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Hydrogen co-production via
nickel-gold electrocatalysis
of water and formaldehyde

Zhixin Li,1,5 Yan Zhang,2,5 Qianqian Yang,2 JindongWu,2 Zhi Ren,3 Fengzhan Si,4 Jing Zhao,1,* and Jiean Chen2,6,*

SUMMARY

Hydrogen is one of the most promising future energy sources due to its highly efficient energy storage
and carbon-free features. However, the energy input required for a hydrogen production protocol is an
essential factor affecting its widespread adoption. Water electrolysis for hydrogen production currently
serves a vital role in the industrial field, but the high overpotential of the oxygen evolution reaction (OER)
dramatically impedes its practical application. The formaldehyde oxidation reaction (FOR) has emerged as
a more thermodynamically favorable alternative, and the innovation of compatible electrodes may steer
the direction of technological evolution. We have designed Au-Vo-NiO/CC as a catalyst that triggers the
electrocatalytic oxidation of formaldehyde, efficiently producing H2 at the ultra-low potential of 0.47 V
(vs. RHE) and maintaining long-term stability. Integrated with the cathodic hydrogen evolution reaction
(HER), this bipolar H2 production protocol achieves a nearly 100% Faraday efficiency (FE).

INTRODUCTION

Molecular hydrogen is the smallest energy storage unit available to humanity. The evolution of an entire system integrating both the produc-

tion and application of H2 has emerged as one of the most promising strategies with which to respond to an energy crisis in the future.1–6

Hydrogen fuel cells have depicted a practical application paradigm of this carbon-free energy, but their production aspect still needs contin-

uous efforts from scientists.7,8 Water electrolysis, theoretically an ideal alternative to fossil fuels for supplyingH2, involves the splitting of water

into H2 hydrogen evolution reaction (HER) and O2 oxygen evolution reaction (OER).9 However, the anodic OER, a four-electron transfer pro-

cess, has sluggish reaction kinetics,10 meaning that a relatively high voltage input (> 1.23 V vs. RHE) and energy consumption are needed to

initiate water electrocatalysis.11 A burgeoning research area focuses on combining an organic oxidation reaction with HER to complete an

electron-flow circuit,12 requiring relatively low overpotential to realize cathodic H2 production. The organic compounds for anodic oxidation

have amore favorable thermodynamic bias thanwater.13 They can be converted into valuable organic backbones rather than oxygen,14 avoid-

ing the coexistence of hydrogen and oxygen while balancing the initial resource investment.15,16 The concept has been validated in the iter-

atively upgradedplatform for the electrolysis of biomass-derived chemicals such as glucose,17 furfural,1 and similar small molecules.18–22 How-

ever, a high-voltage input is often necessary (> 1 V vs. RHE),14,23,24 and the organic compounds commonly face solubility issues in a water

medium, limiting scaled-upH2 production. At this stage, formaldehyde (HCHO), an organicmoleculewith a high hydrogen content, is steadily

emerging as a research focus.1,25–27

Formaldehyde is an efficient H-storage medium in an aqueous base system, with a thermodynamic preference for producing H2. One of

the manipulations in this regard depends on the C-H cleavage mediated by nanometal catalysts, such as Cu,26,27 Ag,25 Au,28,29 and Pd.28,30

The electrochemical oxidation of formaldehyde, triggered by metallic electrodes, has also been investigated, and currently, most studies

focus on copper as an intrinsic activation site. According to theoretical calculations, the orbital overlap of the critical reaction intermediate

H2C(OH)O* with an active metal core dominates the energy gaps for several of the following reaction steps on the electrode surface: adsorp-

tion of the active intermediate, C-H cleavage, and Tafel recombination of the hydrogen atom.27 Silver, having a 4d orbital, could interact with

the O-atom (2p orbital) better than copper (3d orbital), thus providing a relatively low activation energy barrier.25 Group IB metals have

demonstrated catalytic activity toward the formaldehyde oxidation reaction (FOR). However, little research has focused on gold-mediated

bipolar H2 production.
31,32 We believe that, given the increased atomic radius and decent O-affinity of the Au catalyst, a complementary
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strategy could be envisaged for this field, representing a new trial involving formaldehyde-water co-electrolysis to realize simultaneous H2

production at the cathode and anode. A new Au-containing electrode is also expected to deliver consistent performance over a more

extended catalytic period thanCu at high current densities. Here, we designed a catalyst based on nickel (Ni), ametal with high electron trans-

port capability, and introduced oxygen vacancies to enhance its electron transport rate. Previous studies have shown that oxygen vacancies

can modify the electronic structure of the catalyst, creating new energy levels that facilitate efficient electron transport. Moreover, oxygen

vacancies can increase the adsorption and activation of reaction substrates, thus expanding the number of active sites and promoting the

catalytic reaction. Oxygen vacancies can also alter the surface morphology of the catalyst, affecting the binding mode of the substrates

and changing the catalytic activity.33 For catalysts loaded with precious metals, oxygen vacancies can reduce the metal loading while main-

taining the catalytic performance.

In this work, we successfully synthesized the new Au-Vo-NiO/CC catalyst containing oxygen vacancies,34 by docking a small amount of Au

to serve as the FOR active catalytic site. A sophisticated balance between FOR andHERwas achieved for bipolar H2 production under alkaline

conditions. The electrocatalytic cycle runs smoothly at a potential as low as 0.47 V (vs. RHE) when the current density reaches 100 mA cm�2,

producing hydrogen with a 100% Faraday efficiency.

RESULTS AND DISCUSSION

Materials characterization

The core material for this study is the electrocatalyst Au-Vo-NiO/CC (Scheme 1). This catalyst was prepared by combining electrodeposition

and impregnation reduction using carbon cloth as the primary support material and nickel nitrate and potassium chloroaurate as raw mate-

rials. Au/CC and NiO/CC catalysts were applied as the direct reference objects for comparative studies.

Scanning electron microscopy (SEM) was used to characterize the microscopic nanostructures of the electrocatalyst Au-Vo-NiO/CC and

the precursors Ni(OH)2/CC, NiO/CC and Vo-NiO/CC. The results revealed the structural changes during the synthetic process

(Figures 1A�1C). Ni(OH)2 was grown in situ on the carbon cloth by electrodeposition, forming irregular nano-sheets with the metal Ni atoms

precisely coupled to the carbon fibers. The resulting structure is well-situated for the efficient shuttle of electrons. Ni(OH)2 was oxidized into

NiO nanoflakes by calcination at 350�C under an air atmosphere. After treatment with sodium borohydride, the SEM images of Vo-NiO/CC

showed a significant increase in their surface pits. The initially smooth surface became rough, and slight local spalling occurred. This indicates

that the surface structure of the catalyticmaterial has changed after treatment with sodium borohydride, facilitating the growth of reducedAu

nanoparticles by subsequent impregnation. This could also induce the generation of oxygen vacancies in the material, exposing more active

sites and improving the catalytic activity. SEM images of Au-Vo-NiO/CC showed that Au was growing in situ on the surface of NiO nanosheets

in nanoparticles, with diameters of about 100 nm. This structure could efficiently facilitate the FOR at a low Au-loading level, taking advantage

of the electron transport properties of Ni. The microstructure was examined by transmission electron microscopy (TEM), suggesting fantastic

lattice stripes with an interplanar spacing of 2.088 nm and 2.355 nm corresponding to NiO (111) and Au (202) crystal planes of a cube

(Figures 1D and 1F). According to the EDS energy spectra, Ni and O were uniformly spread on the surface of the carbon cloth, and the nano-

sheets were composed of elemental Au (Figures 1H�1K). The elemental percentages of O: Ni: Au distributed on the catalyst surface are

59:37:4, demonstrating that Au is attached to the NiO surface at a low loading rate (Figures S1 and S2).

X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical composition of the Au-Vo-NiO/CC catalyst, and the results

showed that nickel, gold, and oxygen elements are all distributed on the catalyst surface (Figures 2A and S3). The two peaks at 83.2 and

86.9 eV for the element Au are from Au0 (Figure 2B).35,36 The fitting of the Ni 2p XPS high-resolution spectra shows that Ni mainly exists in

Ni2+ in the catalyst, but there is still a tiny amount of Ni0 (Figure 2C). This result is consistent with the X-ray diffraction (XRD) characterization

data, which shows that the diffraction peaks at 37.25, 43.29, 63.93, and 75.42 can be attributed to NiO(PDF#897101).21 The diffraction peaks at

38.18, 44.38, and 64.57 correspond to the Au PDF#99-056 card (Figure 2D). The XRD results further indicated that the dominant crystal struc-

ture within the catalyst was Au andNiO, as the depth of the XPS test was 5–10 nm, and the depth of the XRD test was 10–30 nm, which was also

entirely consistent with the results of TEM lattice diffraction fringe. The XPS and XRD results suggested that the Au and NiOwere successfully

anchored to the carbon cloth surface. Electron paramagnetic resonance (EPR) was utilized to examine both Au-Vo-NiO/CC and Vo-NiO/CC

catalysts to verify the presence of oxygen vacancies (g = 2.002) (Figure 2E).7,37 The absorption intensity of Au-Vo-NiO/CC was slightly lower

than that of Vo-NiO/CC, showing that some of the oxygen vacancies in Au-Vo-NiO/CC were occupied by Au atoms.34,38 XPS is one of the

most straightforward methods to detect oxygen vacancies. For this purpose, we analyzed the high-resolution spectra of the O 1s orbital

Scheme 1. The schematic diagram of the synthesis pathway for Au-Vo-NiO/CC
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during the synthesis process in NiO/CC, Vo-NiO/CC, and Au-Vo-NiO/CC. In NiO/CC, the O 1s appears as a single peak, but after reduction

with sodium borohydride, oxygen vacancies are created, and the O 1s is split into two peaks, which can be attributed to Ni-O and oxygen

vacancies. After the in situ growth of Au, the O 1s experiences a 0.2 eV chemical shift, indicating that some of the O has been reduced (Fig-

ure S4). ICP experimental data were used to determine the contents of Ni (5.28%) and Au (0.77%) in the samples. An 8 h stability test was

carried out on the catalyst sample, resulting in almost maintained Au content (0.67%) and depicting the stability characteristics of the Au-

Vo-NiO/CC (Figure 2F).

Electrocatalytic performance

In a single-cell electrolytic system, a solution of 1M KOH and 0.5M formaldehyde was used as the reaction fluid, with Au-Vo-NiO/CC as the

working electrode, a carbon rod as the counter electrode, and Hg/HgO as the reference electrode, forming a three-electrode system to test

the FOR catalytic performance of Au-Vo-NiO/CC (Figure S5). Comparative analysis of Au-Vo-NiO/CC and NiO/CC demonstrated that the

potential of the former was 0.47 V when the current density reached 50 mA cm�2. In contrast, NiO/CC needed a higher driving potential

at 1.45 V to achieve the same current density. The overpotential of NiO/CC is 0.22 V relative to the OER reaction, which means there is no

catalytical activity for NiO to drive the FOR (Figures 3A and 3B). A parallel comparison with Au/CC showed that Au-Vo-NiO/CC triggered

the FOR at a nearly identical potential as Au/CC, demonstrating Au as the core active catalytic site for the FOR.We compared the LSV curves

of Au/CC and Au-Vo-NiO/CC and found that Au-Vo-NiO/CC had a faster growth rate than Au/CC. The potential difference between the two

increased from 0.29 V to 0.56 V when the current density increased from 50 to 100 mA cm�2. The superior electrocatalytic performance of Au-

Vo-NiO/CC was attributed to the catalytic activity of Au for the FOR reaction, as well as the enhanced electron transfer rate and active site

number by NiO and oxygen vacancies. We further investigated the mass transfer changes during the reaction process by measuring the EIS

spectra at different potentials. The results showed negligible electron transfer between the electrodes when the potential was between�0.1

and 0.1 V (vs. RHE), as indicated by the high resistance (Rct) values ranging from 350 to 100U. The Rct value dropped sharply to 35Uwhen the

potential rose to 0.2 V (vs. RHE), signifying the onset of the reaction. The Rct value decreased further to around 10 U when the potential rose

above 0.3 V (vs. RHE), suggesting a high electron transfer rate on the catalyst surface (Figure S6; and Tables S1�S9).

The comparative testing for LSV curves was then carried out on Au-Vo-NiO/CC in different systems, with or without the addition of form-

aldehyde. The FOR occurred on the anodic side at low potentials when formaldehyde was present. In the absence of formaldehyde, the

anodic side mainly carried out the OER in the system (Figures 3C and 3D). The FOR has a competitive advantage over OER owing to its lower

driving potential, and the reaction system is accordingly more inclined to the FOR pathway. The energy-saving effect of the Au-Vo-NiO/CC

Figure 1. Structural and morphological characterization of Au-Vo-NiO/CC

(A–C) SEM images of Ni(OH)2/CC, Vo-NiO/CC, and Au-Vo-NiO/CC.

(D–F) Illustration of the HRTEM image and corresponding FFT pattern of the Au-Vo-NiO/CC nanocatalyst.

(H–K) Elemental mapping images of Au-Vo-NiO/CC.
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catalyst was investigated at current densities of 0, 50, 100, 150, 200, 250, and 300 mA cm�2 (Figure 3E). The results showed that energy-saving

efficiency was nearly 80% at low current density, and this trend attenuated with increasing current density. With the current density reaching

300 mA cm�2, the OER pathway gradually dominated, maintaining an energy-saving efficiency of over 40%. The catalytic performance of Au-

Vo-NiO/CC for HER was also evaluated (Figure 3F), and it could drive the reaction at �0.18 V. At this point, Au-Vo-NiO/CC demonstrated a

perfect dual FOR and HER catalytic performance.

We performed the following experiments to analyze the products of the FOR and HER reactions and investigate the bifunctional catalytic

characteristics of Au-Vo-NiO/CC.We used anH-typedivided electrolytic cell with 1MKOHand 0.5M formaldehyde as the electrolyte andAu-

Vo-NiO/CC as the working and counter electrodes. The reference electrode was Hg/HgO (Figure S7). We used ion chromatography (IC) to

detect the liquid phase products and GC-MS and DEMS to detect the gaseous products. We used volumetric displacement to quantify the

gaseous products and 1H-NMR to qualitatively identify the liquid-phase organic products (Figure S8). The potential difference between

HER&FOR and conventional HER&OER was contrasted. The potential on the anode side of HER&FOR has a severe drop at a current

density of 50 mA cm�2 (DE = 1.13 V). This potential advantage does not weaken significantly as the current density increases (DE = 1.10 V

@ 100 mA cm�2) (Figure 4A). Subsequently, the gas phase products on the anode side were analyzed by DEMS detection. To avoid the

competition between FOR and ORE at excessively high potentials, an intermittent DE-MS test was performed at a potential of 0.3V (the cur-

rent density is approximately 15mA cm�2) (Figure S9). A solution of 1MNaOD (D2O) +HCHOwere applied instead to clarify the source of the

H-atom for H2 production. Several channels [m/z= 2 (H2), 3 (HD), 4 (D2) and 44 (CO2)] were collected and analyzed separately for the gas phase

products of FOR. NoCO2, HDor D2 generation was observed, and themain product was verified as H2 for 50 s at an applied potential of 0.3 V.

It indicated that H2 was produced via the catalytic oxidation of HCHO. (Figure 4B) The liquid phase products of FORwere analyzed by IC, and

formaldehyde was mainly converted to formate (Figure 4C). To verify the catalytic efficiency of Au-Vo-NiO/CC as a FOR electrocatalyst, the

formate concentration and hydrogen yield on the anode side with constant current (i-t) in long-time (V = 0.5 V vs. RHE) were examined. The FE

was calculated accordingly and indicated nearly 100% efficiency for formate andH2 (Figure 4D). It demonstrated that the Au-Vo-NiO/CC elec-

trode has a high selectivity for formaldehyde oxidation. Constant electric potential experiments were carried out at different values, high-

lighting the effect of the electric potential. The reaction statistics were immediately collected at a flux of 100 C. By monitoring the formate

concentration, the FE of formic acid was calculated to be �100% when the electric potential was 1.0–1.5 V (Figure 4E). As the potential

continued to increase, the FE of formic acid showed a downward trend, indicating a competition between FOR and OER at a high electric

Figure 2. Characterization of the material composition of Au-Vo-NiO/CC

(A) XPS spectra of Au-Vo-NiO/CC.

(B and C) High-resolution Au 4f and Ni 2p XPS spectra.

(D) XRD pattern of Au-Vo-NiO/CC.

(E) EPR patterns of different electrocatalysts.

(F) Au and Ni contents before and after long-term stability testing.
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potential. The stability of the catalyst is an essential factor that could dramatically impact the catalytic efficiency. A long-term experiment of

Au-Vo-NiO/CC in FOR&HER was then conducted, showing that the current density decreased gradually with the drop in formaldehyde con-

centration. However, the system could be refreshed to the initial state when the formaldehyde concentration is recovered during the 8 h

experiment (Figure 4F). LSV analysis for the catalyst before or after the long-time stability experiment showed a high-degree overlap between

the curves (Figure 4G). In addition, an analysis of the conversion rate of the products after a long-term complete reaction was conducted. The

results showed that the current decayed to near zero after a 45-h long i-t test. Upon detection of the formate content in the solution using IC, it

was found that the conversion rate from reactant to product was 94.2% (Figure S10). It could be concluded that Au-Vo-NiO/CC has excellent

stability behavior as a FOR&HER catalyst.

The in situ Raman spectroscopy was used to track and monitor the reaction at different electric potentials (Figure 4G). When the potential

reached 0.45 V (vs. RHE), the bands at 520, 900, and 1031 cm�1 emerged, corresponding separately to the C-O bending vibrational, symmet-

ric, and anti-symmetric modes.39 The absorption intensity is augmented as the electric potential value increases. This suggested that Au-Vo-

NiO/CC could initiate the formation of *HCOOH intermediate from formaldehyde at low electric potentials. The absorption at 1250 cm�1 and

1480 cm�1, corresponding to the O-H bending mode, became more evident with increasing potential value.40 This result indicated that the

O-H bond in *HCOOH was generally broken, confirming that formaldehyde is an H-donor throughout the catalytic H2 production reaction.

DFT calculations

For further understanding of the mechanistic rationale, density functional theory (DFT) was used to calculate the energy profiles for HCHO

oxidation and H2 production (Figures 5D and S11�S13). The result showed that Au nanoparticles anchored on NiO had the minimum acti-

vation energy barrier (0.49 eV and 0.18 eV, respectively), indicating that Au species served as the leading active site in the prepared catalysts.

The simulations on the pathway revealed that the formation of *CHO intermediate was the rate-determining step. The calculated charge den-

sity difference mappings showed that more transferred charges were aggregated in the interface between *CHO and NiO-supported Au

nanoparticles, efficiently stabilizing the intermediate (Figures 5A and 5B). Moreover, the projected density of state (PDOS) showed that

the interaction between Au nanoparticle and NiO inclined the Au 5days states to a more negative region than those anchored directly on

the carbon surface (Figure 5C). This negative shift promised the NiO-supported Au nanoparticles an enhanced bonding affinity for stabilizing

Figure 3. The study of the electrocatalytic performance of Au-Vo-NiO/CC under a three-electrode single-cell electrolysis system

(A) Linear sweep voltammetry (LSV) curves of Au-Vo-NiO/CC, Au/CC, and NiO/CC anodes in 1.0 M KOH containing 0.5 M formaldehyde.

(B) Potentials at 50 and 100 mA cm�2.

(C) LSV curves of Au-Vo-NiO/CC anode in 1.0 M KOH with or without 0.5 M formaldehyde.

(D) Potentials at 50 and 100 mA cm�2.

(E) The energy consumption savings of FOR at different current densities.

(F) LSV curves of Au-Vo-NiO/CC cathode for HER in 1.0 M KOH with or without 0.5 M formaldehyde.
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*CHO via Au-C bonding. It also indicated that the support-metal interaction via NiO could effectively tune the electronic and catalytic prop-

erties of the anchored Au nanoparticles. In addition, an interaction between the newly formed HCOOH and the electrode surface was

observed, which might intercept further oxidation into CO2.

Conclusion

In summary, the electrocatalyst Au-Vo-NiO/CC was synthesized for the oxidative H2 production of formaldehyde at ultra-low potentials. The

designmainly focused on increasing the interaction tendency betweenO-atomand IB elements fromCu to Au. Experimental results highlight

that the bipolar H2 production mode can be driven at 0.2 V (vs. RHE), and the Faraday efficiency of H2 production at both the cathode and

anode is close to 100%. On the cathode side, formaldehyde is partially oxidized to afford formate as an added-value byproduct. The

presented system dramatically reduces the energy consumption of water electrolysis (by about 40%–80%), efficiently boosting the

economic value of the FOR&HER protocol. DFT calculations reveal that generating *CHO intermediate is the rate-determining step, and

Figure 4. Au-Vo-NiO/CC simultaneously catalyzes FOR and HER in an H-type electrolytic cell

(A) The LSV curve in a 1.0M KOH solution with or without a 0.5M formaldehyde.

(B) DEMS signals at m/z = 2, 3, 4, and 44 at the pulsed potential of 0.3 V (vs. RHE) over the Au-Vo-NiO/CC in 1.0 M NaOD with 0.5 M HCHO using D2O as the

electrolyte solvent.

(C) The chromatographic curves of formate measured by IC on the anode under a cell potential of 0.50 V (vs. RHE) for Au-Vo-NiO/CC.

(D and E) The calculated Faraday efficiencies of formate and H2.

(F) The Long-term stability of Au-Vo-NiO/CC.

(G) The LSV curves before and after the i-t test.

(H) The In situ Raman spectroscopy of the Au-Vo-NiO/CC electrode for 1.0 M KOH with 0.5 M formaldehyde.
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the Au-Vo-NiO/CC has the minimum energy barrier compared to the monometallic catalysts (Au or Ni). Follow-up work in our laboratory will

focus on the application scenarios of this newly designed electrocatalyst, also involving studies on some othermetal-doped electrodes for the

bipolar H2 production protocols.

Limitations of the study

This study has shown that Au is the leading active site for the electrocatalytic oxidation of formaldehyde, but the role of Ni and oxygen va-

cancies on the catalytic activity of Au remains unclear. Futurework can address this gap by characterizing thematerial structure and properties

of Au-Vo-NiO/CC and providing more evidence to support the proposed catalytic mechanism. This would make the research more compre-

hensive and convincing.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Date and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B Materials

B Treatment of the carbon cloth (CC)

B Synthesis of the precursor Ni(OH)2/CC

B Synthesis of the precursor NiO/CC

B Synthesis of the Vo-NiO/CC

Figure 5. Calculated energy profiles

(A) HCHO oxidation.

(B) Hydrogen production.

(C) PDOS of reaction sites in Au/CC, NiO, and Au-Vo-NiO. The dashed lines stand for the Fermi level.

(D) Illustrations of the mechanism for the formaldehyde oxidation process in different catalysts.
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B Synthesis of the Au/CC catalyst
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Jiean Chen (chenja@szbl.ac.cn).

Materials availability

This study did not generate new unique reagents.

Date and code availability

The lead contact will share all data reported in this paper upon request.

This paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study does not use experimental models.

METHOD DETAILS

Materials

Ni(NO3)2
.6H2O (nickelous nitrate, 99.99%, AR grade) and KAuCI4 (Potassium gold(III) chloride, 98%, AR grade) all are purchased from Aladdin

Ltd (Shanghai, China). The carbon cloth (CC) used in this research is from Carbon Energy in Taiwan (Taiwan, China). Formaldehyde (GR, 38%)

was purchased from Xilong Scientific.

Treatment of the carbon cloth (CC)

The CC was immersed in aqueous 1.0 M nitric acid for 1 h. Then it was taken out and cleaned thoroughly with deionized water (DIW). After

calcination at 350�C for 3 h in a muffle furnace, it was cooled to room temperature and stored in a dry oven at 60�C.

Synthesis of the precursor Ni(OH)2/CC

Pretreated carbon cloth was used as the working electrode, a platinum sheet was used as the counter electrode, and a Saturated Calomel

Electrode (SCE) was used as the reference electrode. The carbon cloth grown with Ni(OH)2 nano-sheets was electrodeposited in 0.1 M

Ni(NO3)2 aqueous solution at a potential of -1.0 V (vs. SCE) for 500 sec. Then the prepared carbon cloth was washed repeatedly with DIW

and ethanol and stored in a dry oven at 60�C.

Synthesis of the precursor NiO/CC

The prepared Ni(OH)2/CC was placed in a muffle furnace and calcined at 350�C for 3 h. When Ni(OH)2 was oxidized completely to NiO, the

calcination was stopped and cooled to room temperature to complete the preparation of NiO/CC.

Synthesis of the Vo-NiO/CC

To obtain NiO nano-sheet catalysts with oxygen vacancies, the prepared NiO/CC was immersed in 0.1 M NaBH4 aqueous solution for 5 min

and then the solution was discarded and the Vo-NiO/CC was washed with DIW. Then the product was stored in a dry oven.

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Ni(NO3)2
.6H2O Aladdin Co., Ltd CAS: 13478-00-7

KAuCl4 Aladdin Co., Ltd CAS: 13682-61-6

Formaldehyde Xilong Scientific CAS: 50-00-0
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Synthesis of the Au-Vo-NiO/CC

The prepared Vo-NiO/CCwas immersed in an aqueous KAuCI4 (0.1 mM) solution for 2 h. After removal, it was rinsed with DIW and dried in an

oven to obtain the final Au-Vo-NiO/CC electrocatalyst product.

Synthesis of the Au/CC catalyst

The Au/CC catalyst was prepared by the hydrothermal method and used as a control species. The CC was placed in a hydrothermal kettle,

30 mL aqueous AuCl4K (40 mM) was added, and the hydrothermal reaction proceeded at 120�C for 12 h. When the reaction was completed,

the Au/CC catalyst was rinsed well and stored in an oven at 60�C.

Material characterization

The morphology and microstructure were characterized using field emission scanning electron microscopy (TESCAN MIRA LMS, Czech Re-

public) and field emission transmission electron microscopy (FEI Tecnai F20, USA). The X-ray diffraction (XRD) pattern was obtained using a

Rigaku Miniflex 600 instrument (Japan). Detailed analysis of the elemental composition was conducted using X-ray photoelectron spectros-

copy (XPS), performed on a Thermo Scientific Nexsa instrument (USA) with an Al Ka radiation excitation source (hn= 1486.6 eV). ICP-OES/MS.

Electrochemical measurements

All electrochemical measurements are conducted at room temperature using an electrochemical workstation (CHI650E, Chenhua Instrument

Company, Shanghai). Electrochemical measurements are carried out in a three-electrode system. FoamNickel (131 cm2) is used as the work-

ing electrode; mercury oxide is the reference electrode, and platinummesh (131 cm2) is the counter electrode. All potentials are calibrated as

reversible hydrogen electrodes (RHE):

ERHE = EHg/HgO + 0.059 pH + 0.098
Impedance spectrum measurement is conducted from 1000000 Hz to 0.01 Hz at an open circuit potential.

Product analysis

Ion chromatography (Technology Co. Ltd., Qingdao, China), which was equipped with organic anion columns containing the leachate of

2.4mmolNa2CO3 and 6mmolNaHCO3, was employed for the quantification of products from electrochemical oxidation of methanol. Before

chronoamperometry measurements, 100 mL of electrolyte was collected and diluted with DIWwith a ratio of 1:100. The measurement of each

sample was repeated three times, and the concentration of formate ion was calibrated based on standard solutions with known concentra-

tions. The detailed calculations for the Faradaic efficiency (FE) and energy consumption are listed in the supporting information.

The Faradaic efficiency (FE) of product formation was calculated based on the following equation:

FE % =
mole product produced3 n3F

Total chatge passed

Where n is the number of electrons transferred for each production formation, and F is the Faraday constant (96,485 C/mol).

The calculation method for energy-saving efficiency of FOR compared to OER.

Energy Consumption Savings =
EOER � EFOR

EOER
%

Density functional theory (DFT) calculations

The energy profiles of convertingHCHO intoHCOOHand hydrogenwere investigated on as-prepared catalysts by the ViennaAb-initio Simu-

lation Package (VASP) with the revised Perdew-Burke-Ernzerhof (RPBE) of the generalized gradient approximation (GGA). The interaction be-

tween ionic and valence electrons was described by PAW pseudo-potential. Considering the structural features of as-prepared catalysts, Au

nanoparticle was built on carbon and NiO surfaces. A 436 carbon supercell simulated the carbon component, while the NiO surface was

simulated by its typical (202) facet consisting of a 233 supercell containing six O-Ni-O layers. Au nanoparticle was simulated by a cluster

model consisting of 31 Au atoms on the carbon layer or NiO surface. All geometry optimization calculations adopted the 13 10-4 eV energy

convergence and cutoff energy of 400 eV at G point. The spin polarization was considered in the calculations of geometry optimization. After

geometry optimization, the charge density differencemappings and projected density of state (PDOS) were calculated with the cutoff energy

of 400 eV and energy convergence of 13 10-5 eV. The reported standard hydrogen electrode (SHE) model was used to calculate Gibbs free

energy changes (DG) of all reaction steps at U = 0 V vs. SHE at pH = 0, which was used to evaluate the reaction barrier. The following formula

calculated the G:

G=E + H(T) –TS

where E, H (T) and S are the electronic free energy, enthalpy and entropy of the model at T = 298.15 K, respectively.
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QUANTIFICATION AND STATISTICAL ANALYSIS

This study does not include statistical analysis or quantification.

ADDITIONAL RESOURCES

This work does not include any additional resources.
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