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ABSTRACT

The problem of three-dimensional (3D) chromosome structure inference from Hi-C data sets is
important and challenging. While bulk Hi-C data sets contain contact information derived from
millions of cells and can capture major structural features shared by the majority of cells in the
sample, they do not provide information about local variability between cells. Single-cell Hi-C can
overcome this problem, but contact matrices are generally very sparse, making structural in-
ference more problematic. We have developed a Bayesian multiscale approach, named Structural
Inference via Multiscale Bayesian Approach, to infer 3D structures of chromosomes from single-
cell Hi-C while including the bulk Hi-C data and some regularization terms as a prior. We study
the landscape of solutions for each single-cell Hi-C data set as a function of prior strength and
demonstrate clustering of solutions using data from the same cell.
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1. INTRODUCTION

The use of whole-genome conformation capture techniques (3C) such as Hi-C (Lieberman-Aiden

et al., 2009) has revealed that the three-dimensional (3D) organization of the genome plays a key role in

regulating fundamental cellular processes such as transcriptional regulation, cell cycle progression, and cellular

differentiation (Lieberman-Aiden et al., 2009; Naumova et al., 2013; Dixon et al., 2015). These studies generate

contact maps describing the probability of observing interactions between any two regions of the genome, which

can be associated with distance matrices between pairs of genomic loci. Methods developed to infer the 3D

structure of chromosomes from these contact maps typically rely either on optimization-based strategies to

minimize the difference between the inferred structure and the distance matrix (Rousseau et al., 2011; Hu et al.,

2013; Varoquaux et al., 2014; Zou et al., 2016; Park and Lin, 2016), or on probabilistic modeling to find the most

likely structure(s) given the observed contact probabilities (Baù and Marti-Renom, 2012; Zhang et al., 2013; Lesne

et al., 2014; Sza1aj et al., 2016; Adhikari et al., 2016; Rieber and Mahony, 2017; Trieu and Cheng, 2017).
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While Hi-C is typically collected on bulk samples containing millions of cells, it is not clear how much

the organizational features present in these population data sets reflect the 3D organization of chromo-

somes in individual cells. For example, it is not guaranteed that all observed long-range contacts appear

simultaneously in each cell (Tjong et al., 2016). Thanks to recent advances in Hi-C technology, we can

now study long-range interactions at the single-cell level (Nagano et al., 2013; Flyamer et al., 2017;

Ramani et al., 2017; Stevens et al., 2017; Nagano et al., 2017). Single-cell Hi-C has confirmed many

organizational principles described in bulk experiments, but their interpretation is not straightforward. For

example, it is not yet clear whether topologically associated domains are 3D structural units in individual

cells or a population feature that emerges when many cells are aggregated in bulk Hi-C experiments

(Nagano et al., 2013; Flyamer et al., 2017), although recent work in Drosophila points to the former

(Szabo et al., 2018).

The primary difficulty in inferring 3D chromosome structures from single-cell Hi-C data is the

sparseness of the contact maps. Currently available methods rely on inference of missing data (Paulsen

et al., 2015) or on polymer models with the optimization based on Markov chain Monte Carlo (Carstens

et al., 2016) or simulated annealing techniques (Nagano et al., 2013; Stevens et al., 2017; Nagano et al.,

2017). However, recovery of potentially missing long-range interactions in the contact matrix relies ex-

clusively on the information contained within individual single-cell matrices.

Here we present a solution using Structural Inference via Multiscale Bayesian Approach (SIMBA3D),

which utilizes bulk Hi-C to aid in recovering the contribution of interactions potentially missed in single-

cell Hi-C contact maps. Our strategy is similar in principle to the one used in Tjong et al. (2016), where

bulk Hi-C is decomposed into an ensemble of single-cell 3D structures. We build a generalized Bayesian

framework that utilizes penalties associated with folding constraints and a prior derived from bulk Hi-C

samples to infer 3D chromosome structure in single cells. The SIMBA3D software is available at (https://

github.com/nerettilab/SIMBA3D).

2. METHODS

2.1. Proposed framework

The primary goal of the inference is to efficiently explore a vast space of potential chromosomal

structures and seek optimal solutions using contact matrices and other contextual data. This requires

constructing objective functions with desirable properties and developing scalable algorithms to reach

interpretable conformations in times that are practical for large-scale computations. As stated above, the

problem of estimating chromosomal structure from single-cell data is challenging because these data are

very sparse and noisy. To reach more realistic solutions, we implement a Bayesian approach that sup-

plements the single-cell data with the bulk data. This technique helps fill the missing parts with structures

corresponding to the population of cells and additionally imposes certain penalties to improve the quality of

estimated structures. The penalties are designed in particular to favor uniform placement of points on the

estimated curve and to force the curve itself to be smoother.

Suppose that the genome is partitioned into n equally sized, disjoint segments, or bins. Let C be the n · n

data matrix obtained from an Hi-C experiment. The ij’th entry of C, call it cij, represents the number of

observed interactions between segments i and j, and thus, C is naturally a symmetric matrix. Suppose

further that another data matrix C0 is available to us and represents the collective results of prior Hi-C

experiments. For example, in the case of a single-cell Hi-C matrix C, we could also have available to us

bulk Hi-C data from the same type of cell, or, alternatively, C0 could be equal to the sum of several other

single-cell Hi-C matrices. Let xi˛R
3 be the center of mass of the ith segment, and let X˛R

n·3 be the

collection of all such xi’s. The problem at hand is twofold: (1) to estimate the structure X from the Hi-C data

matrix, and (2) to quantify differences in structures obtained either from the same or different data matrices.

In both the estimation and analysis stages, we consider a structure X to be equivalent modulo scale,

translation, and rigid rotation/reflection.

We define a posterior energy function E on the space of potential curves, X = Rn · 3—each curve con-

taining n points (or nodes) in R3—and use a gradient-based approach to solve for an optimal solution

X̂ = arg inf
X2X

E(XjC‚ C0‚ a‚ b‚ k)‚ (1)
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where C = (cij) and C0 = (c0ij) are the single-cell and bulk contact matrices, respectively, k is a vector of

weights, and a and b are predetermined model parameters (described later). Let M =
P

j>i cij and

M0 =
P

j>i c0ij, respectively. The energy function E has several terms, each contributing to a certain aspect

of the estimated curve:

E(XjC‚ C0‚ a‚ b‚ k) =
1

M
g(XjC‚ a‚ b) +

k3

M0
g(XjC0‚ a‚ b) + k1h1(X) + k2h2(X): (2)

We discuss one by one these quantities that comprise E.

2.1.1. Negative log-likelihood term. The first term g(X j C, a, b) in Equation (2) is the negative log-

likelihood of the contact matrix C given a curve X. This term follows a Poisson model (Varoquaux et al.,

2014) with a, b being predetermined model parameters, as follows. Varoquaux et al. (2014) link the ij’th

interaction count with the ij’th pairwise distance via the following probability model:

Cij*Poisson(bjjxi - xjjja) (3)

for j > i, with k$k being the standard Euclidean norm, and for scalars a < 0 and b > 0. Since a < 0, the

expected number of interactions between segments i and j is larger when the segments are located closer

together in space, and this expected number behaves according to a power law with power a. Varoquaux

et al. (2014) derive the theoretically optimal value of a = -3 from principles of polymer physics. Fur-

thermore, the parameter b acts as a scaling parameter.

The probability mass function for the Poisson random variable given in Equation (3) is given by the

following:

P(Cij = cijjX‚ a‚ b) =
(bjjxi - xjjja)

cij e - bjjxi - xjjja

cij!
:

Thus, given an Hi-C matrix with independent entries, the log-likelihood function is written as follows:

‘(X‚ a‚ bjC) = log
Yn - 1

i = 1

Yn

j = i + 1

P(Cij = cijjX‚ a‚ b)

 !

=
Xn - 1

i = 1

Xn

j = i + 1

cij log (b) + acij log (jjxi - xjjj) - bjjxi - xjjja - log (cij!)
� �

:

From the log-likelihood function above, one can see that for a given value of a, the parameter b is

nonidentifiable because ‘(X, a, cabjC) = ‘(cX, a, bjC) for any scalar c > 0. That is, changing b is equivalent

to changing the scale of X, and since X is considered equivalent modulo scale, the choice of b is arbitrary.

Define the function g as the negative log-likelihood function, dropping terms that are constant with respect

to X, that is,

g(XjC‚ a‚ b) = -
Xn - 1

i = 1

Xn

j = i + 1

(acij log (jjxi - xjjj) - bjjxi - xjjja) : (5)

In structure estimation, we consider the parameters a and b to be fixed and known values; thus, we

include them with the data C as given when writing the function g. The maximum likelihood estimate

(MLE) of X is computed as the minimizer of g; that is,

X̂ = arg min
X2Rn · 3

g(XjC‚ a‚ b): (6)

2.1.2. Penalty terms. In situations when the data matrix C is sparse or noisy, the standard MLE in

Equation (6) can be biologically unrealistic or even fail to converge. Thus, we design several additive

penalty terms to regulate the maximum likelihood solution. The remaining terms in E as defined in

Equation (2) can be viewed as imposing a prior distribution on the curve. These terms represent the prior

belief that the curve displays some regularity. The term involving h1 penalizes variation in the distances
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between adjacent points on the estimated curves, while the term with h2 penalizes deviations from

straightness. Since the weights k1 and k2, are typically small, these terms essentially discourage excessive

variation in the distances between points and excessive bending of the curve. The second term in Equation

(2) involves the negative log-likelihood of the bulk contact matrix C0 and represents the prior belief that the

curve X will bear some resemblance to those found in the population. Together, these three terms drive the

solution toward a smoother, more interpretable curve that conforms to both single-cell and bulk data.

These are constructed as follows.

1. First Penalty: Define the first penalty as

h1(X) = (n - 1)

Pn - 1
i = 1 xi + 1 - xik k2

Pn - 1
i = 1 xi + 1 - xik k

� �2
- 1: (7)

The interpretation of h1 is the following. Define L(X) =
Pn - 1

i = 1 jjxi + 1 - xijj as the length of X, and let

ui = n - 1
L(X)
jjxi + 1 - xijj be the distance between the ith pair of adjacent points in X, when X has been rescaled to

have length n – 1. Then, one can show that h1(X) = r2
u, where r2

u is the variance of the ui’s, and therefore, the

effect of the penalty h1 is to reduce the variability of the distances between adjacent points of X. The

configuration that minimizes h1(X) is such that all the ui’s are equal to 1, that is, adjacent points in X are all

the same distance apart. The minimum value of h1 is 0 regardless of the value of n. Furthermore, notice that

since h1(cX) = h1(X) for any c > 0, h1(X + y) = h1(X) for any y˛R
p, and h1(XR) = h1(X) for any 3 · 3 or-

thogonal matrix R, the penalty h1 is invariant to scale, translation, and rotation/reflection.

2. Second Penalty: Define the second penalty as

h2(X) =
1

n - 2

Xn - 1

i = 2

(xi - 1 - xi) � (xi + 1 - xi)

jjxi - 1 - xijjjjxi + 1 - xijj
: (8)

The interpretation of h2 is the following. If hi is the angle created by the triplet of points (xi – 1, xi, xi + 1),

and yi = cos(hi), then h2(X) = �y, the sample mean of all the yi’s. Therefore, the minimizer of h2 is such that

cos(hi) = -1 for all i = 2, ., n – 1. This occurs when X is a straight line with all hi = p; hence, the effect of

the penalty h2 is to enforce a level of smoothness to X. The penalty h2 has a minimum value of -1

regardless of the value of n and is invariant to scale, translation, and rotation/reflection.

3. Bulk Prior: The second term in Equation (2; the bulk prior) may be written as k3h3(X) where we define

h3(X) =
1

M0
g(XjC0‚ a‚ b): (9)

Notice that if we let ~C = C + k3M
M0 C0 and ~b = (1 + k3M

M0 )b, then the sum g(X j C, a, b) / M + k3h3(X) is equal

to g(X j ~C, a, ~b) / M. Therefore, the effect of the penalty h3 is essentially to add a scalar multiple of C0 to the

data C and perturb the parameter b. If k3 is chosen to be small enough, then this penalty term will only

slightly alter C and not overwhelm the original data with the bulk data. If C is sparse and C0 is not, then the

addition of this penalty term with a small enough k3 eliminates the sparseness of C by replacing many of

the 0 entries with small numbers that are biologically more meaningful than random noise.

There are many other possibilities for penalty terms. However, for practical implementation of the

optimization problem in Equation (1), we use only the penalties h1, h2, and h3 for three reasons. First, each

penalty term has a straightforward and biologically meaningful interpretation. Second, the formula for each

term is relatively simple and inexpensive to compute—in particular, since h3 becomes absorbed into the

function g, the addition of this penalty requires an essentially zero increase in overall computation time.

Third, along with the function g, we can write an analytical expression for the gradient of each penalty

term, and therefore, we can write a gradient expression for E. By inputting the expression of VE to a

numerical solver, we can maintain computational tractability on a personal computer for the large values of

n typically seen in real data sets. Using the penalty functions, E can be written as

E(XjC‚ C0‚ a‚ b‚ k) =
1

M
g(Xj ~C‚ a‚ ~b) + k1h1(X) + k2h2(X) ‚ (10)

where ~C and ~b are defined in the text following Equation (9), and we consider this objective function for

the remainder of this work. The choice of the penalty weights k is left to the user and can influence the

solution greatly.
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2.2. Multiscale gradient optimization for improved inference

The biggest challenge in solving the optimization problem given in Equation (1) comes from a non-

convex energy function and an extremely high-dimensional search space, which brings about multiple local

optima and a tremendous computational cost. While the presence of the bulk and penalty terms helps to

mitigate these issues by steering the search toward more realistic solutions, the computational complexity

still remains a major hurdle.

2.2.1. Gradient-based optimization. We take a multiscale, gradient-based approach, where the

optimization at each iteration is performed using a gradient-based technique called Broyden–Fletcher–

Goldfarb–Shanno (BFGS; Gill et al., 1981; Nocedal and Wright, 2006). Thus, it is helpful to derive an

analytical expression for VE to a numerical optimizer. The gradient of E at X is written as

=E(XjC‚ C0‚ a‚ b‚ k) =
1

M
=g(Xj ~C‚ a‚ ~b) + k1=h1(X) + k2=h2(X) ; (11)

therefore, to build the expression for VE, we need to compute the expressions for Vg, Vh1, and Vh2,

where g, h1, and h2 are defined in Equations (5), (7), and (8), respectively. The expressions for these

gradients are presented in Supplementary Data.

2.2.2. Multiscale optimization. To reduce the computation time to allow for a practical full-genome

reconstruction, we implement a multiscale optimization technique. Compared with a standard approach that

computes the full resolution optimization using a random initialization, the multiscale approach reduces

computation time and limits the local solutions obtained. As shown in Figure 1B, this leads to solutions

with smaller energies.

The multiscale optimization technique used in SIMBA3D is as follows. First, from a given full resolution

contact matrix, we generate a series of new matrices decreasing in resolution, that is, decreasing in size, by

recursively combining adjacent pairwise interaction counts to reflect a merging of adjacent genomic bins. One

iteration of this process cuts the dimension of the contact matrix roughly in half. For each matrix generated

in the series, we ignore the diagonal elements as we would in the original full contact matrix. Once we

generate the multiscale series of matrices, we execute the series of optimizations in the reverse order,

beginning with the smallest matrix and ending with the full matrix. We initialize the smallest optimization

randomly from a standard multivariate normal distribution, obtain a solution, and then upsample this solution

(i.e., interpolate between the solution nodes) to initialize the next larger optimization problem in the series. We

continue this iterative process of solving successively larger optimizations, using an upsampled version of the

current solution as an initialization to the next higher resolution problem, until we finish with the full solution.

FIG. 1. Improvement in computation time and final energy with multiscale optimization. Comparison of results, with

and without the multiscale approach executed on all 20 chromosomes in each of the 8 cells, available in the mESC data

set. (A) The log scale computation time is plotted over log scale number of nodes with regression lines fitted. (B)

Boxplot of the difference in final energies obtained for each of the eight cells. The difference is computed by

subtracting the energy obtained via the multiscale approach from the energy obtained without the multiscale approach.

That is, a positive number here indicates that the multiscale approach yielded a lower energy solution.
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SIMBA3D implements this multiscale technique in Python, through which at each scale the optimization is

solved using the BFGS method (Gill et al., 1981; Nocedal and Wright, 2006) with analytical gradient.

Although we solve several optimization problems in the above multiscale approach compared with just

one in a standard approach, the computation time is significantly reduced. Since the smaller optimizations

are relatively fast compared with the full resolution version, the multiscale approach is essentially a

systematic way of cheaply providing a good initialization to the full problem. The combined cost of

producing this initialization and executing the full resolution optimization is less than the cost of executing

the full resolution optimization with a full resolution random initialization. Moreover, our experimental

results show that we achieve on average a lower energy, that is, better quality solution using the multiscale

approach compared with that of the standard approach of random full resolution initialization. An addi-

tional consequence of using the multiscale approach is that by design, the space of obtainable full resolution

local solutions is limited by the initial smallest resolution. In extreme cases, the very small resolution

problems may only have one solution; therefore, if one wishes to explore the local solution space of the full

resolution by using different random initializations while still enjoying the benefits of reduced computation

time, one must strike a reasonable compromise in initial scale size.

Shown in Figure 2 is an example of an estimated structure obtained using SIMBA3D on chromosome 19

in the mouse embryonic stem cell (mESC) data set (Stevens et al., 2017). The left panel shows the single-

cell contact matrix C (from cell 1) and the middle panel shows the ensemble matrix C0. The result of the

estimation X̂ is shown in the rightmost panel. The algorithm was applied for the parameter values k1 = 0.5,

k2 = 1.0, and k3 = 0.1.

3. RESULTS

3.1. Simulated data

A complete estimation solution for a simulated configuration, intended as an illustration of the estimation

process, is presented in Supplementary Figure S1. To verify the capabilities of SIMBA3D on more realistic

data sets, we designed and executed a series of experiments on single-cell Hi-C data matrices that have

been simulated from a known set of ground truth structures. The ground truth structure set {Xk˛R
100·3,

k = 1, ., K} was designed to exhibit cell-to-cell chromatin shape variability from a mean structure that was

obtained from downsampling and smoothing an SIMBA3D solution from real Hi-C data, more extensively

described in Section 3.2. For each Xk, one can easily simulate a corresponding 100 · 100 single-cell Hi-C

matrix Ck using the Poisson model described in Equation (3). Any solution from SIMBA3D using Ck can

then be optimally scaled and aligned to the ground truth structure and then compared via the root mean

square distance (RMSD) metric. With carefully designed experiments, one can make inferences about the

solution quality that SIMBA3D produces under various circumstances using this RMSD to ground truth

metric.

FIG. 2. An illustration of chromosome structure estimation using SIMBA3D: the single-cell sparse contact matrix

(left), the ensemble contact matrix (middle), and the final estimated structure (right).
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The first experiment is designed to verify that SIMBA3D can recover the ground truth structure exactly,

up to a small error tolerance, when there are a sufficient amount of contact data, that is, when the data

matrix is dense. From one selected ground truth structure, we simulate a dense Hi-C matrix from the

Poisson model using a = -3 and a large value of b = 106. Since in this situation there is ample contact data

available to accurately reconstruct the curve, we use small penalty weights k1 = k2 = 0.001, and we set

k3 = 0 to forgo the unnecessary use of the population prior. Figure 3 analyzes the solution quality of 200

structure estimations obtained from SIMBA3D using 200 random initializations and without using the

multiscale approach. Figure 1 shows that the 50 solutions with the lowest RMSD are essentially the same

and recover the ground truth structure correctly up to a small error tolerance. However, due to the high

dimensionality of the optimization problem, there are many other local solutions, for example, Solution

131, that are nearly globally optimal but exhibit a flipped or reflected portion of the structure. For this

reason, RMSD and energy are only loosely correlated. The darker squares along the diagonal of the

pairwise distance matrix in the upper right panel show evidence for the clustering of local solutions with

respect to the RMSD metric.

The second experiment is designed to verify that incorporating the population prior in SIMBA3D when

the single-cell Hi-C matrix is sparse improves the quality of the estimated solution. The experimental setup

is the following. First, for each Xk, k = 1, ., K, we simulated a sparse Hi-C matrix Ck from the Poisson

model using a value of b = 10. We then selected the first 8 matrices to perform the structure estimation with

FIG. 3. From one selected ground truth structure containing 100 nodes, we simulate a dense Hi-C matrix (not shown)

from the Poisson model using a = -3 and b = 106. We obtain 200 solutions from SIMBA3D using 200 random ini-

tializations and with penalty weights k1 = k2 = 0.001, and k3 = 0. (A) A plot of RMSD to ground truth versus the solution

index, where the solution index is ordered in ascending RMSD. Using the same solution set and index ordering, (B) a

plot of the energy versus solution index. (C) The 200 · 200 pairwise RMSD matrix for each solution pair, also using the

same index ordering as in (A) and (B). (D, E, F) A 100-node structure with nodes connected via a colorized spline

interpolated curve. The beginning node with index 1 is located at the blue end of the curve, and the ending node with

index 100 is located at the red end of the curve. Also shown above each curve is its label, its RMSD to ground truth, and

its energy value (E). (D) The ground truth curve. (E) Solution 1, the solution with the lowest RMSD of the 200; and (F)

Solution 131, the solution with the 131st lowest RMSD. Solution 1 is a near-perfect reconstruction with respect to

ground truth, and Solution 131 is a similarly optimal solution with respect to energy, but exhibits a local reflection at the

red portion of the structure, which leads to a much higher RMSD value. RMSD, root mean square distance; SIMBA3D,

Structural Inference via Multiscale Bayesian Approach.
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SIMBA3D, using several values of k3, including k3 = 0, and fixed values k1 = k2 = 0.1. When estimating the

structure from matrix Ck, the population prior makes use of the bulk matrix given by the sum of all matrices

in the data set of size K excluding Ck. For each value of k3 and for each of the 8 chosen matrices, we obtain

20 solutions from SIMBA3D using 20 random initializations, again forgoing the use of the multiscale

optimization feature in the software. Figure 4 plots the RMSD to ground truth value averaged over all

8 · 20 = 160 solutions for each value of k3 tested. We repeat this experiment three times using K = 10,

K = 100, and then the full K = 1000 structures in the data set to show how the amount of available bulk data

can affect the results. In all three cases, the average RMSD drops immediately as k3 increases from 0 and

reaches a minimum value for some k3 > 0. This result shows that including the proposed population prior

improves the accuracy of chromatin reconstruction in simulated sparse single-cell Hi-C data, and the

improvement is greater when more bulk data are available.

3.2. Real data

We applied SIMBA3D to the reconstruction of chromosome structures from single-cell Hi-C data from

mESC (Stevens et al., 2017). To highlight the influence of parameter selection on the results, Figure 5

FIG. 4. (A) The first eight ground truth structures in the simulated data set, all with the same scale, centroid, and

mutual alignment over rigid body transformations. As with the structures shown in Figure 1, each structure has 100

nodes connected via a colorized spline interpolated curve. The beginning node with index 1 is located at the blue end of

the curve, and the ending node with index 100 is located at the red end of the curve. (B) The nonzero elements of the

simulated sparse Hi-C matrices Ck for each respective ground truth curve Xk in (A). (C) The bulk data matrix that

results from summing all Ck’s together, excluding C1, for a data set of size K = 1000. (D) Plots RMSD versus k3

averaged over 20 SIMBA3D solutions obtained for each of the first 8 simulated matrices (i.e., each data point represents

the average RMSD to ground truth for 20 · 8 = 160 structures). The plot shows three curves corresponding to the

scenario of using a data set of size K = 10, 100, and 1000 single-cell matrices.
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illustrates the effect of the relative values of the three weights—k1, k2, and k3—on the resulting estimated

structures. As expected, higher values of these weights lead to increases in the respective properties they

emphasize. For instance, an increase in k3 leads to the chromosome structure bearing more resemblance to

the structure estimated from the bulk data alone.

Figure 6 studies the nature of solutions resulting from different initializations on the same data. Due to

the vast search space in which the structure estimation is performed as well as the nonconvexity of the

objective function, the optimization procedure in SIMBA3D cannot ensure convergence to a unique global

solution. Instead, the output structure represents one of many different local optima that can be reached

depending on the initialization. Despite the existence of several local optima, multiple configurations

resulting from the same cells do in fact cluster together in the shape space, as illustrated using a pairwise

RMSD matrix and dendrogram in this figure. The clustering observed here lends further validity to the

inferred structures.

The use of the multiscale optimization technique is beneficial for several reasons. It first estimates

broader, coarser structures and then adds smaller details, thereby avoiding the abundance of local traps

present at the highest resolution. In addition to reaching a lower energy solution on average, it also speeds

the algorithm significantly due to low-dimensional searches in the early stages. Figure 6 quantifies gains in

computational cost and final energies due to this multiscale approach. An illustration of this method is

shown in Supplementary Movie S1.

FIG. 5. Effect of model parameters on 3D reconstruction quality. We compute the 3D reconstruction as a function of

parameter values using the Hi-C data matrix associated with chromosome 19 in cell 1 of the mESC data set. The top

row of structures from left to right shows the effect of an increased weight k1 on the parameterization penalty h1. We

vary k1 = 0.01, 0.1, 1, 10 and fix k2 = k3 = 0 to obtain four solution curves with exponentially increasing penalty weight.

The center row of structures from left to right shows the effect of an increasing weight k2 on the smoothing penalty h2.

Here we vary k2 = 0.01, 0.1, 1, 10 and fix k1 = 0.5 and k3 = 0 to obtain these four solution curves. Finally, to show the

effect of incorporating the bulk data—the mESC chromosome 19 population matrix—in the analysis, we vary k3 = 0.01,

0.1, 1, 10 and fix k1 = 0.5, k2 = 1 to obtain the four structures on the bottom row. We computed all structures using the

multiscale approach with n = 73, 146, 292, 584. 3D, three-dimensional; mESC, mouse embryonic stem cell.
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4. CONCLUSIONS

In conclusion, SIMBA3D is a Bayesian framework for estimating 3D chromosome structures from

single-cell Hi-C data, using penalties for regularization of the estimated structures and using additional

information from the bulk Hi-C data. Using multiscale optimization tools and a BFGS routine, it generates

computationally efficient inferences and compares these across different initializations and different data

(cells). Clustering of solutions in the shape space from the same cell data supports the validity of these

solutions.
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FIG. 6. Similarity between ensembles of solutions across cells. Here we show twenty local solutions obtained for

chromosome 19 in each of three cells—cell 1, cell 2, and cell 5—in the mESC data set using fixed k = (0.5, 1, 0.1). We

computed all structures using the multiscale approach with n = 73, 146, 292, 584, and for each cell, we used the same

twenty random initializations at the smallest scale. All displayed solutions are rotationally aligned. For each cell, we

show the twenty obtained solutions separately, and in addition, to help visualize the variability inherent to the local

solutions within cells, we plot the three groups of solutions on top of each other in three respective windows. We then

show the clustering of all 60 solutions in shape space via a 60 · 60 pairwise RMSD matrix and associated dendrogram

plot.
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