 1–5.
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