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Abstract

Background: Analyzing Variance heterogeneity in genome wide association studies (vGWAS) is an emerging
approach for detecting genetic loci involved in gene-gene and gene-environment interactions. vGWAS analysis
detects variability in phenotype values across genotypes, as opposed to typical GWAS analysis, which detects
variations in the mean phenotype value.

Results: A handful of vGWAS analysis methods have been recently introduced in the literature. However, very little
work has been done for evaluating these methods. To enable the development of better vGWAS analysis methods,
this work presents the first quantitative vGWAS simulation procedure. To that end, we describe the mathematical
framework and algorithm for generating quantitative vGWAS phenotype data from genotype profiles. Our simulation
model accounts for both haploid and diploid genotypes under different modes of dominance. Our model is also able
to simulate any number of genetic loci causing mean and variance heterogeneity.

Conclusions: We demonstrate the utility of our simulation procedure through generating a variety of genetic loci
types to evaluate common GWAS and vGWAS analysis methods. The results of this evaluation highlight the
challenges current tools face in detecting GWAS and vGWAS loci.
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Background
Genome-wide association studies (GWAS) have been
widely utilized over the past decade for studying the
genetic origins of phenotypic traits, including a wide
range of diseases. GWAS analysis compares the genome-
wide genotype profiles of a large number of subjects with
the corresponding phenotypic values. These studies aim
to locate genetic loci where the genotype variation is
highly correlated with the variation of the phenotype value
[1–3]. These studies, however, have been limited to study-
ing variation in the mean phenotype value. That is, the
mean phenotype value observed when a certain genotype
is present will be significantly different from the mean

*Correspondence: ahmad.alkawam@tamu.edu
1Electrical & Computer Engineering Dept., Texas A&M University, College
Station, TX, USA
2Veterinary Integrative Biosciences Dept., Texas A&M University, College
Station, TX, USA
Full list of author information is available at the end of the article

phenotype value observed when an alternative genotype is
present. Although this type of analysis has been successful
in uncovering a wide range of genetic associations, detect-
ing mean changes only explains a small part of the total
variance [4]. The remaining variance has been thought to
be caused by gene-gene (GxG) interactions, such as regu-
latory factors and epistasis, and gene-environment (GxE)
interactions. These types of interactions cannot be easily
detected using typical GWAS methods.

To address the limitations of typical GWAS analysis
methods, vGWAS has emerged recently as an approach
for detecting GxG and GxE loci [5–7]. There has been
increasing evidence that when GxG or GxE interac-
tions occur, variance heterogeneity is introduced into
the genetic locus at which the interactions occur [8].
Therefore, detecting vGWAS loci enables researchers to
identify and study genetic loci involved in these inter-
actions. vGWAS analysis aim to detect genetic loci that
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cause a significant change in the variance of the pheno-
type value. That is, the variance of the phenotype value
observed when a certain genotype is present will be sig-
nificantly different from the variance value observed when
an alternative genotype is present.

The number of vGWAS analysis methods have been
steadily increasing in the literature in the past few years.
These methods utilize statistical tests and regression
models to locate loci that have statistically significant
effects on the phenotype. For example, Levene’s (Brown-
Forsythe) test is a single-pass statistic widely used in
vGWAS analysis. The test calculates the phenotype’s vari-
ance for both values of the genotype and then assesses the
significance of the difference between the two variances
using a chi-distribution. Generalized linear models have
also been proposed for vGWAS analysis. These methods
aim to fit a linear regression model to uncover relations
between the genotype profiles and the observed pheno-
type values. In these models, the genotypes represent the
variables of the model, whereas their coefficients repre-
sent their contribution to the mean and variance changes
[6]. As opposed to typical GWAS analysis linear models,
vGWAS models assume that the dispersion of the model is
a function of the genotype values. The authors of [9] used
a double-generalized linear model (DGLM) to account
for population specific effects in addition to mean and
variance heterogeneity.

These methods have been utilized to uncover GxG and
GxE interacting loci in a number of studies. For exam-
ple in a study about body mass, vGWAS identified a
locus that is believed to interact with physical activity
and the lifestyle of the individual [10]. In another study
of the human genome, most of the vGWAS loci identi-
fied were located in CNV-containing regions, suggesting
a link between variance heterogeneity and the effects of
CNVs which include having a higher susceptibility to vari-
ous complex neurological disorders such as schizophrenia
and Parkinson disease [9]. Finally, the vGWAS analysis of
lymphoblastoid cell lines identified two genetic loci which
have been confirmed to be involved in GxE and GxG
interactions [11].

The proposed methods have been able to uncover bio-
logically relevant information through detecting variance
heterogeneity in different GWAS datasets. However, the
development of vGWAS analysis models could still ben-
efit from significant enhancements. A first step towards
achieving that goal could be establishing reliable and
consistent grounds for comparison between these tools.
This could be achieved through simulating vGWAS loci.
Simulation provides the researcher with three impor-
tant features: 1) Control over the input genotypes, 2)
Predictability of the output values, and 3) Consistency
across different runs. Controlling the values of the input
genotypes allows the researcher to simulate different

genetic and evolutionary scenarios. The predictability of
the output is particularly valuable for evaluating vGWAS
methods as it provides a ground truth for comparison.
And finally, consistency is achieved through eliminating
the uncontrollable factors of randomness that are usu-
ally present in lab experiments. Therefore, simulation
presents a reliable and inexpensive method for testing and
evaluating vGWAS methods under different conditions.

Several GWAS simulators have been developed in the
past decade, however, none of these simulators account
for variance heterogeneity effects. In this work we present
a systematic procedure for simulating vGWAS data, as
well as introducing the first simulation algorithm for
quantitative vGWAS data. The algorithm could be applied
to either haploid or diploid genotypes with different
modes of dominance while incorporating the effects of
multiple vGWAS loci using an additive model. We hope
that the presented work will motivate the evaluation of
current vGWAS methods and drive the development of
new methods.

This paper is organized as follows: we describe the geno-
type generation process and the subsequent mathematical
framework for producing vGWAS phenotype values in the
“Methods” section. We then describe the implementation
of our vGWAS simulation algorithm and demonstrate it’s
utility in the “Results and discussion” section before pre-
senting our conclusions in the last section. We present
a detailed mathematical discussion in the Supplementary
Materials section.

Methods
The simulation of GWAS data enables researchers to
investigate important aspects of genetic control [12]. Sim-
ulation grants researchers control over the genetic prop-
erties of the input population and allows them to observe
the impact of using different genetic models on the out-
put. The main contribution of GWAS simulation is that it
provides a tool for evaluating the statistical and algorith-
mic methods developed for detecting genetic control loci.
Simulation allows the researcher to set a ground truth for
these methods to be compared against, as well as enabling
the evaluation of these methods under different scenarios.

The simulation process is divided into two steps. The
first step of the simulation process focuses on producing
a realistic population of genotypes while allowing con-
trol over several genetic and evolutionary parameters. The
second step of the simulation process assigns or calculates
phenotypic values for the simulated population. In this
section, we describe both steps of the simulation process.

Population generation
The population generation process focuses on produc-
ing a realistic population of genotypes. Population gen-
eration is used to simulate different genetic properties
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and population structures, such as demographies, muta-
tions, and recombination events. This level of control
allows the researcher to engineer the population accord-
ing to the genetic and evolutionary scenarios investi-
gated. Several simulation methods have been developed to
address this problem. These methods could be categories
into three types, depending on the simulation strategy
they use: resampling-based methods [13–15], backward-
time-based (coalescent) methods [16–18], and forward-
time-based methods [12, 19–22].Each of these strategies
provides the researcher with varying levels of control
over the different aspects of the simulation. However,
the vGWAS simulation method we describe in this paper
could be applied to genotypes from any type of population
simulator.

Phenotype assignment
Phenotype assignment maps the genotype state of each
simulated individual to a phenotype value. Phenotype val-
ues could be either quantitative or qualitative. Qualitative
phenotypes are usually assigned in case/control studies
where the phenotype could be one of only two values.
Quantitative phenotypes on the other hand take a numer-
ical value which could represent traits such as height,
weight, or expression level of a certain gene.

In this section we formulate a method for simulating
quantitative phenotypes. We discuss the steps for calcu-
lating the phenotype value for both haploid or diploid
genomes using either an additive or dominant mode of
inheritance in the diploid case. We extend our calculation
method to incorporate effects from multiple vGWAS loci
using an additive model for genetic control. To facilitate
the phenotype value calculation we make the following
two assumptions:

1 The individual has a haploid genome.
2 The phenotype value is affected by the allelic value of

a single genetic locus.

In typical GWAS simulations, the general model used in
calculating the quantitative phenotype value expresses the
phenotype value as a function of the subject’s genotype
state at the associated genetic loci in the presence of a nor-
mally distributed residual variance. The phenotype value
calculation is performed according to Eq. 1, where y is the
phenotype value, μ is the baseline mean value, g ∈ 0, 1 is
the genotype state and α is the mean shift. ε represents the
residual effects.

y = μ + gα + ε, ε ∼ N
(
0, σ 2

E
)

(1)

In typical GWAS models, ε is assumed to follow a nor-
mal distribution with a fixed variance σ 2

E . However, in
vGWAS models the variance is dissected into two parts,
a part that is affected by the individual’s genotype, and a

remaining residual variance due to non-genetic environ-
mental effects [7]. Therefore, in our model ε is expressed
as shown in Eq. 2, where σ is the baseline standard
deviation, g is the genotype state, and φ is the standard
deviation shift due to the minor allele.

σE = σ + gφ (2)

Phenotype calculation framework
The phenotype calculation step uses the generated geno-
type profiles to calculate a phenotype value for each sub-
ject in the population. The genotype profiles are used to
calculate the allele frequencies of each loci. The researcher
then specifies the phenotype controlling loci and the
effect size of each locus on the total phenotypic vari-
ation. In typical settings, the researcher would choose
specific loci from the list of generated loci. Alternatively,
the researcher could specify the number of phenotype
controlling loci and an allele frequency range such that
the simulator could pick appropriate loci from the list.
The phenotype calculation process is often provided with
parameters such as a baseline mean and the value of the
total phenotype variation in order to control the range of
possible phenotype values. This allows the generated phe-
notype values to resemble the values encountered in the
researcher’s investigation. In this section, we show how
these inputs could be used to calculate the parameters of
Eq. 1 and therefore calculate the corresponding phenotype
value.

Based on the two assumptions made earlier, each locus
could have either one of two genotype values. The charac-
teristics of each genotype can be summarized in Table 1,
where A1 is the major frequency allele and A2 is the minor
frequency allele. The probability of observing a major fre-
quency allele is denoted by p. Similarly q is the probability
of observing a minor frequency allele.

VY = VM + VV + VR (3)

According to the vGWAS model, the phenotype calcu-
lated using Eq. 1 has three sources of variation: As shown
in Eq. 3, the total phenotype variance VY is composed of
the addition of the variance due to the mean shift, VM, the
variance due to the variance shift between genotypes, VV ,
and the remaining residual variance VR. We translate to

Table 1 Genotype Characteristics

Genotype Frequency Mean S.D.

A1 p μ σ

A2 q = 1 − p μ + α σ + φ
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mathematical terms in Eq. 4 to obtain the expression for
each type of variance.

Var(Y ) = Var(E[ Y |G] ) + E[ Var(Y |G)]
= Var(μ + gα) + Var(σ + gφ) + E2[ σ + gφ]

(4)

By comparing Eq. 3 with Eq. 4 we can map each type
of variance to its corresponding mathematical term. This
allows us to expand these mathematical terms to reach an
expression that relates each type variance to the allele fre-
quency at the locus, as well as to the unknown parameters
of the phenotype calculation process, as demonstrated in
Eqs. (5) to (7).

VM = Var(μ + gα)

= pqα2 (5)

and,
VV = Var(σ + gφ)

= pqφ2 (6)

Consequently,

VR = E2[ σ + gφ] = (σ + qφ)2 (7)

The locus’s effect size on the total variance due to the
mean shift, Cμ, is calculated as Cμ = VM/VY . Similarly,
the locus’s effect size on the total variance due to the
variance shift, CV , is calculated as CV = VV /VY . Fol-
lowing these two terms, we can reach a formulation that
expresses α, φ, andσ in terms of the total variance, the
effect size of the locus, and the corresponding allele fre-
quency, all of which are known at simulation time. These
expressions are given in Eqs. (8) to (10).

α = √
CμVY /pq (8)

φ = √
CV VY /pq (9)

The phenotype value for every individual in the popula-
tion is calculated through substituting the above terms in
Eq. 1.

σ = √
VY (1 − (Cμ + Cσ )) − qφ (10)

Relaxing assumption 1: accounting for diploid genomes
Simulating diploid GWAS data is important for study-
ing complex genetic traits especially in diploid organisms
such as humans. We modify the formulation described
in the previous subsection in order to calculate pheno-
type values that are based on a genotype that could take
one of three values: major allele homozygous, minor allele
homozygous, and heterozygous.

In many genetic applications, the population would be
engineered to only consist of homozygous individuals.
However, we choose to account for heterozygous individ-
uals to facilitate the investigation of a wide number of

scenarios and genetic traits. We lay out the mathemati-
cal procedures needed to calculate the phenotype value
for heterozygous individuals using two models of inher-
itance: 1) the co-dominance model and 2) the complete
dominance model. In this section we start by describ-
ing the formulation of the co-dominance model before
describing the extensions needed for using the complete
dominance model. Co-dominance occurs when both alle-
les in the diploid are fully expressed. That is, the effects
of both allele in the diploid are added together to produce
the total effect of the genotype of the phenotype’s value.

Assuming the phenotype is affected by a single diploid
genetic locus, we modify the phenotype calculation
equation (Eq. 1) to account for the genotype state on
both chromosomes, as shown in Eq. 11. According to this
formulation, the overall genotype state could take one
of three values: 0,1,2, corresponding to the allelic states
A1A1, A1A2, A2A2 respectively.

y = μ+ (g1 + g2)α +ε, ε ∼ N
(
0, (σ + (g1 + g2)φ)2)

(11)

Using the same procedure as in the haploid case, we
express the parameters in Eq. 11 as follows:

α = √
CμVY /2pq (12)

φ = √
CV VY /2pq (13)

Therefore,

σ = √
VY (1 − (Cμ + Cσ )) − 2qφ (14)

Substituting the values of these parameters in Eq. 11 yields
the phenotype value for each individual in the population.

Complete dominance In diploid genomes
An allele shows dominance when it suppresses the effects
of the recessive allele. Dominance could exist in three
forms: complete dominance, incomplete dominance, and
co-dominance. In this section we modify the formulation
used in the co-dominance model to account for com-
plete dominance. This type of dominance occurs when
the dominant allele completely masks the effects of the
recessive allele.

Consequently, the genotype characteristics of this type
of diploidy are modified as summarized in Table 2,
where A1 is the dominant major frequency allele and A2
is the recessive minor frequency allele. The probability
of observing a genotype that includes the dominant is

Table 2 Genotype Characteristics

Genotype Frequency Mean S.D.

A1A1, A1A2 p = 1 − q μ σ

A2A2 q = p2
A2 μ + α σ + φ
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denoted by p. Similarly q is the probability of observing
the genotype of two minor frequency alleles. q is cal-
culated as the square of the probability of observing a
minor allele (i.e., p2

A2). α and φ are the mean and variance
shifts respectively. g ∈ 0, 1 represents the genotype state,
where 0 represents the dominant genotypes (A1A1, A1A2)
whereas 1 represents the recessive genotype (A2A2).

Using this formulation, the phenotype could be cal-
culated using the same procedure as the one used for
haploid individuals. α, φ, and σ can all be calculated using
Eqs. (8) to (10). Consequently, the phenotype value could
be caluclated using Eq. 1.

Relaxing assumption 2: accounting for multiple additive
loci
In a more realistic scenario, the phenotype value is deter-
mined by the genotype state of multiple loci. We modify
the phenotype calculation procedure to account for multi-
loci effects, assuming an additive model. Linear inter-
action is only one form of multi-loci interaction. Our
phenotype calculation process does not account for non-
linear effects, such as epistasis. However, extending the
proposed process to account for these effects is a topic for
future investigation.

Extending the phenotype calculation to account for the
multiple additive loci is accomplished through modifying
Eq. 1 to replace the parameters and variable correspond-
ing to a single loci with vectors of N elements, N being the
number of phenotypes affecting loci. The modified phe-
notype value equation for a haploid genome is presented
in Eq. 15

y = μ + gTα + ε, ε ∼ N
(

0,
(
σ + gTφ

)2
)

(15)

According to this formulation, the researcher has to pro-
vide two vectors, Cμ and CV of length N, which represent
the mean and variance effect sizes on the total variance
for all additive loci. Using these values, and the allele fre-
quencies vector, the parameters of Eq. 15 are calculated as
follows:

αi =
√

C(i)
μ VY /piqi (16)

φi =
√

C(i)
V VY /piqi (17)

Therefore,

σ =
√√√√VY

(

1 −
A∑ (

C(i)
μ + C(i)

σ

))

− qTφ (18)

Consequently, the phenotype value of each individual in
the population could be calculated through substituting
these parameter values into Eq. 15. Similarly, the multi-
locus additive phenotype calculation process could be

easily extended for diploid individuals through the follow-
ing modifications, where Eqs. 19 and 15 could be used for
the co-dominance and complete dominance cases, respec-
tively. The parameters of Eqs. 19 and 15 are calculated
using similar procedures as the ones described in the
single loci case.

y = μ + (g1 + g2)Tα + ε, ε ∼ N
(

0,
(
σ + (

g1 + g2
)T

φ
)2

)

(19)

vGWAS simulation algorithm
To facilitate the implementation of vGWAS simulators, we
translated the mathematical framework into an algorithm,
presented in Algorithm 1. The algorithm uses genotype
profiles as its input. These genotype profiles could be gen-
erated using population simulators or by using real data
from genotyping experiments such as the 1000 Genome
Project. The algorithm also requires some information
about the loci to be simulated, including their number,
minor allele frequency, and mean and variance effect size.
The algorithm searches the inputted genotypes for loci
that meet the specified criteria and then exploits the
described mathematical framework to calculate the phe-
notype value. This algorithm is able to induce both mean
and variance discrepancies based on one or more loci. The
algorithm accounts for both haploid and diploid geno-
types under co-dominance or complete dominance. The
algorithm uses Eqs. 15 and 19 to calculate the phenotype
value of the haploid genotypes and co-dominant diploid
genotypes respectively. The algorithm also uses Eq. 15
to calculate the phenotype value in the case of complete
dominance for diploid genotypes.

Results and discussion
In this section we describe the evaluation of our simu-
lator through the generation of different genetic control
scenarios. We conducted two sets of experiments; in the
first set, we generated and visualized all the modes of vari-
ation supported by our tool to demonstrate its ability to
mimic realistic patterns. In the second set of experiments,
we used common GWAS and vGWAS approaches to
recover the loci generated using our algorithm. Finally, we
highlighted several applications in which our simulation
process could be useful.

The simulation algorithm was implemented as Python
scripts and has been tested on a Unix platform. The
simulation scripts were used to calculate quantitative phe-
notypes from genotype profiles generated using ms [16]
and GENOME [18] which are two popular coalescent
genotype simulators. The simulation scripts use Eq. 15
and Eq. 19 to calculate the phenotype value of the haploid
genotypes and complete-dominance diploid genotypes
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Algorithm 1: vGWAS Simulation Algorithm
Input : G - Genotype profiles

N - Number of loci
M - Mean effects for all loci
V - Variance effects for all loci
r - Minor allele frequency range
μ - Baseline mean of the phenotype
VT - Total variance of the phenotype

Output: P - Phenotype Values
L - GWAS/vGWAS Loci

while Number of Loci in L is less than N do
if Genotypes still available in G then

Select a genotype g from G at random;
if Frequency(g) not in r then

Remove g from G;
Continue;

else
Calculate α and φ of g using M and V by
applying Eqs. (16) and (17).;
Add g to L;
Remove g from G;
Continue;
end

else
print("Not enough loci that meet input
conditions");
return;
end

end
Calculate σ by applying Eq. (18);
for All genotype profiles gp in G do

if Haploid Genotypes then
Calculate phenotype value p of gp using Eq.
(15);

else
if Co-Dominant Model then

Calculate phenotype value p of gp using Eq.
(19);
Add p to P;

else
Calculate phenotype value p of gp using Eq.
(15);
Add p to P;
end

end
end

respectively. The simulator also uses Eq. 15 to calcu-
late the phenotype value in the case of co-dominance
for diploid genotypes. In our implementation, we utilized
scripts from [23] for performing basic tasks such parsing
genotypes and writing the output files.

Phenotype distribution
Our first experiment aims to verify that the values of the
generated phenotype are in accordance with the desired
distribution. We generated a segment containing 10,000
genotypes for 2,000 samples using Hudson et al.’s ms [16]
simulator. From the generated genotypes, we generated
six sets of results corresponding to two modes of ploidy,
each containing three types of effects. We used our simu-
lation algorithm to calculate phenotype values for haploid
genotypes, diploid genotypes under co-dominance. For
each mode of ploidy, we generated created three sets of
phenotype values corresponding to three types of loci. We
created one locus in each of these sets. In the first set,
the locus had a mean effect size of 5% and no variance
effects. The second locus had no mean effects, and a vari-
ance effect size of 5%. The third set, the single locus had
both mean and variance effects, each with a 5% effect size.

We visualized the phenotype values of these six sets
of results using box plots, as shown in Fig. 1. All the
results follow a normal distribution. The base-line pheno-
type mean value was set to zero in all simulations, and was
observed accordingly in the results. The first column of
Fig. 1 shows the mean effects of a locus on the two modes
of the simulated ploidy. It is observed that these effects
are causing a shift in the mean phenotype value without
having any noticeable effects on the variance in the two
plots of that column. In the second row, co-dominance
produced three equidistant mean levels for the phenotype.
In the second column, instead of causing mean shifts, the
locus caused different variance shifts across the ploidy
scenarios. Finally, the locus in the third column had both
mean and variance effects which translated to coincid-
ing mean and variance shifts in the phenotype values. As
a conclusion, our vGWAS simulations produces pheno-
type values that are in accordance with the desired and
intended behavior.

Association signal recovery
To demonstrate the utility of our algorithm, we performed
a second experiment which involved simulating geno-
types based on realistic settings and then using common
GWAS and vGWAS analysis tests to recover the simulated
loci. The purpose of this experiment is to show that the
GWAS and vGWAS signals simulated using our algorithm
could be retrieved using common GWAS/vGWAS detec-
tion algorithms. To that purpose we used the GENOME
[18] simulator to generate genotypes with similar char-
acteristics as those observed in the arabidopsis thaliana
120Mbp genome [24–26]. We generated three diploid
chromosomes with 50,000 SNPs each for a population size
of 10,000 with a population recombination parameter of
r = 8X10−3. We then used our simulation algorithm to
generate three loci, one on each chromosome. The first
locus has a mean effect size of 5% and no variance effects.
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Fig. 1 Phenotype distribution under different genotype effects. The columns represent the three types of simulated genotype effects from one QTL
with an effect size of 5%. The rows represent the two modes of ploidy our model accounts for

Similarly, the second locus has a variance effect size of 5%
and no mean effects. The third locus has a total effect size
of 6%, divided equally between mean and variance effects.

To recover the simulated signals, we used three
methods:

1. We used Plink’s ‘assoc’ function which is a GWAS
detection method. This method attempts to fit a
linear regression at each genotype to determine if
there is a relation between the varying genotype
values and the corresponding phenotypes. Eq 1. This
approach mainly attempts to estimate the mean shift
sizes occurring at the different genotype states in the
presence of a normally distributed residual having a
constant variance term.

2. The Brown-Forsythe test which is a vGWAS
detection method. This method single-pass test
which measures the significance of the variance
separation observed at one tested genotype at a time
and ultimately produces a p-value statistic for that
genotype. This test has been commonly used to
check for variance heterogeneity in vGWAS
experiments. We implemented this test using R’s
Levene Test package [27].

3. We implemented the DGLM association method
described in [9] which is both a GWAS and vGWAS
method. This method attempts to recover both mean
and variance shift-causing loci from the data
simultaneously.

Figure 2 present the results of the three tests performed.
The first and third panels in the figure show that both the
Plink association test and the DGLM method were able
to detect the GWAS locus on the first chromosome. This
result is expected since both Plink and Hulse et al.’s DGLM
method are capable of detecting pure GWAS signals. On
the other hand, and since the Brown-Forsythe test only

checks for variance shifts, it was not able to detect that
locus. On chromosome two however, the Brown-Forsythe
test and the DGLM method were both able to detect the
vGWAS locus, since they are both designed to detect sig-
nificant variance shifts. This locus has gone unnoticed by
the Plink association method which does not take vari-
ance effects into account. Lastly, the third locus which
has both mean and variance effects exhibited only a mild
significance in the first two tests and therefore it could
potentially go undetected in typical settings. In contrast
to that, the Hulse et al. DGLM method was able to detect
a more significant effect for this locus. Each of the sim-
ulated GWAS and vGWAS signals account for 3% of the
total variance. Taken separately, each of these signal has
a modest contribution to the total variance. However if
the GWAS and vGWAS signals at the locus are com-
bined together, they will exhibit a substantial significance.
Since Hulse et al.’s DGLM method combines both GWAS
and vGWAS signals in its detection process, it was able
to detect a clearer signal for the GWAS/vGWAS locus
on the third chromosome. This result also highlights the
advantage vGWAS methods that are able to account for
combined mean and variance effects.

Simulation scenarios
To further demonstrate the utility of our simulation algo-
rithm, we developed several scenarios to show how simu-
lation could help unveil important evolutionary and struc-
tural information in the genome. In the first experiment,
we used GENOME [18] to generate two 25Mb segments
containing 50,000 SNPs each. We varied the recombina-
tion rate between the two segments in order to create two
different linkage disequilibrium (LD) conditions: a low LD
segment, and a high LD segment. In each of these seg-
ments, we simulated two loci with 7% variance effects and
no mean effects. We then visualized the p-values of these
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Fig. 2 Association signal recovery using the common GWAS and vGWAS analysis algorithms. GWAS analysis was carried out using Plink 1.9. vGWAS
analysis was carried out using the Brown-Forsythe R package [27]. In addition, the DGLM analysis method proposed in [9] was implemented and
tested in the third panel of the figure

loci in Fig. 3. As could be seen from the figure, when LD
was low, the effects of the two loci were confined to the
region in which they occur. There were no association sig-
nals detected in other regions of the genomic segment.
However, this is not the case in the high LD scenario
where the association signal was more dispersed around
the affected loci. LD generally decreases as the distance
from the affected locus increases. In the low LD scenario,
the region affected by LD decreases more steeply than in
the high LD case. Consistant with realistic genomic struc-
ture, some regions might have a stronger LD level with

an affected locus than their neighboring regions. Simu-
lation could help identify those regions as it did in the
second panel of Fig. 3. The panel shows two significant
vGWAS signals at around 12Mb although no vGWAS loci
were simulated at these locations. These genomic loca-
tions exhibited a significant vGWAS signal due to their LD
connection with one or both simulated vGWAS loci.

In the second experiment, we used GENOME to gener-
ate two 25Mb segments containing 50,000 SNPs each. In
the first segment, we simulated three loci each having a
3% variance effect and no mean effects. We placed the loci

Fig. 3 Association signal of two loci with variance effects under different linkage disequilibirium conditions. The recovery was performed using the
Brown-Forsythe R package [27]
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Fig. 4 Association signal of three loci with variance effects in the same gene. The recovery was performed using the Brown-Forsythe R package [27]

within 2000 bases of each other to resemble loci occurring
in the same gene. In the second segment, we simulated
only one locus having a 3% variance effect and no mean
effects located in the same region as loci of the first seg-
ment. We present the p-value patterns of this experiment
in Fig. 4. The main observation that could be made from
the first panel of the figure is that although each locus
individually has a low variance contribution, these loci
exhibited a significant vGWAS signal. This highlights the
effect of LD on vGWAS loci when they occur in close
proximity in the genome. In such a scenario, the vGWAS
loci that are in LD witness additional variance contri-
butions from the nearby vGWAS loci. In contrast, the
vGWAS locus of the second panel, which only contains a
single vGWAS loci with 3% effects did not exhibit a signif-
icant vGWAS signal. It is worth mentioning that we placed
the locus of the second panel at the location of each of the
loci of the first panel and observed similar results at all
three locations.

Conclusion
In this work we presented a mathematical framework
for simulating quantitative vGWAS data. We translated
the mathematical framework into a simulation algorithm,
which, to the best of our knowledge, is the first vGWAS
simulation algorithm in the literature. The presented algo-
rithm generates quantitative vGWAS phenotype values
using genotype profiles from common population simu-
lators. The algorithm could be applied to either haploid
or diploid genotypes with different modes of dominance
while incorporating the effects of multiple GWAS and
vGWAS loci using an additive model. To demonstrate the
utility of our algorithm, we used common GWAS and
vGWAS analysis methods to detect the loci generated

using our algorithm. We hope that the presented work will
motivate the further evaluation of current vGWAS meth-
ods and drive the development of new methods to address
the limitations of current methods.
Acknowledgements
Not Applicable.

Funding
This project has been funded in part with federal funds from the National
Institute of 601 Health under award R21AI126219 (JJC). The publication costs
of this article was funded through the support of a grant offered by Texas A&M
University at Qatar (ES).

Availability of data and materials
Not Applicable.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 19
Supplement 3, 2018: Selected original research articles from the Fourth
International Workshop on Computational Network Biology: Modeling,
Analysis, and Control (CNB-MAC 2017): bioinformatics. The full contents of the
supplement are available online at https://bmcbioinformatics.biomedcentral.
com/articles/supplements/volume-19-supplement-3.

Authors’ contributions
AAK formulated the simulation math, performed the experiments, and wrote
the first draft of the manuscript. MA verified the simulation math and majorly
contributed to the second draft of the manuscript. JJC conceived the idea for
vGWAS Simulation and supervised the simulation process. ES and AD
contributed in an advisory capacity. JJC, ES, and AD made significant
contributions to the final draft of the manuscript. All authors read and
approved the final manuscript.

Ethics approval and consent to participate
Not Applicable.

Consent for publication
Not Applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-3
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-3


Al Kawam et al. BMC Bioinformatics 2018, 19(Suppl 3):72 Page 44 of 69

Author details
1Electrical & Computer Engineering Dept., Texas A&M University, College
Station, TX, USA. 2Veterinary Integrative Biosciences Dept., Texas A&M
University, College Station, TX, USA. 3TEES AgriLife Center for Bioinformatics
and Genomic Systems Engineering (CBGSE), Texas A&M University, College
Station, TX, USA. 4Electrical & Computer Engineering Dept., German Jordanian
University, Amman, Jordan.

Published: 21 March 2018

References
1. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS,

Manolio TA. Potential etiologic and functional implications of
genome-wide association loci for human diseases and traits. Proc Natl
Acad Sci. 2009;106(23):9362–7.

2. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ,
McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, et al. Finding the
missing heritability of complex diseases. Nature. 2009;461(7265):747–53.

3. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR,
Madden PA, Heath AC, Martin NG, Montgomery GW, et al. Common
snps explain a large proportion of the heritability for human height. Nat
Genet. 2010;42(7):565–9.

4. Korte A, Farlow A. The advantages and limitations of trait analysis with
gwas: a review. Plant Methods. 2013;9(1):29.

5. Struchalin MV, Dehghan A, Witteman JC, van Duijn C, Aulchenko YS.
Variance heterogeneity analysis for detection of potentially interacting
genetic loci: method and its limitations. BMC Genet. 2010;11(1):92.

6. Rönnegård L., Valdar W. Detecting major genetic loci controlling
phenotypic variability in experimental crosses. Genetics. 2011;188(2):
435–47.

7. Shen X, Pettersson M, Rönnegård L, Carlborg Ö. Inheritance beyond
plain heritability: variance-controlling genes in arabidopsis thaliana. PLoS
Genet. 2012;8(8):1002839.

8. Nelson RM, Pettersson ME, Li X, Carlborg Ö. Variance heterogeneity in
saccharomyces cerevisiae expression data: trans-regulation and epistasis.
PloS ONE. 2013;8(11):79507.

9. Hulse AM, Cai JJ. Genetic variants contribute to gene expression
variability in humans. Genetics. 2013;193(1):95–108.

10. Yang J, Loos RJ, Powell JE, Medland SE, Speliotes EK, Chasman DI, Rose LM,
Thorleifsson G, Steinthorsdottir V, Mägi R, et al. Fto genotype is associated
with phenotypic variability of body mass index. Nature. 2012;490(7419):
267–72.

11. Wei W-H, Bowes J, Plant D, et al. Major histocompatibility complex
harbors widespread genotypic variability of non-additive risk of
rheumatoid arthritis including epistasis. Sci Rep. 2016;6:25014.
https://doi.org/10.1038/srep25014.

12. Peng B, Amos CI, Kimmel M. Forward-time simulations of human
populations with complex diseases. PLoS Genet. 2007;3(3):47.

13. Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint
method for genome-wide association studies by imputation of
genotypes. Nat Genet. 2007;39(7):906–13.

14. Wright FA, Huang H, Guan X, Gamiel K, Jeffries C, Barry WT,
de Villena FP-M, Sullivan PF, Wilhelmsen KC, Zou F. Simulating
association studies: a data-based resampling method for candidate
regions or whole genome scans. Bioinformatics. 2007;23(19):2581–8.

15. Li C, Li M. Gwasimulator: a rapid whole-genome simulation program.
Bioinformatics. 2008;24(1):140–2.

16. Hudson RR. Generating samples under a wright–fisher neutral model of
genetic variation. Bioinformatics. 2002;18(2):337–8.

17. Mailund T, Schierup MH, Pedersen CN, Mechlenborg PJ, Madsen JN,
Schauser L. Coasim: a flexible environment for simulating genetic data
under coalescent models. BMC Bioinformatics. 2005;6(1):252.

18. Liang L, Zöllner S, Abecasis GR. Genome: a rapid coalescent-based whole
genome simulator. Bioinformatics. 2007;23(12):1565–7.

19. Carvajal-Rodríguez A. Genomepop: a program to simulate genomes in
populations. BMC Bioinformatics. 2008;9(1):223.

20. Lambert BW, Terwilliger JD, Weiss KM. Forsim: a tool for exploring the
genetic architecture of complex traits with controlled truth.
Bioinformatics. 2008;24(16):1821–2.

21. Peng B, Amos CI. Forward-time simulation of realistic samples for
genome-wide association studies. BMC Bioinformatics. 2010;11(1):442.

22. Haller BC, Messer PW. SLiM 2: Flexible, interactive forward genetic
simulations. Mol Biol Evol. 2017;34(1):230–40.

23. Günther T., Gawenda I, Schmid KJ. phenosim-a software to simulate
phenotypes for testing in genome-wide association studies. BMC
Bioinformatics. 2011;12(1):265.

24. Atwell S, Huang Y, Vilhjálmsson BJ, Willems G, Horton M, Li Y, Meng D,
Platt A, Tarone AM, Hu TT, et al. Genome-wide association study of 107
phenotypes in arabidopsis thaliana inbred lines. Nature. 2010;465(7298):
627–31.

25. Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM, Ossowski S, Ecker JR,
Weigel D, Nordborg M. Recombination and linkage disequilibrium in
arabidopsis thaliana. Nat Genet. 2007;39(9):1151–5.

26. Li Y, Huang Y, Bergelson J, Nordborg M, Borevitz JO. Association
mapping of local climate-sensitive quantitative trait loci in arabidopsis
thaliana. Proc Natl Acad Sci. 2010;107(49):21199–204.

27. Hui W, Gel Y, Gastwirth J. lawstat: an R package for law, public policy and
biostatistics. J Stat Softw Articles. 2008;28(3):1–26.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

https://doi.org/10.1038/srep25014

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Population generation
	Phenotype assignment
	Phenotype calculation framework
	Relaxing assumption 1: accounting for diploid genomes
	Complete dominance In diploid genomes
	Relaxing assumption 2: accounting for multiple additive loci
	vGWAS simulation algorithm

	Results and discussion
	Phenotype distribution
	Association signal recovery
	Simulation scenarios

	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

