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A B S T R A C T   

The water quality index (WQI) is a widely used tool for comprehensive assessment of river en-
vironments. However, its calculation involves numerous water quality parameters, making 
sample collection and laboratory analysis time-consuming and costly. This study aimed to identify 
key water parameters and the most reliable prediction models that could provide maximum ac-
curacy using minimal indicators. Water quality from 2020 to 2023 were collected including nine 
biophysical and chemical indicators in seventeen rivers in Yancheng and Nantong, two coastal 
cities in Jiangsu Province, China, adjacent to the Yellow Sea. Linear regression and seven machine 
learning models (Artificial Neural Network (ANN), Self-Organizing Maps (SOM), K-Nearest 
Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF), Extreme Gradient 
Boosting (XGB) and Stochastic Gradient Boosting (SGB)) were developed to predict WQI using 
different groups of input variables based on correlation analysis. The results indicated that water 
quality improved from 2020 to 2022 but deteriorated in 2023, with inland stations exhibiting 
better conditions than coastal ones, particularly in terms of turbidity and nutrients. The water 
environment was comparatively better in Nantong than in Yancheng, with mean WQI values of 
approximately 55.3–72.0 and 56.4–67.3, respectively. The classifications "Good" and "Medium" 
accounted for 80 % of the records, with no instances of "Excellent" and 2 % classified as "Bad". The 
performance of all prediction models, except for SOM, improved with the addition of input 
variables, achieving R2 values higher than 0.99 in models such as SVM, RF, XGB, and SGB. The 
most reliable models were RF and XGB with key parameters of total phosphorus (TP), ammonia 
nitrogen (AN), and dissolved oxygen (DO) (R2 = 0.98 and 0.91 for training and testing phase) for 
predicting WQI values, and RF using TP and AN (accuracy higher than 85 %) for WQI grades. The 
prediction accuracy for "Medium" and "Low" water quality grades was highest at 90 %, followed 
by the "Good" level at 70 %. The model results could contribute to efficient water quality eval-
uation by identifying key water parameters and facilitating effective water quality management 
in river basins.   
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1. Introduction 

With the rapid urbanization, industrialization and agricultural activities, large amount of river pollution from point or non-point 
sources have posed increasingly challenges over the world [1,2]. The ongoing deterioration of water quality has put safe water supplies 
at risk, causing water pollution incidents and damaging aquatic ecosystems [3,4], especially in coastal cities with more prosperous 
economic development and intensive anthropogenic activities [5,6]. 

Researchers have reported water pollution problems in various coastal cities worldwide. For instance, discharge of domestic 
sewage and industrial effluents in Surat, which locates in river Tapi and extends up to the Arabian Sea in western India [7]; Sevastopol 
Bay near the Black Sea has high levels of petroleum hydrocarbons and organic matter [8]; while Boston Harbor in the USA suffers from 
nutrient (N and P) and organic pollution [9]. Similarly, water pollution exists in coastal cities in China due to earlier development and 
stronger policy support compared to inland cities [10]. For example, Wu et al. [11] used cluster analysis and fuzzy logic approach to 
evaluate trophic status in Daya Bay, South China Sea, indicated that Chlorophyll a and phosphorus were major water pollution; Liu 
et al. [12] applied Organic Pollution Index and Eutrophication Index to quantify water quality status and reported heavy water 
pollution near Luanhe River in Hebei Province, western Bohai Sea; Zhang et al. [13] reviewed heavy metal pollution in coastal cities of 
the East China Sea and found that Cd pollution was serious and posed ecological risks in Hangzhou and Quanzhou. The water quality 
deterioration problems in the Yellow Sea have also garnered attention [14]. Dong et al. [15] analyzed a 16-month water quality dataset 
in Yantai, Shandong Province and reported that water temperature and nutrients were main causes of trophic status in coastal waters; 
Sun et al. [16] evaluated spatiotemporal variations of nutrients in the northern Yellow Sea (Shandong Province) and highlighted the 
influence of human activities. While previous studies have primarily focused on water pollution in Shandong Province adjacent to the 
Yellow Sea [17–19], few have comprehensively evaluated water quality in coastal cities in Jiangsu Province, which has millions of 
residents and is an important part of China’s coastal economic belt [20], suffering from serious water deterioration problems [21]. 

A scientific assessment of water quality is fundamental for local governments to take effective and efficient measures in river 
management [22,23]. Recently, evaluation methods have been developed from separate water quality parameters to comprehensive 
indices, such as pollution index (PI), heavy metal pollution index (HPI), fuzzy comprehensive evaluation, best management practices 
(BMPs), total maximum daily loads (TMDLs) and the European Water Framework Directive [24–28]. Among these, the Water Quality 
Index (WQI) is a non-dimensional index derived from various water quality parameters such as water temperature, pH, dissolved 
oxygen, total suspended solids, ammonia nitrogen and total phosphorus, depending on the availability of data, has become one of the 
most popular tools for evaluating water quality due to its simple architecture compared to physical-processed or hydrological models 
[29–31]. The first WQI model was developed in the 1960s using ten water quality parameters and was later modified to a more 
rigorous version defining parameter selection and weighting [32,33]. As WQI models were applied in different areas and fields, several 
revisions were made based on the original, such as BCWQI developed by the British Columbia Ministry for Environment, Lands and 
Parks or CCME WQI developed by the Canadian Council of Ministers of the Environment [34,35]. Based on summary from Uddin et al. 
[36], WQI calculation process involves selecting water quality parameters, determining parameter weights, and computing the overall 
index. Many researchers employed WQI tools to assess water quality in rivers or lakes in China, such as Lake Taihu, Lake Chaohu, 
Dongjiang River and Luanhe River [37–40]. These studies involved selecting water quality parameters and modifying the corre-
sponding relative weights and normalization factors to suit the conditions of water bodies in China, based on previous literature [41, 
42]. 

While the WQI provides an easy-to-understand statistical information and comprehensive evaluation of water quality status by 
integrating biophysical and chemical indicators [43,44], it requires as many water quality parameters as possible, which necessitates 
considerable time and cost for field sample collection and laboratory analysis [39,45]. To address this limitation, the WQImin was 
proposed, where key water parameters are selected from the original set to calculate WQImin, which had applied by many researchers 
[42,46]. For example, Chen et al. [47] selected six key parameters from ten water quality parameters by principal component analysis 
to calculate the WQImin in Huaihe River, Northeast China; Pan et al. [48] and Qi et al. [49] applied stepwise regression to selected six 
water parameters from fifteen and five from ten, with predicted R2 of 0.938 and 0.903 respectively. While previous studies have 
highlighted the benefits of time and cost savings by predicting the WQI using five or six key water parameters selected through 
traditional statistical analysis methods, there are situations where it may be beneficial to further reduce the number of key parameters 
selected. For instance, the ability to quickly evaluate water quality status with minimal field or laboratory measurements is crucial 
during sudden water pollution incidents or when there is a need to alert authorities about deteriorating water quality [50]. 

Over the decades, with the development of state-of-the-art artificial intelligence algorithms, machine learning models have been 
widely applied in water resources management due to their advantages in describing non-linear or complex relationships between 
input and output variables without considering physical mechanism or dynamic processes [51–53]. Many studies have developed 
machine learning models for water quality prediction, such as Kulisz and Kujawska [54] used five physicochemical parameters as input 
layers to predict WQI in river Warta, Poland by artificial neural networks (ANN) and Najafzadeh and Ghaemi [55] applied support 
vector machines (SVM) to predict biochemical/chemical oxygen demand by nine parameters, highlighting the successes of artificial 
intelligence techniques. Recently, some studies have recommended that ensemble tree-based algorithms, such as random forest (RF) 
and extreme gradient boosting (XGB) performed better in WQI prediction [56,57]. The great potential of machine learning models 
makes it possible to apply even fewer key parameters to obtain higher precision in WQI prediction compared to the WQImin model [58, 
59]. The factors affecting model performance are not only related to the model type or dataset size but also depend on the input 
independent variables used in developing the machine learning models, highlighting the importance of comparing model perfor-
mances between different input datasets [50]. However, to our knowledge, few studies have focused on developing machine learning 
models to predict the WQI and comparing these performances with large dataset in coastal cities adjacent to the Yellow Sea, especially 
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in Jiangsu Province, one of the most developed regions in China suffering from water pollution problems [60,61]. These achievements 
are crucial in determining the minimum numbers of key water parameters and the most reliable model to achieve the highest precision 
in prediction of WQI values or grades (such as “excellent”, “Good” or “Bad” water quality classified by different ranges of WQI values), 
which could provide a time- and cost-saving way in efficient and effective water environment protection. 

In the study, a four-year water quality dataset (2020–2023) containing nine water quality indicators from seventeen rivers in 
Yancheng and Nantong, two coastal cities in Jiangsu Province adjacent to the Yellow Sea, was collected. The main objectives were to 
(1) develop statistical and machine learning models to predict the WQI based on various groups of input variables; (2) select the key 
water parameters and most reliable models in predicting WQI values and grades; and (3) assess spatio-temporal variations of key water 
parameters in the two coastal cities. The research is expected to contribute to effective and efficient river management in the coastal 
cities adjacent to the Yellow Sea, and the methodological framework can also be applied in other rivers worldwide. 

2. Material and methods 

2.1. Study area 

Yancheng and Nantong are two coastal cities in Jiangsu Province, east-central China, situated east of the Yellow Sea (Fig. 1). 
Yancheng (119.45–120.90◦N, 32.57–34.47◦E) is located in the middle of the northern plain of Jiangsu Province, covering an area of 
16,931 km2 with over six million inhabitants [62]. Yancheng has the largest land area and longest coastline in Jiangsu Province, 
occupying 70 % of the tidal flat and 56 % of the coastline length [63]. The terrain of Yancheng is plain landform, including the 
Huanghuai Plain, the Lixiahe Plain, and the Binhai Plain. Over 1000 m of loose alluvial deposits, consisting of clay, sub-clay, and 
sandstone, were formed in Yancheng due to the rise and fall of sea levels and the interaction of the Yangtze River, Yellow River, and 
Huai River throughout history [64]. 

Nantong is situated south of Yancheng, at the forefront of the Yangtze River Delta alluvial plain, lying between 31.68–32.77◦E and 
120.20–121.91◦N, with an area of 8001 km2 and a population of over eight million [65]. The average altitude of Nantong city is below 
5 m, with vast marine plains, salt fields and beaches. Yancheng is in the north-to-south transitional zone from a temperate to sub-
tropical monsoon climate, while Nantong lies in the subtropical monsoon climate zone. The average temperature ranges from 13.7 to 
15.1 ◦C, with an annual precipitation of around 1000 mm and an average evaporation capacity of approximately 1300 mm [66,67]. 

Fig. 1. The map of research area which is lying in eastern China and the locations of nineteen water quality monitor stations in Yancheng and 
Nantong cities. 
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Both cities have numerous rivers, such as Mangshe River and Sheyang River in Yancheng, and Beiling River and Tongqi Canal in 
Nantong, with high river network density of 3.1 km/km2 and 2.22 km/km2, respectively, mainly flowing into the Yellow Sea [68]. The 
Sheyang River is one of the largest rivers in Jiangsu Province, with a maximum depth of about 8 m [69]. The thickness of the aquifer is 
about 10–15 m and depth of groundwater is about 1–4 m in Yancheng [70]. The groundwater depth in Nantong is about 0.45–2.88 m, 
influenced by annual periodic changes of rainfall and tidal water levels along the Yangtze River [71]. 

Farmland is the dominated land use type in Yancheng, with paddy fields and dry land accounting for approximately 35 % and 43 % 
of the area, respectively [72]. Farmland accounts for a lesser percentage in Nantong, around 44 % [73]. In addition to non-point 
pollution caused by agricultural cultivation, rapid urbanization and economic development in the two cities recently caused 
serious problems in environmental deterioration and ecological damage. Simultaneously, several water pollution incidents have 
occurred, posing risks to safe drinking water sources for more than ten million people [74,75]. 

2.2. Water quality dataset and WQI calculation 

To evaluate the water environment in rivers and select the key water parameters for predicting the WQI in the two coastal cities, 
water quality data from nineteen monitor stations (S1 to S19) were collected from Environmental Protection Department in Jiangsu 
province (see Table 1). Stations S1 to S11 are located in Yancheng, while S12 to S19 are in Nantong. In Yancheng, eight monitor 
stations (S2, S3, S5, S6, S7, S8, S9 and S11) were situated at coastal ports alongside the Yellow Sea, with S1 and S4 being upstream 
water quality stations for S7 and S8, respectively. In Nantong, two costal port stations (S18 and S19), one port station to the Yangtze 
River (S13), three stations at floodgates in the coastal regions (S12, S15 and S16) and two stations at canals flowing into sea (S14 and 
S17) were included. 

Nine water quality parameters were considered in the research based on data availability and literature on WQI calculation: water 
temperature (WT/(◦C)), pH, dissolved oxygen (DO/(mg/L)), electrical conductivity (EC/(μ s/cm)), turbidity (Tur/(NTU)), perman-
ganate index (COM/(mg/L)), ammonia nitrogen (AN/(mg/L)), total phosphorus (TP/(mg/L)) and total nitrogen (TN/(mg/L)) [76,77]. 
The dataset ranged from November 2020 to August 2023 and included a total of 18084 records. To compare the water quality status in 
Yancheng and Nantong, a t-test was used to analyze whether significant differences existed between the two cities. 

The WQI values were calculated by: 

WQI=
∑n

i=1CiPi
∑n

i=1Pi
(1)  

where the Ci represents normalized value of parameter i and Pi represents the weight of parameter i. The normalized values and weights 
of all water quality parameters are shown in Table S1, which were recommended by previous literature evaluating water quality in the 
area having similar meteorology and hydrology conditions with the research area in the article [37,38]. Based on the calculated WQI 
values, the water quality can be categorized into five grades (Table S2), accordingly, “excellent” level (91–100), “good” level (71–90), 
“medium” level (51–70), “low” level (26–50) and “bad” level (0-25). 

2.3. Model development 

In the research, various models were applied to predict the WQI using different input groups of water quality parameters, including 
Linear regression Model (LM) and machine learning models. The LM is a simple and fundamental model in statistical analysis, widely 
used to describe linear relationships between one or more independent variable and dependent variable. Seven common machine 
learning models were applied for WQI prediction: Artificial Neural Network (ANN), Self-Organizing Maps (SOM), K-Nearest Neighbors 
(KNN), Support Vector Machines (SVM), Random Forest (RF), Extreme Gradient Boosting (XGB), Stochastic Gradient Boosting (SGB) 
[78,79]. 

ANN is a popular machine learning models reported to be an efficient and accurate tool for water quality analysis due to its 
robustness and capability in solving nonlinear and nonstationary problems [80,81]. An ANN model consists of three kinds of layers 
(input, hidden, and output), which can increase the ability to describe complex relationships. SVM is a kernel-based model that in-
cludes regularization and kernel function (linear, polynomial or radial basis function), providing high flexibility and global optimi-
zation by constructing expert information [82,83]. KNN is a simple but computationally complex algorithm for classification and 
prediction, where nearby records tend to have similar values based on distance measures such as Euclidean, Manhattan, Minkowski 
distance [84]. SOM is a type of non-supervised artificial neural advantageous for visualizing high-dimensional data and interpreting 
nonlinear relationships between multi-dimensional data. In an SOM network, the input layer and output layer (competitive layer) are 
fully connected. In competition, the weights of the winning neuron and its neighboring neurons are adjusted following input patterns, 
allowing the model to achieve self-organizing learning capabilities [85,86]. RF is an ensemble learning algorithm consisting of 
multiple decision trees selected randomly from samples and features, contributing to improved prediction/classification accuracy and 
reduced model variance [86–88]. XGB and SGB are two types of ensemble tree methods that improve prediction accuracy by con-
structing multiple weak learners (classification and regression trees) using the gradient descent architecture [89,90]. 

To minimize the water quality parameters in WQI prediction, different groups of input variables, including partial or the entire 
water quality dataset, were collected. The input variables were determined by Pearson’s correlation analysis, where the corresponding 
water quality parameters were added sequentially into input groups according to their correlation coefficients in descending order. 
These different input groups were set as independent variables to predict the WQI using various statistical and machine learning 
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models. The entire dataset was standardized (0–1 standardization) and then split into two group, with 70 % of the data used for model 
training and the remaining 30 % for model testing [91]. The developed models were validated by a 10-fold cross-validation approach, 
which is widely used for comparing and optimizing model performances during the development of machine learning models [92]. 

2.4. Model evaluation 

The model performances and sensitivity were evaluated using mean absolute error (MAE), root mean squared error (RMSE) and 
coefficients of determination (R2), which are common statistical measures employed in literatures [93–95]. Model efficiency was 
analyzed by the Nash–Sutclife efficiency (NSE) index, widely used in hydrological model assessment initially and recently utilized in 
selection the best machine learning models [96,97]. The calculation formulas are as follows [98]: 

MAE=
1
n
∑n

i=1
|Pi − Ai| (2)  

NSE=1 −

∑n
i=1(Ai − Pi)

2

∑n
i=1(Ai − Ai)

2 (3)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Pi − Ai)
2

n

√

(4)  

R2 =

[∑n
i=1(Ai − Ai)(Pi − Pi)

]2

∑n
i=1(Ai − Ai)

2∑n
i=1(Pi − Pi)

2 (5) 

Fig. 2. The methodological framework for WQI prediction and key water quality parameters selection in the two coastal cities.  
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where Ai and Pi represent the actual and predicted WQI at the ith data; Ai and Pi represent the average value of the actual and predicted 
WQI respectively; and n represents the number of WQI records. 

To analyze the levels of model uncertainty, four statistical indices, including average, maximum, minimum and standard deviation, 
were calculated at all stations [99,100]. Overall, five steps were considered in the research: data collection and pre-processing, 
determining different input variables groups for WQI prediction, development of WQI prediction models, selection of key water pa-
rameters and the most reliable model, and assessment of key water parameters in the two coastal cities. The methodological framework 
of the research is shown in Fig. 2. In the study, all data processing and model developments were completed using the R statistical 
computing platform [101]. 

3. Results and discussion 

3.1. Summary of water quality indicators 

The summary of nine water quality parameters and corresponding WQI at nineteen monitor stations were shown in Table 2. The 
average WT ranged from 17.6 ◦C to 19.9 ◦C with the highest WT recorded in Nantong (S12 and S18) and the lowest WT in Yancheng 
(S3, S5 and S9). The WT in Yancheng was significantly lower than in Nantong (Table 3), mainly due to the geographic locations of the 
cities (Yancheng is north to Nantong city). The S1 and S4 had the lowest pH (7.51), while relatively higher pH existed at S2, S13 and 
S19. The dissolved oxygen (DO) concentration showed no significant difference between the two cities, but variations existed among 
the monitoring stations. Accordingly, the S10 experienced the worst DO conditions (5.93 mg/L), while S3 had the best DO conditions 
(8.71 mg/L), implying the presence of biodegradable organic pollution in the Dongtai River [102]. 

The EC tended to be higher at stations closer to the sea. Consequently, S1, S4 and S13, which were upstream stations of estuary of 
the Yellow Sea or ports to the Yangtze River, had relatively lower EC (<700 μS/cm), while the ports or floodgates in the coastal regions 
had higher EC (ranging from 1330 to 2263 μS/cm). Turbidity values were significant higher in Yancheng than in Nantong, with S7 in 
Yancheng having the highest turbidity (91.8 NTU) and S17 in Nantong having the lowest (12.3 NTU). Turbidity, an index of light 
scattering by suspended particles, has been seen as a surrogate index for suspended sediment in waterbody, and the high turbidity was 
an important cause in formation of coastal tidal flat wetlands in Yancheng [103,104]. Additionally, the construction of floodgates in 
Xinyang Port altered the hydrodynamic characteristics of the river and resulted to sediment deposition alongside the river section, 
providing an explanation for the highest turbidity at S7 [105]. COM and TN concentrations in Yancheng were significantly higher than 
in Nantong, while AN and TP exhibited the opposite pattern. 

According to China’s Environmental Quality Standards for Surface Water (GB 3838-2002), water quality at most stations failed to 
meet the standard of V grade because of high TN concentration. Due to river nitrogen exports were the largest pollution sources in the 
Yellow Sea, our result indicated the importance to control TN pollution in the two coastal cities in order to protect the costal water 
ecosystem [106]. 

3.2. WQI characteristics 

3.2.1. WQI values and grades in the two coastal cities 
The WQI values were slightly higher in Nantong (mean values about 55.3–72.0) than in Yancheng (mean values about 56.4–67.3), 

implying that the water environment was relatively better in Nantong. Based on the WQI values at all monitor stations, the grades of 

Table 1 
Details of water quality monitoring stations in the research area.  

Station name Code Longitude Latitude River River length (km) Area(km2) 

Fenghuangqiao S1 120.048 33.359 Mangshe River 46 870 
Touzengzha S2 120.092 34.373 Abandoned Yellow River 728 4291 
Liuduozha S3 120.255 34.093 Main Irrigation Channel of North Jiangsu 168 564 
Datuanqiao S4 120.316 33.243 Doulong Port 4428 4428 
Sheyanghezha S5 120.346 33.804 Sheyang River 198 4036 
Huangshagangzha S6 120.399 33.736 Huangsha Port 89 865 
Xinyanggangzha S7 120.481 33.621 Xinyang Port 70 2478 
Doulonggangzha S8 120.588 33.460 Doulong Port 55 4428 
Wanggangzha S9 120.708 33.190 Wanggang River 44 498 
Fuminqiao S10 120.774 32.690 Dongtai River 55 479 
Chuandongzha S11 120.805 33.057 Chuandong Port 49 648 
Beilingxinzha S12 120.953 32.606 Beiling River 45 323 
Jiuweigangqiao S13 121.042 32.306 Jiuwei Port 47 2123 
Xiaoyangkou S14 121.049 32.567 Bencha Canal 79 446 
Huandongzhakou S15 121.186 32.479 Jucha River 17 300 
Donganzhaqiao S16 121.376 32.278 Rutai Canal 155 452 
Junandaqiao S17 121.568 31.941 Tongqi Canal 93 530 
Dayanggangqiao S18 121.598 32.063 Tonglv Canal 79 2294 
Tanglugangzha S19 121.829 31.936 Tongqi Canal 93 530  
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Table 2 
Summary of nine water quality parameters and WQI at each monitoring station.  

Code WT (◦C) pH DO (mg/L) EC (μS/cm) Tur (NTU) COM (mg/L) AN (mg/L) TP (mg/L) TN (mg/L) WQI Records number 

S1 18.2 ± 8.4 7.51 ± 0.31 6.91± 3.20 572 ± 83 41.3 ± 18.0 4.25 ± 1.17 0.19 ± 0.14 0.10 ± 0.03 2.00 ± 0.53 61.4 ± 8.9 976 
S2 17.8 ± 8.7 8.06 ± 0.39 8.49± 3.09 652 ± 126 59.0 ± 36.9 3.73 ±0.71 0.08 ± 0.06 0.07 ± 0.03 1.81 ± 0.56 67.0 ± 7.6 897 
S3 17.5 ± 8.7 7.95 ±0.42 8.71 ± 2.86 659 ± 154 79.9 ± 69.0 3.66 ± 1.17 0.10 ± 0.08 0.08 ± 0.05 1.77 ± 0.57 67.3 ± 6.9 961 
S4 18.4 ± 8.4 7.51 ±0.31 6.60 ±2.79 664 ± 129 58.8 ± 20.1 4.18 ± 1.39 0.22 ±0.22 0.14 ±0.06 2.13 ± 0.58 58.9 ± 8.0 982 
S5 17.6 ± 8.4 7.78 ±0.35 7.62 ±3.10 888 ±386 55.0 ± 35.9 5.55 ±1.41 0.28 ±0.23 0.13 ± 0.05 2.56 ±0.58 58.1 ±10.1 954 
S6 17.9 ± 8.7 7.73 ± 0.41 6.62 ±3.39 921 ± 252 39.5 ± 37.1 5.41 ± 1.40 0.28 ±0.26 0.17 ± 0.06 2.49 ± 0.52 56.4 ±10.5 957 
S7 17.9 ± 8.4 7.74± 0.36 7.75 ± 3.20 1032 ± 446 91.8 ± 43.8 4.94 ± 1.16 0.23 ±0.17 0.13 ± 0.05 2.62 ± 0.63 56.6 ± 7.8 951 
S8 18.4 ± 8.6 7.78 ± 0.41 6.92 ± 3.25 1024 ± 462 41.4 ± 20.0 4.62 ± 1.57 0.25 ±0.27 0.13 ± 0.06 2.53 ± 0.69 58.9 ±10.9 958 
S9 17.6 ± 8.4 7.85 ± 0.41 7.38 ± 4.11 1330 ± 518 27.4 ± 16.0 5.21 ±1.39 0.32 ±0.34 0.17 ± 0.09 2.91 ± 1.04 57.7 ±11.6 911 
S10 18.7 ± 8.7 7.75 ± 0.42 5.93 ± 2.64 904 ± 383 29.3 ± 37.2 4.23 ±1.47 0.15 ±0.23 0.14 ± 0.10 2.21 ± 0.70 62.4 ±10.7 942 
S11 

S12 
S13 
S14 
S15 
S16 
S17 
S18 
S19 

18.9 ± 8.5 
19.9 ± 7.9 
19.6 ± 7.2 
19.3 ± 7.8 
19.2 ± 8.1 
18.9 ± 8.3 
19.1 ± 8.1 
19.9 ± 7.7 
18.7 ± 7.8 

7.9 2 ± 0.47 
7.91 ±0.39 
8.08 ±0.17 
7.82 ±0.36 
7.86 ±0.41 
7.87 ±0.32 
7.80 ±0.37 
7.95 ±0.25 
8.03 ±0.34 

8.18 ±3.17 
7.89 ±4.20 
7.74 ±1.53 
6.97 ±3.84 
7.62 ±4.79 
7.46 ±3.22 
7.18 ±4.09 
6.69 ±2.16 
7.40 ±3.57 

1532 ± 809 
1675 ±496 
361 ±56 
1100 ±282 
1442 ±820 
1066 ±732 
611 ±126 
527 ±216 
2263 ±1277 

37.9 ± 31.2 
23.5 ±15.0 
47.3 ±68.6 
27.9 ±19.8 
32.7 ±25.9 
37.3 ±28.9 
12.3 ±7.7 
85.7 ±47.7 
33.9 ±32.6 

5.06 ± 1.53 
6.47 ±1.25 
1.81 ±0.59 
5.39 ±1.38 
5.41 ±1.49 
4.28 ±1.48 
3.67 ±0.84 
2.34 ±1.15 
4.80 ±1.06 

0.31 ±0.40 
0.54 ±0.55 
0.07 ±0.14 
0.45 ±0.54 
0.36 ±0.49 
0.36 ±0.39 
0.12 ±0.09 
0.19 ±0.15 
0.28 ±0.26 

0.17 ± 0.11 
0.26 ±0.15 
0.09 ±0.04 
0.21 ±0.12 
0.21 ±0.12 
0.19 ± 0.11 
0.09 ±0.04 
0.15 ±0.07 
0.16 ±0.07 

3.29 ± 1.04 
2.82 ±1.06 
2.23 ±1.97 
2.50 ±1.83 
2.75 ±1.23 
2.16 ±0.76 
1.69 ±0.45 
2.04 ±0.49 
2.43 ±1.74 

59.6 ±11.1 
55.3 ±10.9 
72.0 ±6.3 
57.2 ±11.5 
57.0 ±11.7 
59.9 ±10.2 
69.3 ±8.7 
62.2 ±8.4 
58.3 ±9.6 

927 
926 
974 
948 
961 
963 
981 
950 
965  
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WQI could be classified (Table S2). According to the average WQI values, the water quality grades were “Medium” at almost all stations 
except “Good” level in S12. 

The percentage of each WQI grades in all stations were shown in Table 4. Based on the calculated WQI values, no record met the 
criteria of “Excellent” water quality. S13 had the most records of “Good” water quality, with percentage of 71.3 %, while S4 had the 
least, with a percentage of 0.9 %. The percentage of "Good" level water quality was below 5 % at four stations in Yancheng (S4, S5, S6, 
and S7) and one station in Nantong (S12). The “Medium” level occupied the most records, with the percentage exceeding 70 % at nine 
out of eleven monitoring stations (S1, S4, S5, S6, S7, S8, S9, S10, and S11) in Yancheng and three out of eight stations (S16, S18, and 
S19) in Nantong. The percentage of “Medium” water quality at other stations were less than 70 %, with a minimum was 27 % in the 
S13. Two stations (S6 and S9) in Yancheng and three stations in Nantong (S12, S14 and S15) had more than 20 % records assessed as 
“Low” level, while four stations (S2 and S3 in Yancheng and S13 and S17 in Nantong) had the least percentage, which less than 5 %. 
The percentage of “Bad” level were less than 2 % and even zero at all monitor stations. 

3.2.2. Correlation between water quality parameters and WQI 
To select the key water parameters that had an important effect on WQI prediction, the correlation between different water quality 

parameters and WQI values was analyzed (Fig. 3). TP was the variable with the most important negative influence on WQI, with a 
correlation coefficient of − 0.72, followed by AN and DO, with correlation coefficients were − 0.66 and 0.63, respectively. COM and pH 
were the next two parameters, with correlation coefficients of − 0.56 and 0.54, respectively. Although TN was the most polluted 
contaminant in the research area based on the results in Section 3.1, it had a relatively weak impact on WQI values, with a correlation 
coefficient of − 0.31. Tur and EC had the lowest correlation coefficients of − 0.22 and − 0.12, respectively, suggesting that they may 
have a minor influence on WQI predictions and could contribute to cost-saving in sample collection by reducing the sampling fre-
quencies of these two parameters. 

Based on the result of the correlation analysis, nine groups of input water quality parameters were determined, as shown in Table 5, 
where one variable was added to each group according to the descending order of correlation coefficients. 

Table 3 
The comparison of water quality in Yancheng and Nantong city with T-test.  

Water quality parameter Yanhceng Nantong p-value 

WT (◦C) 18.1 19.3 <2 × 10− 16*** 
pH 7.78 7.92 <2 × 10− 16*** 
DO (mg/L) 7.36 7.37 0.929 
EC (μS/cm) 922 1127 <2 × 10− 16*** 
Tur (NTU) 51.1 37.5 <2 × 10− 16*** 
COM (mg/L) 4.62 4.26 <2 × 10− 16*** 
AN (mg/L) 0.22 0.30 <2 × 10− 16*** 
TP (mg/L) 0.13 0.17 <2 × 10− 16*** 
TN (mg/L) 2.39 2.32 1 × 10− 4*** 
WQI 60.4 61.5 3 × 10− 11*** 

### The asterisk means significant different existing between the two coastal cities. 

Table 4 
summary of the WQI classification at all monitoring stations.  

Station Excellent (%) Good (%) Medium (%) Low (%) Bad (%) 

S1 0.0 7.6 78.1 14.3 0.0 
S2 0.0 38.4 59.1 2.6 0.0 
S3 0.0 33.8 63.9 2.3 0.0 
S4 0.0 0.9 87.3 11.7 0.1 
S5 0.0 4.8 77.0 17.9 0.2 
S6 0.0 2.0 72.1 25.7 0.2 
S7 0.0 1.2 79.4 19.5 0.0 
S8 0.0 9.9 70.1 19.8 0.1 
S9 0.0 5.5 72.0 20.9 1.6 
S10 0.0 16.7 71.0 11.9 0.4 
S11 0.0 13.3 70.6 15.5 0.6 
S12 0.0 1.6 68.7 28.9 0.8 
S13 0.0 71.3 27.0 1.5 0.2 
S14 0.0 6.5 69.3 23.6 0.5 
S15 0.0 7.6 66.8 24.9 0.7 
S16 0.0 9.9 74.6 15.5 0.1 
S17 0.0 49.4 47.3 3.3 0.0 
S18 0.0 8.7 82.1 9.2 0.0 
S19 0.0 5.4 74.8 19.6 0.2  
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3.3. Model evaluation and selection of key water parameters 

3.3.1. Model evaluation in prediction of WQI values 
The nine input groups, which included different numbers of water quality parameters, acted as independent variables for LM and 

seven machine learning models. All models were validated by 10-fold cross-validation, and the optimized tuning parameters were 
summarized in Table 6. The performance metrics, including MAE, NSE, RMSE and R2 from the training and testing phases, were shown 
in Table S3. 

For the LM, the MAE and RMSE decreased with an increasing number of input variables, while NSE and R2 increased from 0.513 to 
0.825 in the training phase and from 0.508 to 0.838 in the testing phase, indicating that model performance improved with the 
addition of input variables. The performances of most machine learning models were similar to the LM, except for the SOM, whose 
performance improved with an increase in input variables from one to four (TP, AN, DO and COM) but declined when more variables 
were added. This may be related to model optimization to different local optima, resulting in diverse model performance caused by 
various input groups [107,108]. The R2 and NSE for all models that predicted using one variable (TP) ranged from 0.5 to 0.6, except for 
KNN, where the NSE values were 0.412 and 0.381 for the training and testing phases, respectively. For LM and SOM, the highest values 
of NSE and R2 were about 0.8 with nine input variables (all water quality parameters) and four variables (TP, AN, DO, COM) 
respectively. The NSE and R2 were higher than 0.95 for the other models applying nine water quality parameters to predict the WQI, 
and the NSE and R2 from RF, XGB and SGB even higher than 0.99. Similar WQI prediction with ten water quality parameters in North of 
Vietnam reported R2 from RF and SVM were 0.92 and 0.72 respectively, however, it pointed out that RF seemed to have the best model 
performance [109]. The application of RF models in prediction of river WQI were also indicated by previous studies, such as six water 
quality variables to predict WQI grades in the Klang River Basin, Malaysia [110] and prediction from twelve input combinations of 
water quality parameters (the highest R2 = 0.998) in the Illizi region, Algerian [111]. 

The MAE ranged from 0.07 to 0.1 for one input variable and decreased with the addition of water quality parameters, reaching less 
than 0.05 or even 0.01 (XGB) with nine input variables except SOM. The RMSE values had similar characteristics to the MAE and the 
lowest value was obtained with nine water quality parameters by XGB (0.006 in train phase and 0.011 in testing phase). Khoi et al. 
[112] highlighted the highest accuracy of WQI prediction by XGB (R2 = 0.989 and RMSE = 0.107) among boosting-based, decision 
tree-based and ANN-based algorithms in La Buong River. Analysis of water quality in Ujjain city, India reported that XGB had 

Fig. 3. The correlation coefficient between all water quality parameters and the WQI.  

Table 5 
Different combinations of input variables to predict the WQI.  

Group number Input variables 

1 TP 
2 TP, AN 
3 TP, AN, DO 
4 TP, AN, DO, COM 
5 TP, AN, DO, COM, pH 
6 TP, AN, DO, COM, pH, WT 
7 TP, AN, DO, COM, pH, WT, TN 
8 TP, AN, DO, COM, pH, WT, TN, Tur 
9 TP, AN, DO, COM, pH, WT, TN, Tur, EC  
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superiority than ANN, SVM and RF with R2 = 0.969/0.987 in training and testing phase [113]. Uddin et al. [114] also indicated that 
KNN and XGB algorithms outperformed than other commonly used machine learning models in accuracy of WQI prediction in Cork 
Harbour, Ireland. In general, the decision tree-based or ensemble trees algorithms outperformed statistical and neural network models 
due to their ensemble learning ability from multiple weak learning machines or simple trees, which was consistent with previous 
studies [4,115]. 

A model could be considered satisfactory with R2 higher than 0.9 in both the training and testing phases based on recommended 
from Grassi et al. [116]. The LM and SOM with all input groups failed to meet this criterion, while the ANN, KNN, SVM and SGB with 
four water quality parameters (TP, AN, DO, COM) could meet it. The RF and XGB had better performance, with R2 values in the 
training and testing phases higher than 0.9 with three independent variables (TP, AN and DO) to predict the WQI. The comparisons 
between actual and predicted WQI from LM and machine learning models were shown in Fig. 4. The red lines were 1:1 line and if all 
points located in the lines indicated the predicted values were the same as the actual ones and model could exactly describe all in-
fluence factors [117]. According to the figure, it was convenient to find that RF and XGB had the best model performance where all 
points were alongside the red lines and the distances between scatter points and the lines were shrunk with more variables added. The 
points from ANN, KNN, SCM and SGB had the similar patterns with the RF and XGB, but the points distribution strips were wider. The 
points from LM had a reverse L-shaped, which had no visible changes with added input variables, indicating that the LM failed to 
provide suitable prediction for low WQI values. The performance of SOM did not significantly improve more input variables, sug-
gesting that it was unsuited for WQI prediction in the research area. 

3.3.2. Model evaluation in prediction of WQI grades 
In addition to WQI values, WQI grades are also widely applied in water quality evaluation, which had five levels: “Excellent”, 

“Good”, “Medium”, “Low” and “Bad” water quality. In the dataset, most records were assessed as “Medium” water quality (69.0 %) 
while “Good” (15.5 %) and “Low” (15.2 %) levels had similar numbers of records. No record was evaluated as “Excellent” and less than 
0.5 % record as “Bad” level. The prediction accuracy based on each level and the results are summarized in Table 7. The accuracies 
with one variable (TP) from all models ranged from 70 % to 77 %, and the accuracies generally increased with the addition of more 
variables into the models. The maximum accuracies from LM and SOM were about 80 %, and they were about 93 % from ANN and KNN 
with nine independent variables, except SOM (seven independent variables). The accuracies from SVM, RF, XGB and SGB were even 
higher than 95 %. A prediction accuracy of WQI levels higher than 0.85 was considered satisfactory based on the recommendation 
from Freeman and Moisen [118]. Therefore, the ANN, KNN, SVM, XGB and SBG performed well enough with three input variables (TP, 
AN and DO). The RF had even better performance than the XGB, as only two water quality parameters (TP and AN) could provide more 
than 85 % accuracy in predicting WQI levels. 

The models whose prediction accuracies were higher than 85 % with the least numbers of input variables in each WQI grade were 
further analyzed, and the results are shown in Fig. 6. Due to two input variables and three variables in RF providing more than 85 % 
and 90 % accuracy, respectively, the model performances for both were included in the analysis. When the WQI level was “Good”, the 
predicted result was about 60 % “Good” level and 40 % “Medium” level. No record was erroneously predicted to be “Excellent”, “Low” 
or “Bad” levels. The RF_3 (RF with three parameters) had the highest prediction accuracy in the “Good” level (76 %). 

Models preformed best when the actual WQI level was “Medium”, with prediction accuracies all higher than 90 % (about 92 %–96 
%) and the mistaken evaluations were mainly lying in the “Good” and “Low” levels. When the WQI level was “Low”, the prediction 
accuracies were mainly about 85 % while the highest accuracy (90 %) also from RF_3. The prediction performance in “Low” level was 
not as good as the previous levels, with the highest accuracy of 47 % from RF_3, indicating the need for further research to improve 
model performance in predicting “Low” water quality. Overall, the RF model had the best performance in WQI grade prediction 
comparing to other models applied in the research, consistent with Uddin et al. [97] which reported that decision-tree models had 
better performance for prediction coastal water quality. 

3.3.3. Selection of key water parameters 
Based on the performance of prediction models, the input variables group which could explain more than 90 % variance in WQI 

values or have 85 % prediction accuracy in WQI grades, could be identified as the key water parameters. Accordingly, the R2 values 
from RF or XGB models with TP, AN and DO were higher than 0.9. For predicting WQI grades, an accuracy of 85 % was obtained using 
just TP and AN with the RF model, and TP, AN, and DO with ANN, KNN, SVM, XGB, and SGB models. Wu et al. [119] used the stepwise 

Table 6 
Details of tuning parameters and settings of the optimal models for WQI predicting.  

Models Tuning parameters 

LM intercept = True 
ANN size = 5, decay = 1 × 10− 4 

SOM xdim = 3, ydim = 4, user.weights = 0.5,topo = hexagonal 
KNN kmax = 9, distance = 2, kernel = optimal 
SVM radial basis function kernel, sigma = 0.152, C = 1 
RF mtry = 5 
XGB nrounds = 150, lambda = 0, alpha = 0.1, eta = 0.3 
SGB n.trees = 150, interaction.depth = 3, shrinkage = 0.1, n.minobsinnode = 10 

#All optimal models were selected by the smallest RMSE except the LM. 
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multiple linear regression to select six parameters from thirteen water quality indicator to calculate WQImin and Yongo et al. [120] 
selected three key parameters from eight to calculate the WQImin with the R2 of 0.783, which indicated that the most reliable models 
selected in the study had superior performance in applying less number of key parameters and getting higher prediction performance. 
Our result was corresponding to Kisi et al. [121] which pointed out that the tree-based algorithms with no hidden layers like RF had 
better model performance than ANN and Chen et al. [50] proved that tree-based models had significantly better performance than 
other machine learning models in prediction water quality levels. 

Therefore, the three key parameters TP, AN, and DO were determined for predicting WQI values using RF and XGB models, while 
TP and AN were the key parameters for predicting WQI grades with the RF model. Sang et al. [122] identified chlorophyll-a, DO, AN, 
WT, pH, and TN as key water parameters by RF models when analyzed the long-term water quality the Three Gorges Reservoir. Pan 
et al. [48] selected six parameters including total suspended solids, AN, COM, EC, DO, and nitrate-nitrogen to established WQI 

Fig. 4. The actual vs. predicted WQI which were predicted by three (key water parameters determined in the article) and nine (all water pa-
rameters) water quality parameters from different statistical and machine learning models. The comparisons between actual vs. predicted WQI from 
other numbers of variables were present in Fig. S1. 
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Table 7 
Accuracy of grades of water quality based on predicted WQI values from different statistical or machine learning models with nine groups of variables.   

E G M L B Sum 

Actual WQI 0 2812 12476 2741 55 18084 

Model      Accuracy 

LM 1 0 63 12164 927 18 72.8 %  
2 0 7 12322 872 20 73.1 %  
3 0 461 11857 1385 27 75.9 %  
4 0 863 11789 1718 35 79.7 %  
5 0 991 11771 1718 35 80.3 %  
6 0 990 11778 1722 35 80.3 %  
7 0 1007 11745 1754 35 80.4 %  
8 0 1175 11830 1767 39 81.9 %  
9 0 1259 11812 1804 37 82.5 % 

ANN 1 0 654 11599 1421 0 75.6 %  
2 0 654 11644 1550 0 76.6 %  
3 0 1690 11445 2266 6 85.2 %  
4 0 1866 11571 2327 16 87.3 %  
5 0 1886 11518 2342 24 87.2 %  
6 0 1893 11565 2364 19 87.6 %  
7 0 1851 11634 2458 9 88.2 %  
8 0 2257 11851 2547 0 92.1 %  
9 0 2304 11982 2565 4 93.2 % 

SOM 1 0 1277 10938 1427 0 75.4 %  
2 0 1925 10353 1495 0 76.2 %  
3 0 1009 11754 1616 0 79.5 %  
4 0 1068 10954 2514 0 80.4 %  
5 0 1210 11650 1697 0 80.5 %  
6 0 849 11538 1405 0 76.3 %  
7 0 677 11948 1970 0 80.7 %  
8 0 702 11906 1541 0 78.2 %  
9 0 925 10616 2377 0 77.0 % 

KNN 1 0 462 10644 1922 0 72.0 %  
2 0 1332 11557 1680 2 80.6 %  
3 0 1936 11693 2339 12 88.4 %  
4 0 2056 11876 2429 17 90.6 %  
5 0 2080 11947 2406 15 91.0 %  
6 0 2214 11958 2447 19 92.0 %  
7 0 2266 12022 2498 18 92.9 %  
8 0 2369 12126 2492 22 94.1 %  
9 0 2358 12128 2471 23 93.9 % 

SVM 1 0 707 11551 1427 0 75.7 %  
2 0 1389 11390 1468 0 78.8 %  
3 0 1825 11461 2296 11 86.2 %  
4 0 1901 11614 2378 16 88.0 %  
5 0 1901 11690 2396 20 88.5 %  
6 0 1974 11730 2396 16 89.1 %  
7 0 2035 11805 2464 16 90.2 %  
8 0 2448 12099 2570 30 94.8 %  
9 0 2461 12124 2593 33 95.2 % 

RF 1 0 818 11554 1403 7 76.2 %  
2 0 1611 11865 1928 11 85.2 %  
3 0 2149 11977 2460 26 91.9 %  
4 0 2275 12084 2528 32 93.6 %  
5 0 2283 12131 2525 29 93.8 %  
6 0 2312 12186 2526 27 94.3 %  
7 0 2355 12231 2587 33 95.1 %  
8 0 2553 12350 2646 41 97.3 %  
9 0 2548 12373 2644 42 97.4 % 

XGB 1 0 866 11454 1428 2 76.0 %  
2 0 1338 11572 1632 1 80.4 %  
3 0 1911 11656 2347 18 88.1 %  
4 0 2129 11876 2470 33 91.3 %  
5 0 2211 11942 2498 38 92.3 %  
6 0 2260 11983 2519 34 92.9 %  
7 0 2360 12076 2575 36 94.3 %  
8 0 2609 12317 2666 49 97.6 %  
9 0 2672 12340 2679 52 98.1 % 

SGB 1 0 824 11471 1422 0 75.9 %  
2 0 1281 11482 1464 0 78.7 % 

(continued on next page) 
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Table 7 (continued )  

E G M L B Sum 

Actual WQI 0 2812 12476 2741 55 18084 

Model      Accuracy  

3 0 1879 11515 2174 11 86.1 %  
4 0 1943 11678 2306 20 88.2 %  
5 0 1964 11733 2318 26 88.7 %  
6 0 2067 11722 2323 21 89.2 %  
7 0 2101 11829 2379 21 90.3 %  
8 0 2538 12190 2517 28 95.5 %  
9 0 2590 12266 2567 27 96.5 % 

#The E, G, M, Land B mean the Excellent, Good, Medium, Low and Bad water quality, which were five levels of WQI in the research. 

Fig. 5. The mean, maximum (MAX), Minimum (MIN) and standard deviation (SD) of actual and predicted WQI from the RF and XGB with three key 
water parameters. 
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prediction models in the Yellow River. Previous studies pointed out that AN and TP were meaningful key parameters in streams 
influenced by rural and agricultural activities [123,124]. The findings from Zhang et al. [125] supported the result by reporting the 
highest contribution to nutrients loadings from increase of build-up and agricultural land use, indicating the influence of intensive 
human activities exceeded the power of influence of natural processes on rivers. 

3.3.4. Model uncertainty of RF and XGB 
Based on the results from predicting the WQI, the RF and XGB models were selected as the most reliable, with three key water 

parameters identified. To assess the reliability of these models, an analysis of their uncertainty was conducted at each monitoring 
station (Fig. 5). 

The mean of the actual and predicted WQI values were nearly identical across stations, except at S17, where the predicted mean 
was slightly lower than the actual mean during the testing phase. The maximum and minimum predicted values did not significantly 
differ from the actual values, with the exception of stations S15–S17, where the predicted maximum values were lower than the actual 
maximums. The SD of the predicted WQI were similar or slight lower than the actual SD, indicating that the range of predicted WQI 
values was slightly narrower than the actual range. This narrower range is consistent with the finding that the model prediction ac-
curacy was around 50 % for the "Low" water quality grade, suggesting directions for further model improvement. Overall, however, the 
predicted WQI values from the RF and XGB models using the key parameters were reliable when compared to the actual WQI values. 

3.4. Spatio-temporal variations of key water parameters 

The spatio-temporal patterns of the three key water parameters were present in Fig. 7. Generally, TP concentration increased from 
inland to coastal stations (Fig. 7 (a)). Nantong exhibited more severe TP pollution compared to Yancheng, with the most polluted areas 
located along the regional borders of the two cities (stations S9, S10, S11 in Yancheng and S12, S14, S15 in Nantong). Although some 
stations showed relatively low TP levels in 2022, the overall trend was an increase over the study period. According to water resources 
bulletins, the lower annual rainfall in 2022 (407 mm and 180 mm less than 2021 in the two cities, respectively) suggests that TP 
pollution likely originated from non-point sources, such as fertilizer and pesticide runoff from farmlands, and livestock and poultry 
manure [126–129]. 

AN concentration exhibited a similar spatial pattern to TP, increasing from inland to coastal stations (Fig. 7 (b)). This finding was 
corresponding to results from Chabuk et al. [130] which pointed out area downstream of the Tigris River was more polluted. Among 

Fig. 6. The prediction accuracy of models which obtained 85 % accuracy in prediction of WQI classification with the least water quality parameters. 
The ANN, KNN, SVM, XGB and SGB with three water quality parameters obtained 85 % accuracy. The prediction accuracies from RF with two and 
three water quality parameters were higher than 85 % and 90 % respectively. Due to no excellent WQI existed in the dataset, four rating of WQI 
(good, medium, low and bad) were shown in the figures. 
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the coastal stations, the most polluted areas were in the central region and northern part of Yancheng (S2 and S3) and the southern part 
of Nantong (S17, S18, and S19). While AN concentration was relatively stable from 2020 to 2022, nearly all stations witnessed a 60 % 
increase in 2023, highlighting the need for river management efforts to control AN pollution. 

DO concentrations in the southern stations were slightly higher than in the northern stations, suggesting better self-purification 
capacity of the water bodies in Nantong compared to Yancheng (Fig. 7 (c)). Contrary to the spatial variations of TP and AN, DO 
concentrations were lower in upstream stations (S1 and S4) than in coastal stations. DO levels decreased from 2020 to 2022 and 
increased in 2023 at most stations, except for S4 and S10 in Yancheng, which exhibited a continued decline, while DO remained stable 
or slightly increased over the study period in Nantong. 

3.5. Implications and limitations 

The findings of this research have significant practical and policy implications for river protection in coastal cities of Jiangsu 
Province, and could also be applicable to other regions with similar natural processes and anthropogenic disturbances. Accordingly, 
the results contribute to acceptable prediction of river water environment levels in Yancheng and Nantong cities using just two or three 
water quality parameters and machine learning models. This could help local governments take quick measures to control pollutants or 
jointly regulate water quality and quantity during sudden pollution incidents [131,132]. The scientific implications lie in promoting 
the advantages of machine learning models for environmental evaluation, especially when data availability is limited due to 
discontinuous or insufficient monitoring caused by time or funding constraints. This research aims to further propel the development 
and application of artificial intelligence in river protection. 

This research provides clear insights that nutrients are main factors affecting water quality in these coastal cities adjacent to the 
Yellow Sea. This is supported by Rao et al. [72] who reports of high nutrients concentrations and loads in rivers near rural land in 
Yancheng, which still exceed national standard, emphasizing the need for continuous monitoring to combat water pollution and ensure 
water safety. By determining key water parameters using machine learning models, not only can the cost of water quality monitoring 
be effectively reduced, but also valuable guidance can be provided for agricultural practices and industrial production to ensure 
sustainable development of the water environment. 

In this study, RF and XGB models demonstrated excellent performance in predicting WQI values and grades. However, the pre-
diction accuracy for the “Bad” level (<50 %) was not satisfactory compared to other levels (“Good”, “Medium” and “Low” water 
quality). This could be due to the small quantity of data (<0.3 %) or relatively low WQI values in this category. To further improve 
model performance for the "Low" water quality level, which is crucial for identifying and providing early warning of water pollution 
incidents, more water quality data should be collected, and model improvements should be made. 

4. Conclusions 

In this study, the WQI was efficiently assessed and predicted using key water parameters and reliable models for two coastal cities, 
Yancheng and Nantong, adjacent to the Yellow Sea in Jiangsu province, China. The key findings are. 

Fig. 7. The variations of key water quality parameters (TP, AN, DO) and the WQI calculated by all water quality parameters from 2020 to 2023 at 
nineteen monitor stations. 
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(1) Water quality improved from 2020 to 2022 but deteriorated in 2023. Inland stations exhibited better water quality than coastal 
stations, particularly in terms of turbidity and nutrient levels. The water environment in Nantong was relatively better than 
Yancheng, with mean WQI values of 55.3–72.0 and 56.4–67.3, respectively. TN was the most serious pollution, failing to meet 
even the Grade V criteria.  

(2) "Good" and "Medium" water quality classifications accounted for 80 % of the stations. The highest "Good" percentage was 71 % 
(S13, Nantong), while the lowest was about 1 % (S4, S7 in Yancheng and S12 in Nantong). No station achieved "Excellent" level, 
and "Bad" level was recorded at less than 2 %. TP showed the strongest negative correlation (− 0.72) with WQI, followed by AN, 
DO, COM and pH, all of which had correlations above 0.5.  

(3) Performance of all model in predicting WQI values improved with the addition of input variables, except for SOM. The NSE and 
R2 values were even higher than 0.99 with nine input variables from machine learning models such as SVM, RF, XGB and SGB. 
The satisfactory prediction models with the minimum key parameters were RF and XGB with TP, AN and DO, whose NSE and R2 

values were higher than 0.9.  
(4) For predicting WQI grades, SVM, RF, XGB, and SGB achieved 95 % accuracy with nine inputs. RF performed best, with over 85 

% accuracy using just TP and AN. Accuracies exceeded 90 % for "Medium" and "Low" grades and around 70 % for "Good", but 
below 50 % for "Bad" grade with TP, AN, and DO. 

The model approaches to determine the most reliable machine learning models and key water parameters could also be appliable in 
other rivers. This could contribute to quicker WQI predictions by saving costs and reducing time spent on sample collection and 
laboratory analysis, thereby facilitating improvements in water resources management and pollution control in rivers. Model per-
formance in predicting of bad water quality conditions still had a margin to be satisfactory in the article, thus, further research should 
focus on modifying model structures to address the limitation. Although records of poor water conditions, such as sudden pollution 
incidents, occupy a small portion of the data, accurate predictions are crucial for the protection of the water environment. Moreover, 
seasonal changes in water quality may impact WQI prediction; therefore, developing seasonal WQI prediction models to explore the 
influence of seasonal variations will be a focus of further research. 
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