
Ecology and Evolution. 2022;12:e9040.	 		 	 | 1 of 16
https://doi.org/10.1002/ece3.9040

www.ecolevol.org

Received:	24	January	2022  | Revised:	20	May	2022  | Accepted:	1	June	2022
DOI: 10.1002/ece3.9040  

R E S E A R C H  A R T I C L E

Grassland type and seasonal effects have a bigger influence 
on plant functional and taxonomical diversity than prairie dog 
disturbances in semiarid grasslands

Maria Gabriela Rodriguez- Barrera1,2  |   Ingolf Kühn3,4,5  |   Eduardo Estrada- Castillón6  |   
Anna F. Cord1

This is an open access article under the terms of the Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided the original work is properly cited.
©	2022	The	Authors.	Ecology and Evolution	published	by	John	Wiley	&	Sons	Ltd.

1Chair of Computational Landscape 
Ecology, Institute of Geography, 
Technische Universität Dresden, Dresden, 
Germany
2Department of Computational 
Landscape Ecology, Helmholtz Centre for 
Environmental Research –  UFZ, Leipzig, 
Germany
3Department of Community Ecology, 
Helmholtz Centre for Environmental 
Research –  UFZ, Halle, Germany
4Department	of	Geobotany	and	Botanic	
Garden/Institute	for	Biology,	Martin	
Luther	University	Halle-	Wittenberg,	Halle,	
Germany
5German Centre for Integrative 
Biodiversity	Research	(iDiv)	Halle-	Jena-	
Leipzig, Leipzig, Germany
6Facultad de Ciencias Forestales, 
Universidad	Autónoma	de	Nuevo	León,	
Linares,	Nuevo	Léon,	Mexico

Correspondence
Maria	Gabriela	Rodriguez-	Barrera,	Chair	
of Computational Landscape Ecology, 
Institute of Geography, Technische 
Universität Dresden, Helmholtzstr. 10, 
01069 Dresden, Germany.
Email: gabriela.rodriguez-	barrera@tu-	
dresden.de

Funding information
Deutscher	Akademischer	
Austauschdienst;	Rufford	Foundation,	
Grant/Award	Number:	27902-	1

Abstract
1.	 Prairie	 dogs	 (Cynomys	 sp.)	 are	 considered	 keystone	 species	 and	 ecosystem	
engineers	 for	 their	 grazing	 and	burrowing	 activities	 (summarized	here	 as	 dis-
turbances).	As	climate	changes	and	its	variability	increases,	the	mechanisms	un-
derlying	organisms'	interactions	with	their	habitat	will	likely	shift.	Understanding	
the	mediating	role	of	prairie	dog	disturbance	on	vegetation	structure,	and	its	in-
teraction with environmental conditions through time, will increase knowledge 
on	the	risks	and	vulnerability	of	grasslands.

2.	 Here,	we	compared	how	plant	taxonomical	diversity,	functional	diversity	met-
rics,	and	community-	weighted	trait	means	(CWM)	respond	to	prairie	dog	C. mex-
icanus	disturbance	across	grassland	types	and	seasons	(dry	and	wet)	in	a	priority	
conservation	semiarid	grassland	of	Northeast	Mexico.

3.	 Our	findings	suggest	that	functional	metrics	and	CWM	analyses	responded	to	
interactions	between	prairie	dog	disturbance,	grassland	type	and	season,	whilst	
species diversity and cover measures were less sensitive to the role of prairie dog 
disturbance.	We	found	weak	evidence	that	prairie	dog	disturbance	has	a	nega-
tive	effect	on	vegetation	structure,	except	for	minimal	effects	on	C4	and	grami-
noid	cover,	but	which	depended	mainly	on	season.	Grassland	type	and	season	
explained	most	of	the	effects	on	plant	functional	and	taxonomic	diversity	as	well	
as	CWM	traits.	Furthermore,	we	found	that	leaf	area	as	well	as	forb	and	annual	
cover	increased	during	the	wet	season,	independent	of	prairie	dog	disturbance.

4. Our results provide evidence that grassland type and season have a stronger 
effect	than	prairie	dog	disturbance	on	the	vegetation	of	this	short-	grass,	water-	
restricted	grassland	ecosystem.	We	argue	that	 focusing	solely	on	disturbance	
and grazing effects is misleading, and attention is needed on the relationships 
between	vegetation	and	environmental	conditions	which	will	be	critical	to	un-
derstand semiarid grassland dynamics under future climate change conditions in 
the region.
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1  |  INTRODUC TION

Prairie	 dogs	 (Cynomys	 sp.)	 have	 evolved	 together	 with	 grasslands	
(Castellanos-	Morales	 et	 al.,	 2016; Goodwin, 1995;	 Seersholm	
et al., 2020)	 and	 provide	 key	 ecosystem	 engineering	 activities	
which	 make	 them	 valuable	 for	 grassland	 conservation	 (Davidson	
et al., 2010, 2012;	Martinez-	Estevez	et	al.,	2013).	Their	grazing	and	
burrowing	activities	(from	here	on	summarized	as	disturbances)	di-
rectly	and	indirectly	alter	habitat	structure	crucial	for	the	presence	of	
other	species	such	as	the	black-	footed	ferret	(Mustela nigripes; Kotliar 
et al., 2006)	and	the	mountain	plover	(Charadrius montanus; Duchardt 
et al., 2019).	 They	 also	 prevent	 shrub	 encroachment	 (Ceballos	
et al., 2010; Ponce- Guevara et al., 2016;	Weltzin	et	al.,	1997),	main-
tain	 landscape	 heterogeneity	 (Bangert	 &	 Slobodchikoff,	 2000; 
Davidson	&	 Lightfoot,	2006; Gervin et al., 2019),	 increase	 fodder	
quality	 for	 cattle	 by	 reducing	 leaf	 age,	which	 increases	 the	plants	
nitrogen	intake	(Sierra-	Corona	et	al.,	2015)	and	alter	soil	properties	
by	 increasing	soil	heterogeneity,	 infiltration	rates	and	carbon	stor-
age	(Barth	et	al.,	2014;	Martinez-	Estevez	et	al.,	2013).	Despite	the	
positive	impacts	of	prairie	dogs	on	grasslands,	their	disturbance	has	
shown to alter vegetation structure and characteristics considered 
priorities	by	ranchers,	for	example,	by	reducing	biomass	and	cover	
of	 grasses	 as	well	 as	 increasing	 cover	 of	 forb	 and	 annual	 species,	
resulting	in	reduced	fodder	quantity	(Connell	et	al.,	2019)	and	lead-
ing to the assumption that prairie dogs degrade grassland vegeta-
tion and compete with livestock. This in turn has led to prairie dogs 
being	 threatened	 by	 recreational	 shooting	 and	 poisoning	 (Miller	
et al., 2007).	 Although	 some	 conservation	 measures	 have	 been	
taken	 to	preserve	 them	 (e.g.,	 through	agri-	environmental	 schemes	
and	the	designation	of	conservation	areas),	these	have	not	been	able	
to	 change	 the	 socio-	ecological	 views	 of	 local	 communities	 (Miller	
et al., 1994;	SEMARNAT,	2018).

Many	 grasslands	 are	 disturbance-	adapted	 ecosystems	
(Gibson,	2009),	 on	which	 small-	scale	 disturbances	 by	 herbivorous	
burrowing	 mammals	 (including	 prairie	 dogs)	 have	 played	 a	 fun-
damental	 role	 for	 vegetation	 structure	 (Davidson	 et	 al.,	2012).	 As	
climate	 changes	 and	 its	 variability	 increases,	 the	mechanisms	 un-
derlying	 organisms'	 interactions	 with	 their	 habitat	 will	 likely	 shift	
(Baez-	Gonzalez	 et	 al.,	2018).	Understanding	 the	mediating	 role	 of	
prairie	dog	disturbance	on	vegetation	structure,	and	its	interaction	
with environmental conditions through time, will increase knowl-
edge	on	the	risks	and	vulnerability	of	grasslands,	allowing	for	future	
nature-	based	 solutions	 that	 can	 be	 applied	 to	 grassland	 manage-
ment	(Pörtner	et	al.,	2021).	Despite	this,	it	is	only	recently	that	stud-
ies	 have	 started	 to	 include	 interactions	 between	 disturbance	 and	

multiple environmental conditions such as soil, precipitation, and 
temperature	(Ahlborn	et	al.,	2021;	Buzhdygan	et	al.,	2020; Jäschke 
et al., 2020),	and	very	few	have	explored	the	role	burrowing	herbiv-
orous	mammal	disturbances	have	on	grasslands	across	such	environ-
mental	conditions	(Coggan	et	al.,	2018).

Plant functional traits, that is, physiological, phenological, and 
morphological	features,	mediate	between	habitat	disturbances	and	
ecosystem	 functions	 and	 hence	 call	 for	 exploring	 trait	 variations	
within	 communities	 (Hanisch	 et	 al.,	 2020;	 Mouillot	 et	 al.,	 2013).	
Impacts	 on	 these	 traits	would	 easily	 be	 ignored	 by	 looking	 solely	
into	 taxonomic	 diversity,	 which	 in	 most	 cases	 is	 not	 comparable	
between	communities	that	are	dissimilar	or	not	complementary	to	
each	other,	making	generalization	difficult	 (Chao	et	al.,	2000),	and	
loosing	 key	 information	 as	 to	 the	direct	 effects	of	disturbance	on	
biodiversity.	 Functional	 diversity	 indices	 summarize	 species'	 traits	
and	 their	 abundances	 via	 their	 distribution	 within	 the	 functional	
space,	allowing	to	explore	complementary	characteristics	between	
communities	 (Mouchet	 et	 al.,	 2010).	 Furthermore,	 the	 distribu-
tion	 of	 trait	 variations	 can	 be	 determined	 through	 environmental	
filtering	 and	 biotic	 filtering,	 for	 example,	 herbivory,	 which,	 acting	
as a filter, can increase or decrease the presence of certain traits 
(Mayfield	&	Levine,	2010;	Zobel,	1997)	 and	can	 thereby	allow	 for	
the	 identification	of	niche	processes	 (Mason	et	al.,	2005;	Mouillot	
et al., 2013;	Villéger	et	al.,	2008).	Paired	with	community-	weighted	
means	 (CWM),	we	can	analyze	community	trait	diversity	and	their	
trait-	environment	relationships	(Funk	et	al.,	2016;	Miller	et	al.,	2019).

Here, we focus on easy and quick field measured traits that 
have proven useful to identify vegetation responses to grazing, 
semiarid	 habitats	 and	 seasonality	 effects.	 Namely,	 leaf	 area,	 spe-
cific	 leaf	area	 (SLA),	and	vegetative	height	are	proxies	for	multiple	
ecosystem	 functions	 such	 as	 biomass	 production,	 fodder	 quality,	
soil	 fertility,	 water	 regulation,	 and	 competitive	 ability.	 Traits	 such	
as photosynthetic pathway, life history, and growth form relate to 
temperature, CO2	levels,	available	nutrients,	water	efficiency,	as	well	
as	 timing	of	maturity	and	survival	 strategies	 (Hanisch	et	al.,	2020; 
Moles	 et	 al.,	2009).	 For	 instance,	 plant	 responses	 to	 grazing	 have	
been	shown	to	directly	alter	the	distribution	and	variation	of	specific	
leaf	area	and	height,	 favoring	shorter	species	and	 lower	SLA	(Díaz	
et al., 2006; van der Plas et al., 2016).	Short	plants,	with	small	SLA	
and	 leaf	 area,	 are	 associated	with	efficient	water	use	 (Blumenthal	
et al., 2020;	Wellstein	et	al.,	2017; Zhao et al., 2020).	Furthermore,	
the selected traits are key to relate vegetation structure dynam-
ics with ecosystem conditions within semiarid grasslands. These 
grasslands	have	evolved	through	droughts	and	disturbance	regimes	
since	 the	 Pleistocene,	 developing	 high	 numbers	 of	 C4,	 perennial,	
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and	shrub	species	(Gibson,	2009).	To	the	best	of	our	knowledge,	no	
other	study	has	yet	examined	the	functional	 relationship	between	
different grassland types and the response of vegetation to distur-
bance	by	prairie	dogs.	Additionally,	 in	 this	 study,	 traits	were	mea-
sured directly in the field, allowing us to evaluate environmentally 
induced	shifts	on	the	selected	traits	(phenotypic	plasticity;	Nicotra	
et al., 2010).	Furthermore,	no	study	that	we	know	of	has	analyzed	
how these relationships change over the seasons.

Our	aim	here	was	to	investigate	vegetation	responses	(taxonomi-
cal	and	functional)	to	disturbance	by	the	prairie	dog	species	Cynomys 
mexicanus	(endemic	to	northeastern	Mexico;	Figure 1)	during	the	wet	
and dry season, throughout the different grassland types present in 
the	Grassland	Priority	Conservation	Area	 (GPCA)	 of	 El	 Tokio.	We	
assume	that	functional	diversity	metrics	will	be	more	sensitive	and	
will help to provide an in- depth understanding of the mechanisms 
or	 patterns	 of	 community	 changes.	Understanding	 these	 complex	
ecosystem interactions will help us understand the functional re-
sponse	of	vegetation	to	prairie	dog	disturbance,	which	will	aid	future	
management	 and	 conservation	 strategies	 to	 protect	 both,	 prairie	
dogs and vegetation diversity to maintain the essential functions of 
semiarid	grassland	under	future	environmental	changes.	We	there-
fore	used	the	traits	mentioned	above	and	calculated	plant	functional	
diversity	and	CWM	traits	for	the	prairie	dog-	dominated	grasslands	
within	GPCA	El	Tokio,	to	answer	the	following	questions:	(1)	Is	there	
an	effect	of	prairie	dog	disturbance	on	taxonomical	and	functional	
plant	 diversity,	 and	 how	 are	CWM	 traits	 being	 filtered?	 (2)	 Is	 the	
effect	 constant	 across	 different	 grassland	 types?	 (3)	Does	 season	
influence	these	effects?

2  |  METHODS

2.1  |  Study area and species

This	study	was	conducted	 in	the	GPCA	El	Tokio	 (Figure 2a)	within	
the	Chihuahuan	Desert	in	northeastern	Mexico.	El	Tokio,	designated	
as	 a	 GPCA	 by	 the	 Commission	 for	 Environmental	 Cooperation	 in	

2009	due	to	its	ecological	importance	and	threatened	nature	(CEC,	
2010),	covers	an	area	of	2.3	million	ha	and	encompasses	the	Mexican	
states	of	Nuevo	Leon,	San	Luis	Potosi,	Zacatecas	and	Coahuila.	The	
area	 falls	 within	 the	 Meseta	 Central	 matorral	 ecoregion,	 consid-
ered	as	a	Desert	&	Xeric	Shrubland	Biome	(Dinerstein	et	al.,	2017),	
except	 for	 the	mountain	grasslands	within	 it,	which	fall	within	 the	
Sierra	Madre	Oriental	pine-	oak	forests	ecoregion.	The	climate	of	El	
Tokio	 is	semiarid	with	mean	annual	temperatures	between	16	and	
18°C,	 a	mean	 temperature	 of	 the	 driest	 quarter	 (January–	March)	
of	13.9°C	and	a	mean	temperature	of	the	wettest	quarter	 (July	to	
September)	 of	 19.5°C	 (Baez-	Gonzalez	 et	 al.,	 2018).	 Precipitation	
ranges	 from	 300	 to	 600 mm,	 with	 an	 average	 monthly	 precipita-
tion	 of	 the	 driest	 quarter	 at	 14.0 mm	 (January–	March),	 here	 con-
sidered as the dry season, and an average monthly precipitation of 
the	 wettest	 quarter	 being	 60 mm	 (July–	September),	 here	 consid-
ered	 as	wet	 season,	 (Baez-	Gonzalez	 et	 al.,	2018).	 Altitude	 ranges	
from	1550	to	1800 m	a.s.l.,	and	the	area	has	at	 least	five	different	
soil	 types,	mostly	 gypsum	 and	 xerosol	 soils	with	 low	 calcium	 car-
bonate	content	and	a	 loamy-	silt	 texture,	 followed	by	 loamy-	clayey	
soils	 and	 loamy-	sandy	soils	 (Pando	Moreno	et	al.,	2013).	The	area	
consists	mostly	of	natural	halophyte	and	gypsophilous	shrublands,	
with	some	remaining	grasslands	covering	approximately	35,000 ha.	
These grasslands are today highly fragmented due to anthropogenic 
activities related to livestock and agriculture. Grassland vegetation 
is	mostly	dominated	by	the	families	Poaceae,	Chenopodiaceae,	and	
Frankeniaceae	(Rzedowski,	2006).	The	dominant	graminoid	species	
are Muhlenbergia villiflora var. villiflora, Scleropogon brevifolius, and 
Bouteloua dactyloides. The region is also rich in endemic species such 
as Nerisyrenia mexicana, Frankenia margaritae, Calylophus hartwegii 
spp. Maccartii, and Gaillardia comosa	(Estrada-	Castillón	et	al.,	2010).	
Grasslands	in	the	area	tend	to	be	of	short-	grass	nature	and	are	char-
acterized	by	discontinuous	vegetation	patches	and	high	proportions	
of	 bare	 soil,	 which	 is	 common	 in	 dryland	 ecosystems	 (Valentin	 &	
Poesen, 1999).	A	 limited	number	of	studies	have	been	carried	out	
on	 plant	 competition	 in	 this	 habitat,	 but	 based	 on	 its	 halophytic-	
gypsophilous soils and its semiarid characteristics, we can assume 
that	water	availability,	herbivory	and	fertile	soil	patches	play	a	key	

F I G U R E  1 Prairie	dog	(Cynomys 
mexicanus)	looking	out	of	its	burrow
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role	(Blumenthal	et	al.,	2020; Escudero et al., 2015).	Adding	more	to	
the	ecological	significance	of	GPCA	El	Tokio	is	the	fact	that	the	area	
holds the last remaining colonies of C. mexicanus. The species is very 
similar	in	physical	and	behavioral	characteristics	to	the	better	known	
C. ludovicianus	 (Castellanos-	Morales	et	al.,	2016).	It	 is	considered	a	
social	species,	and	forms	colonies	that	are	composed	of	multiple	bur-
rows	that	can	be	up	to	15 m	long	and	are	usually	spaced	out	by	sev-
eral	meters	from	each	other	(Whicker	&	Detling,	1988).	Colonies	can	
only	be	found	in	grasslands	with	little	to	no	slope	(no	more	than	8%	
inclination),	with	 shortgrass	 and	usually	 surrounded	by	vegetation	
with	higher	height	(SEMARNAT,	2018).

2.2  |  Site selection and experimental design

2.2.1  |  Data-	driven	identification	of	grassland	types

Based	 on	 C. mexicanus	 unique	 presence	 in	 grassland	 habitat,	 we	
identified	all	grasslands	in	the	area	based	on	available	land	use	maps	
(NALCMS,	2017;	Scott	Morales	&	Vela	Coiffier,	2017).	To	select	a	
representative sample of sites covering the varying environmental 
conditions present in these grasslands, a data- driven clustering ap-
proach	was	used.	We	used	a	self-	organizing	map	 (SOM),	a	 type	of	
artificial neural network that is trained using competitive learning 
and well suited to finding clusters within data, as implemented in 
the	 package	 kohonen	 version	 3.0.11	 (Wehrens	 &	 Buydens,	 2007; 

R version 4.0, R Core Team, 2020).	Using	geospatial	environmental	
data	(see	Supporting	Information	S1	for	the	specific	data	sets	used),	
this analysis clustered all grassland locations into eight groups, four 
of	which	occupy	most	of	GPCA	El	Tokio	and	are	therefore	here	con-
sidered	as	distinct	grassland	types	(Figure 2a):	(1)	Agricultural	(Agri):	
characterized	by	agricultural	land	use,	xerosol	haplic	soils,	total	an-
nual	precipitation	between	300	and	400 mm	and	 temperature	be-
tween	14	and	16°C;	(2)	Arid:	characterized	by	solonchak	orthic	soils,	
low	elevation,	and	total	annual	precipitation	from	200	to	400 mm;	(3)	
Calcareous	(Calc):	characterized	by	xerosol	calcic	soils,	total	annual	
precipitation	between	300	and	400 mm,	low	elevation	and	tempera-
tures	between	14	and	16°C	and	(4)	Mountain	(Mount):	characterized	
by	litosol,	high	precipitation	ranging	from	400	to	500 mm,	tempera-
ture	between	14	and	16°C	and	high	elevation.

2.2.2  |  Study	plots

First, a total of 49 independent grassland patches with active prai-
rie	dog	colonies	(from	here	on	locations)	were	identified	with	the	
use	of	previous	literature	(Ceballos	et	al.,	1993;	Estrada-	Castillón	
et al., 2010;	 Scott-	Morales	 et	 al.,	 2004;	 Treviño-	Villarreal	 &	
Grant, 1998),	up-	to-	date	Google	Earth	Imagery	and	historical	and	
present	delimitations	of	colonies	(provided	by	the	Mexican	organi-
zations	 PROFAUNA	 and	Organización	 Visa	 Silvestre	 A.C.-	OVIS).	
Three locations for each of the previously identified grassland 

F I G U R E  2 GPCA	El	Tokio	study	site	in	Mexico	(encompasses	the	states	of	Nuevo	Leon,	San	Luis	Potosi,	Zacatecas	and	Coahuila)	and	
experimental	design.	(a)	Grassland	types	and	selected	grassland	locations	(3	in	each	grassland	type).	(b)	Experimental	design:	Each	grassland	
location	had	one	site	with	active	prairie	dog	burrows	(WP)	and	one	site	without	(WOP).	A	30 × 30	m	quadrant	was	delimited	in	each	site	with	
6	plots	each,	further	divided	into	two	temporal	subplots
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types were selected, resulting in a total of 12 locations. Preference 
was	 given	 to	 locations	 where	 community-	based	 conservation	
projects	 had	 already	 been	 implemented	 or	 are	 currently	 imple-
mented	 by	 local	 organizations	 to	 ensure	 feasibility	 of	 the	 study	
results	 for	 future	conservation	efforts	within	GPCA	El	Tokio.	As	
a	second	filter	locations	had	a	spatial	distance	of	at	least	5	km	be-
tween	them,	due	to	prairie	dogs	average	dispersal	distance	(Garret	
&	Franklin,	1988).	Easy	access	to	the	locations	was	considered	as	
a	 third	 filter.	Previously,	 grazing	by	 cattle	had	been	documented	
in	most	 locations	 (Estrada-	Castillón	et	al.,	2010),	but	no	detailed	
information	was	available	on	the	number	of	cattle	or	stocking	den-
sities. Therefore, as a fourth filter, and to control for any differ-
ences	between	locations	with	cattle	or	no	cattle	grazing,	we	only	
selected	 locations	where	 cattle	 activity	was	 observed,	 or	where	
fresh	feces	were	found	during	field	explorations.	Once	the	12	loca-
tions	were	chosen,	the	areas	with	active	prairie	dog	burrows	(WP)	
and	 without	 active	 prairie	 dog	 burrows	 (WOP)	 were	 delimited	
using	Google	Earth	 Imagery.	 In	each	delineated	area,	a	30 × 30 m	
random	square	was	placed	using	ArcGIS.	Squares	were	congruent	
to	 the	cardinal	directions.	WP	and	WOP	 locations	can	be	distin-
guished	by	the	presence	of	prairie	dog	activity,	feces,	and	burrows	
being	not	overgrown	by	vegetation,	filled	with	dirt	or	covered	by	
spider	webs.	 Based	 on	 visual	 assessments,	 we	 found	 vegetation	
within	 the	 delimited	 WP	 and	 WOP	 locations	 to	 be	 mostly	 ho-
mogenous and generally consistent with descriptions of Estrada- 
Castillón	et	al.	(2010).	However,	we	also	ensured	that	the	30 × 30 m	
squares	were	 representative,	 for	example,	did	not	 fall	on	a	 road,	
or	on	a	woody	shrub	patch.	A	total	of	24	30 × 30 m	squares	(from	
here	on	sites)	were	selected.	All	WP	and	WOP	sites	had	a	minimum	
distance	of	1	km,	except	for	sites	in	one	of	the	mountain	locations,	
where	WP	and	WOP	sites	were	only	300 m	apart	due	 to	 lack	of	
alternative	areas.	Selected	sites	in	mountain,	calcareous,	and	arid	
grasslands	are	within	colonies	that	range	from	12	to	6700 ha	and	
have	 decreased	 in	 size	 since	 2002	 (between	 12%	 and	 77%	 loss;	
Table	S2_1).	Agricultural	grasslands	have	been	in	constant	land	use	
change	since	2002	(based	on	Google	Earth	imagery)	and	have	been	
used	for	agriculture	since	1950	(Treviño-	Villarreal	&	Grant,	1998).	
They	are	usually	cultivated	for	3–	4 years	and	then	abandoned	for	
5 years	or	more	 (Estrada-	Castillón	et	al.,	2010).	Using	Esri	World	
Imagery	 Map	 (Esri	 et	 al.,	 2021),	 we	 could	 identify	 the	 average	
burrow	 density	 which	 ranged	 from	 0.89	 to	 3.71	 depending	 on	
the	location.	Averages	were	obtained	from	multiple	randomly	se-
lected	30 × 30	m	squares	(more	information	on	Table	S2_1).	Within	
each	site,	six	random	5 × 5	m	plots,	aligned	along	the	sites	edges.	
Randomization	of	these	plots	was	performed	by	blindly	throwing	
six	60 cm	diameter	rings	to	fall	at	random.	In	the	case	the	ring	or	
plot	area	overlapped,	the	rings	would	be	thrown	again.	The	burrow	
closest	 to	 the	 rings	was	 selected	 as	 the	 center	of	 the	WP	plots.	
Whenever	the	selected	site	had	 less	than	6	burrows	within	 it,	all	
burrows	were	selected	for	plots	and	the	 leftover	plots	were	ran-
domly	selected	and	assigned	as	non-	burrow	plots.	To	account	for	
seasonal	effects,	 the	5 × 5	m	plots	were	 further	halved	 to	create	

two	5 × 2.5	m	subplots,	which	from	here	on	are	considered	as	sea-
sonal	subplots.	Seasonal	subplots	were	assigned	as	eastern	(rainy	
season)	and	western	(dry	season;	Figure 2b)	halves.	Data	collection	
took	place	during	August–	September	2019	(rainy	season)	and	dur-
ing	December	2019–	January	2020	(dry	season).

2.3  |  Vegetation sampling and trait measurements

We	 compiled	 a	 full	 list	 of	 species,	 based	 on	 the	 list	 provided	 on	
Estrada-	Castillón	et	al.	(2010),	for	each	subplot.	Plant	cover	for	each	
species	was	estimated	using	a	modified	Daubenmire	plot	and	its	cover	
scale	method	(Daubenmire,	1968)	where	each	species	is	individually	
assessed and classified within one of 6 designated cover classes and 
assigned	a	midpoint	value:	 (1)	0%–	5%	=	2.5%;	 (2)	5%–	25%	=	15%;	
(3)	25%–	50%	=	37.50;	(4)	50%–	75%	=	62.50%;	(5)	75%–	95%	=	85%;	
(6)	95%–	100%	=	97.50%.	A	total	of	six	traits	were	selected	due	to	
the	feasibility	to	obtain	them	in	the	field	(Reich,	2014)	and	their	rela-
tionship	with	key	grassland	functions	in	vegetation	studies	(Garnier	
et al., 2007).	Three	traits,	vegetative	height	(cm),	leaf	area	(cm2),	and	
habit,	were	assessed	in	the	field	following	the	guidelines	by	Pérez-	
Harguindeguy	et	al.	 (2013).	Vegetative	height	was	measured	for	at	
least 2 healthy individuals per species, for each plot. Leaves were 
collected for at least 5 healthy individuals of each species within each 
location. Leaf area was measured within 3– 5 h after collection using 
the	app	LeafByte,	version	1.3.0.	(Getman-	Pickering	et	al.,	2020).	Due	
to	 the	COVID-	19	virus	 restrictions	 in	Mexico,	 the	measurement	of	
leaf	dry	mass	was	not	possible,	so	leaf	area	was	used	instead	of	SLA.	
Plant	habit	was	considered	as	erect	or	prostrate	to	further	specify	
the	species	life	form.	Traits	obtained	from	the	literature	were	life	his-
tory	 (annual	or	perennial),	photosynthetic	pathway	 (C3	or	C4),	and	
life	 form	 (forb,	 graminoid,	 sub-	shrub,	 or	 shrub).	Many	of	 the	 plant	
species	in	GPCA	El	Tokio	have	been	poorly	studied;	therefore,	we	did	
not use other traits. Furthermore, it was difficult to find information 
even	for	the	traits	commonly	used	in	plant	trait	studies	(Blumenthal	
et al., 2020).	We	could	obtain	traits	for	63	of	92	of	the	species,	which	
together	accounted	for	96%	of	the	total	cover.

2.4  |  Diversity metrics

2.4.1  |  Taxonomic	diversity	metrics

Species	richness	and	cover	were	averaged	across	the	6	seasonal	sub-
plots	in	each	site	using	R	version	4.0.3,	as	were	all	subsequent	analy-
ses.	Species	evenness	was	obtained	by	using	 the	 Inverse	Simpson	
index	(considered	as	“simpson”)	 in	the	“adiv”	package	version	2.1.1	
(Pavoine,	2020).	The	index	is	calculated	as	follows:	

�

1∕
∑

jp2ij
�

∕Si ,	
where Si	is	the	number	of	species	in	a	community,	pij is the relative 
abundance	of	species	 j in the community i .	This	index	was	selected	
due	 to	 its	high	 sensitivity	 to	both	dominant	and	 rare	 species	with	
symmetry	between	them	(Beisel	et	al.,	2003;	Smith	&	Wilson,	1996).
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2.4.2  |  Functional	diversity	metrics

Three	functional	metrics	based	on	Villéger	et	al.	(2008)	and	Mouillot	
et	 al.	 (2013)	were	 selected:	 functional	 evenness	 (FEve),	 functional	
divergence	 (FDiv),	and	functional	specialization	 (FSpe).	These	met-
rics	were	obtained	by	plotting	 all	 traits	 jointly	 in	 functional	 space	
and measuring the positions within this space in relation to the 
species	abundances	and	trait	distributions	within	it.	To	do	this,	we	
first	 calculated	gower	dissimilarities	using	daisy	 from	 the	 “cluster”	
package	 version	 2.1.2	 (Maechler	 et	 al.,	2021).	We	 also	 correlated	
gower	dissimilarity	matrices	obtained	by	the	cluster	package	and	the	
gawdis	package	version	0.1.3	(de	Bello	et	al.,	2021),	which	is	a	type	of	
weighted	gower	dissimilarity.	We	found	both	dissimilarity	matrices	
were	correlated	and	decided	to	keep	the	“cluster”	gower	distance,	
recommended	by	Villéger	et	al.	(2008;	Table	S2_2).	FEve	measures	
the	changes	in	abundance	distributions	within	the	functional	space	
based	on	a	Minimum	spanning	tree	(MST);	this	metric	indicates	how	
abundances	 of	 species	 are	 distributed	 throughout	 the	 functional	
space,	and	it	 is	higher	when	species	abundances	and	species	func-
tional distance are similar. FDiv measures the changes in distance 
to	the	mean	abundance	(center)	 in	relation	to	species	abundances,	
that	is,	if	species	with	high	abundance	have	a	greater	distance	than	
the	overall	mean,	divergence	will	be	higher.	FSpe	measures	changes	
in	abundance	of	generalist	species	(defined	as	species	close	to	the	
center	of	the	functional	space)	relative	to	the	specialist	species	(spe-
cies	that	have	extreme	trait	combinations)	by	measuring	the	mean	
distance from the rest of the species pool in the functional space. 
Higher	FSpe	would	indicate	a	higher	community	functional	unique-
ness	relative	to	the	pool	of	species	present	 (Cornwell	et	al.,	2006; 
Mouillot	et	al.,	2013;	Villéger	et	al.,	2008).	Functional	richness	(FRic)	
was	not	selected	because	it	is	highly	correlated	with	taxonomic	rich-
ness	 (Botta-	Dukát	 &	 Czúcz,	2016;	 Villéger	 et	 al.,	2008).	 A	 fourth	
metric	 of	 functionality,	 Rao's	 quadratic	 entropy	 (RaoQ),	 was	 ob-
tained	with	the	“FD”	package	version	1.0.12	(Laliberté	et	al.,	2015).	
The	index	follows	the	formula:

where pi is considered as S-	species	community	characterized	by	the	
relative	abundance	vector	p = (p1, p2, …, ps)	such	that	

∑S

i=1
pi = 1, and 

dij	is	the	difference	between	the	i- th and j-	th	species	(dij = dji and dii = 0).	
RaoQ	measures	changes	in	the	sum	of	weighted	abundances	of	pair-
wise	functions	between	species.	It	combines	the	information	provided	
by	FRic	and	FDiv	and	is	suitable	for	detecting	trait	convergence	and	
divergence. The higher the measure, the higher the dissimilarity and 
abundances	of	traits	within	the	habitat	(Botta-	Dukát	&	Czúcz,	2016).	
To	obtain	all	previously	mentioned	 indices	of	functional	diversity,	all	
numerical	variables	were	standardized	to	zero	mean	and	unit	standard	
deviation	to	reduce	the	relative	influence	of	variables	in	different	or-
ders	of	magnitude	prior	to	analysis.	To	examine	the	overall	differences	
between	individual	traits,	we	also	obtained	CWM	using	the	“FD”	pack-
age	(Laliberté	et	al.,	2015).

2.5  |  Statistical analysis

As	an	exploratory	analysis	to	identify	dissimilarities	in	composition	
of	species,	we	identified	unique	species	between	WOP	and	WP	and	
grassland type gamma diversity. Furthermore, a Correspondence 
Analysis	 (CA)	 was	 used	 for	 all	 grassland	 types	 together	 and	 for	
each	grassland	type	independently	using	the	“vegan”	package,	ver-
sion	2.5-	7	(Oskanen	et	al.,	2020).	We	chose	this	method	because	
it	 is	 a	 great	 tool	 to	 simplify	 tables,	 and	 identify	 patterns	 of	 the	
relative	composition	without	emphasizing	differences	in	abundant	
species	(David,	2017).	To	further	test	how	grassland	types,	prairie	
dog	grazing	and	seasons	relate	to	taxonomic,	functional	trait	and	
CWM	measures,	generalized	and	linear	mixed	models	were	fitted.	
Prairie	dog	disturbance	 (WP	and	WOP),	 season	 (wet	or	dry),	and	
grassland	type	(Agri,	Arid,	Mount	and	Calc)	were	treated	as	fixed	
factors and grassland location names as a random factor to ac-
count	 for	 the	variability	between	 locations.	Residuals	were	used	
to	examine	normality	and	homoscedasticity.	Most	 response	vari-
ables	were	 transformed	 to	 achieve	 a	 normal	 distribution.	 Linear	
mixed	models	were	fitted	using	the	lme4	package	version	1.1.27.1	
(Bates	et	al.,	2015);	RaoQ,	CWMheight,	CWMleaf	area,	C3	cover	
were log transformed, whilst for annual cover, prostrate cover, 
forb	 cover,	 sub-	shrub	 cover	+1	was	 added	before	 they	were	 log	
transformed.	Species	richness	was	not	transformed,	and	was	ana-
lyzed	using	a	generalized	 linear	mixed	model	 following	a	Poisson	
distribution.	FEve,	FDiv,	Fspe,	and	evenness	 range	between	zero	
and	one;	therefore,	they	were	analyzed	using	the	glmmTMB	pack-
age	version	1.1.2.3	with	a	beta	distribution	 (Brooks	et	al.,	2017).	
Degrees of freedom, F- tests and χ2 for glmms and lmms were 
obtained	 using	 parametric	 bootstrap	with	 10,000	 iterations	 and	
the	Kenward–	Roger's	approximation,	 respectively.	Both	methods	
were	obtained	from	the	pbkrtest	package	version	0.5.1	 (Halekoh	
&	Højsgaard,	2014).	 For	models	 that	 followed	 the	 beta	 distribu-
tion,	ANOVA	tables	from	the	car	package	(Fox	&	Weisberg,	2019)	
were used with type II sums of squares whenever there was no 
interaction, and type III sums of squares when there was an inter-
action.	We	considered	all	the	predictor	variables	and	their	interac-
tions	to	be	biologically	 important	and	hence	 included	them	all	 in	
the	full	model.	Best	fit	models	were	chosen	based	on	multi-	model	
inference	using	dredge	from	the	MuMIn	package	version	1.42.1	by	
comparing	AICc	(Bartoń	et	al.,	2018;	Table	S2_3)	and	selecting	the	
model	with	the	lowest	one.	Once	the	best	fit	model	was	selected,	
Tukey's	HSD	post-	hoc	test	was	used	to	compare	levels	within	vari-
ables	using	the	emmeans	package	version	1.5.4	(Lenth,	2021)	and	
marginal pseudo- R2	(R2

m
)	values	were	obtained	with	the	Nakagawa	

et	al.	(2017)	method	available	in	the	performance	package	version	
0.8.0	 (Lüdecke	 et	 al.,	2021).	 Error	 probabilities	 (p-	values)	 are	 in-
terpreted	as	 recommended	by	Muff	et	al.	 (2021)	with	 respect	 to	
their strength of evidence rather than significance, with the fol-
lowing	suggested	ranges:	(1)	1	to	0.1	=	little	or	no	evidence;	(2)	0.1	
to 0.05 =	Weak	evidence;	(3)	0.05	to	0.01	=	Moderate	evidence;	
(4)	0.01	to	0.001	=	Strong	evidence	and	(5)	0.001	to	0.0001	= Very 
strong evidence.

RaoQ =

S−1
∑

I=L

s
∑

J=I+1

dijpipi ,
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3  |  RESULTS

3.1  |  Effects on composition and diversity 
measures

A	total	of	92	species	were	recorded	(Table	S2_4).	There	were	no	clear	
dissimilarity	patterns	of	composition	between	WOP	and	WP	in	any	
of	the	grassland	types,	except	for	agricultural	sites,	where	the	mayor	
species	contributing	to	dissimilarity	were	Kochia scoparia, Cucurbita 
foetidisima, Conyza coulteri, Selenia dissecta, Sporobolus cryptandrus, 
and Heliopsis. Parvifolia species. These species appeared either only, 
or	in	some	cases,	less	frequently	in	WP	than	in	WOP	sites	(Figure 3),	
results on individual grassland types showed no clear dissimilarity 
patterns	between	WOP	and	WP	(Figure	S2_1).

Overall, models of measures related to species diversity, that 
is, richness, evenness, and cover showed no evidence of interac-
tion	effects	with	disturbance,	but	all	measures	were	influenced	by	
grassland	type.	Species	richness	was	influenced	by	season	and	there	
was	only	moderate	 evidence	of	 cover	 being	 influenced	negatively	
by	 prairie	 dog	 disturbance.	 Mountain	 grasslands	 had	 the	 highest	
richness	and	cover	compared	to	all	other	grassland	types,	but	had	
the lowest evenness. The wet season positively affected richness 
compared to the dry season. There was moderate evidence of prai-
rie	dog	disturbance	having	interactive	effects	on	functional	diversity	
measures,	specifically	on	FSpe	and	RaoQ	(Table 1; Figure 4).	There	
was strong evidence of grassland type moderating the effect of prai-
rie	dog	disturbance	on	FSpe.	This	effect	was	particularly	important	
for agricultural grasslands where sites with prairie dogs had a lower 
FSpe	 than	 sites	without	 prairie	 dog	disturbance	 (Figure 4f).	 RaoQ	
showed	 strong	evidence	of	being	 influenced	by	 the	 interaction	of	
prairie	dog	disturbance	and	season.	Grasslands	without	prairie	dog	

disturbance	 (WOP)	 had	 higher	 RaoQ	 during	 the	 dry	 season	 com-
pared with the wet season. There was no evidence of differences 
in	RaoQ	between	seasons	for	grasslands	disturbed	by	prairie	dogs	
(WP).	 In	 the	wet	 season,	 no	 evidence	was	 found	 regarding	differ-
ences	between	conditions	of	prairie	dog	disturbance,	in	contrast	to	
the	dry	 season	where	RaoQ	values	varied	greatly	between	condi-
tions.	This	indicates	that	prairie	dog	disturbance	did	not	cause	func-
tionally	 unique	 communities.	Moreover,	 communities	 without	 the	
disturbance	where	unique	only	 in	agricultural	grasslands,	and	only	
during	the	wet	season	in	the	case	of	RaoQ.	Furthermore,	trait	val-
ues	seem	to	be	similar	in	all	communities,	as	indicated	by	the	lack	of	
evidence	that	FEve	was	influenced	by	any	of	the	variables	nor	their	
treatments or interactions. This was also the case for Fdiv, which 
showed	no	evidence	after	pairwise	post-	hoc	analysis	(Table	S2_5).

3.2  |  Trait filtering effects

Effects	of	prairie	dog	disturbance	were	captured	only	by	C4	cover	
and	 graminoid	 cover,	 whereby	 graminoid	 cover	was	mediated	 by	
an	 interaction	with	season	and	C4	differences	were	explained	by	
grassland	type	and	prairie	dog	disturbance	but	not	by	an	 interac-
tive	effect.	Grassland	type	had	an	effect	on	almost	all	traits	except	
for	 annual	 cover,	 forb	 cover	 and	 leaf	 area	which	were	 influenced	
mostly	 by	 season	 (Table 1; Figure 5).	 There	was	 strong	 evidence	
of mountain grasslands having the highest cover, compared to arid 
and agricultural grassland types in perennial cover, and to all other 
grassland types in erect and graminoid cover. There was weak evi-
dence	of	prostrate	cover	being	higher	in	calcic	grasslands	compared	
with	 agricultural	 sites	 (Table	S2_5).	Annual	 cover,	 forb	 cover,	 and	
CWM	leaf	area	revealed	strong	evidence	of	 increasing	during	the	

F I G U R E  3 Correspondence	analysis	
(CA)	for	all	grassland	types	based	on	
species	abundances	and	sites.	Species	
names are shown in red and sites 
names	are	shown	in	black.	Eigenvalue/
proportion	explained:	CA1	=	0.86/9.2%,	
CA2	=	0.83/8.8%.	Species	symbols	can	be	
found	in	Table	S2_4
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wet season. There was only weak evidence of C3 species cover hav-
ing	 a	 higher	 response	 to	 the	wet	 season	 (Table	 S2_5).	 There	was	
moderate	evidence	of	C4	cover	being	higher	in	mountain	grassland	
and compared to agricultural and arid grassland types which had a 
lower	C4	cover	and	higher	in	WOP	sites.	There	was	no	evidence	of	
graminoid	cover	having	differences	between	seasons	for	WP	sites.	

On	 the	contrary,	WOP	sites	showed	contrasting	effects	between	
seasons,	having	almost	double	graminoid	cover	during	the	dry	sea-
son, revealing moderate evidence of a positive effect compared to 
the	WP	 sites.	 There	was	no	evidence	of	CWM	vegetation	height	
having an effect on any of the grassland types, sites or seasons con-
ditions	(Table	S2_5).

Explanatory variables nDF dDF Test p value Figures

Diversity measures

Richness χ2

Grassland type 3 — 19.23 .00 Figure 4a

Season 1 — 13.62 .00 Figure 4d

Cover F- test

Grassland type 3 8 21.53 .00 Figure 4b

Prairie	dog	disturbance 1 35 4.182 .05 Figure 4e

Evenness χ2

Grassland type 3 — 20.23 .00 Figure 4c

FSpe χ2

Grassland type 3 — 4.35 .23

Prairie	dog	disturbance 1 — 32.30 .00

Grassland	type × Prairie	dog	
disturbance

3 — 31.68 .00 Figure 4f

RaoQ F- test

Prairie	dog	disturbance 1 34 26.50

Season 1 34 8.31

Prairie	dog	disturbance × Season 1 33 81.69 .00 Figure 4g

Traits

Perennial cover F- test

Grassland type 3 8 8.00 .01 Figure 5a

Erect cover F- test

Grassland type 3 8 13.51 .00 Figure 5b

Prairie	dog	disturbance 1 35 3.53 .07

Graminoid cover F- test

Grassland type 3 8 10.85 .01 Figure 5c

Prairie	dog	disturbance 1 34 2.77 .11

Season 1 34 1.61 .21

Prairie	dog	disturbance × Season 1 33 4.35 .05 Figure 5i

C4 cover F- test

Grassland type 3 8 5.66 .03 Figure 5d

Prairie	dog	disturbance 1 34 5.77 .02 Figure 5h

Annual	cover F- test

Season 1 34 15.68 .00 Figure 5e

Forb	cover F- test

Season 1 34 12.34 .00 Figure 5f

CWM	Leaf	area	cover F- test

Prairie	dog	disturbance 1 34 3.04 .09

Season 1 34 6.66 .01 Figure 5g

Note:	The	table	shows	the	test	type	χ2 and F- test. nDF, numerator degrees of freedom; dDF0, 
denominator degrees of freedom; Emmeans test p- adjust, Tukey, comparisons of levels within the 
variables	from	Tukey's	HSD	post-	hoc	test	that	show	weak	to	very	strong	evidence	of	having	an	effect.

TA B L E  1 Results	of	linear	and	
generalized	linear	mixed	models	to	
test how grassland types, prairie dog 
grazing	and	seasons	relate	to	taxonomic,	
functional	and	CWM	trait	measures.	
Prairie	dog	disturbance	(WP	and	WOP),	
season	(wet	or	dry)	and	grassland	type	
(Agri,	arid,	mount	and	calc)	were	treated	
as	fixed	factors	and	grassland	location	as	a	
random	factor.	The	table	is	shown	only	for	
final	models	selected	based	on	Akaike's	
information criterion for small samples 
(AICc)
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4  |  DISCUSSION

4.1  |  Effects of prairie dog disturbance on diversity 
and CWM means

Disturbance	by	prairie	dogs	has	been	shown	to	affect	multiple	veg-
etation	 parameters	 (Connell	 et	 al.,	 2019; Duchardt et al., 2021).	
Therefore,	 the	main	objective	of	 this	 study	was	 to	 investigate	 the	
effect	 prairie	 dogs	 have	 on	 the	 GPCA	 El	 Tokio	 grasslands,	 using	
functional	 and	 taxonomic	 diversity	measures.	 In	 contrast	 to	 stud-
ies	 stating	 that	 prairie	 dog	 disturbance	 has	 negative	 effects	 on	
cattle	 feed	 efficiency,	 for	 example,	 forage	 consumption	 (Derner	
et al., 2006; Vermeire et al., 2004),	we	found	only	moderate	evidence	
of	higher	cover	in	WOP	sites.	Furthermore,	the	majority	of	taxonom-
ical	and	functional	metrics	tested	in	our	study	were	not	affected	by	
disturbance,	and	instead	were	mostly	controlled	by	grassland	type	
and	season.	This	results	 indicate	that	environmental	variables	play	
a	 stronger	 role	 than	 grazing	 and	 animal	 disturbances	 on	 vegeta-
tion in shortgrass- dominant grasslands and is in line with studies in 
similar	ecosystems	(Grinath	et	al.,	2019; Jäschke et al., 2020;	Török	
et al., 2018).	Moreover,	this	strong	environmental	effect	on	vegeta-
tion	is	in	line	with	a	recent	study	from	Augustine	and	Derner	(2021),	
which	suggested	prairie	dog	disturbance	did	not	impact	cattle	mass	
gain negatively due to the influence of topography, temporal and soil 
variability.	 It	 is	also	 important	to	note	that	prairie	dog	disturbance	
had	no	effects	on	the	CWM	height	and	leaf	area,	traits	that	are	usu-
ally	associated	with	grazing	pressure	(Blumenthal	et	al.,	2020;	Díaz	
et al., 2006).	 In	 fact,	CWM	 leaf	 area	was	only	dependent	on	 sea-
son	and	there	was	no	evidence	that	CWM	height	was	affected.	We	
found	moderate	to	weak	evidence	that	prairie	dog	disturbance	did	
filter C4 cover, which was higher in sites without prairie dog distur-
bances.	This	 can	be	explained	by	 the	 fact	 that	prairie	dogs	prefer	
to	 feed	on	grasses	 (Mellado	et	al.,	2005).	Most	grasses	present	 in	
the study area are C4, specifically the grasses with highest cover 
such as Sporobolus cryptandrus in agricultural grasslands, Aristida 
pansa in calcareous grasslands and Bouteloua dactyloides in moun-
tain	grasslands,	and	so	a	lower	cover	would	be	expected.	However,	
a	recent	study,	covering	a	period	of	72 years	(Augustine	et	al.,	2017),	
showed	 that	 some	of	 these	C4	species	are	being	outcompeted	by	
C3	 species	 in	 the	 long	 term,	 especially	 in	 the	 absence	 of	 grazing.
In	addition,	we	 found	that	 functional	diversity,	but	not	species	di-
versity, responded to the joint effects of grassland type and sea-
sonality	with	prairie	dog	disturbance,	confirming	not	only	the	need	
of	 including	 multiple	 environmental	 variables	 and	 their	 interac-
tions	 to	 identify	 ecosystem	 complexity	 (Dainese	 et	 al.,	2015),	 but	
also the importance of considering functional diversity to further 
understand	 the	 instances	of	 these	patterns	 (Cadotte	et	 al.,	2011).	
Prairie	dog	disturbance	moderated	FSpe	 in	agricultural	grasslands,	
possibly	explained	by	the	suppression	of	rapid	growing	species	with	
extreme	 traits	 (e.g.,	 Salsola kali, Machaeranthera tanacetifolia, and 
Kochia scoparia)	that	have	higher	LA	and	height	and	are	able	to	grow	
and dominate in agricultural grasslands without prairie dog distur-
bance;	which	was	also	corroborated	by	the	high	dissimilarity	of	these	

species	in	the	Correspondence	Analysis.	These	species	grow	despite	
the	lack	of	ideal	water	availability	and	soil	conditions,	because	they	
benefit	from	the	gain	of	resources	due	to	nutrients	from	fertilization	
that	remain	after	abandonment	(Laliberté	et	al.,	2012).	Prairie	dogs	

F I G U R E  4 Comparison	of	marginal	effects	on	different	diversity	
indices	(both	taxonomic	and	functional).	Effects	are	shown	only	for	
fixed	effect	estimates	of	uncertainty.	The	graphs	are	shown	only	
for models revealing very strong, strong and moderate evidence of 
effects.	For	models	with	no	interaction	effects	with	disturbance	
(a–	e):	Results	with	p < .05	are	represented	by	lowercase	letters,	
levels	sharing	a	letter	have	no	evidence	of	being	affected.	For	
models	with	interactions	(f–	g):	(f)	FSpe:	Results	comparing	prairie	
dog	disturbance	in	the	same	grassland	type	are	shown	with	
p < .05,	at	least	moderate	evidence	of	effects	between	grassland	
types	are	indicated	by	lowercase	letters.	(g)	RaoQ:	Differences	
between	prairie	dog	disturbance	in	the	same	season	are	shown	
with p < .05.	Difference	of	WP	between	seasons	is	represented	
by	A1;	difference	of	WOP	between	seasons	is	represented	by	A2.	
Differences	between	WOP-	dry	and	WP-	wet	are	represented	by	b;	
differences	between	WP-	dry	and	WOP-	wet	are	represented	by	a
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need	short	vegetation	for	predator	avoidance	(Hoogland,	1995),	and	
their	suppressing	effect	has	been	shown	in	previous	literature	(Hale	
et al., 2020; Ponce- Guevara et al., 2016).	However,	as	 the	mecha-
nism	behind	this	suppression	is	unclear,	further	studies	are	needed	
to determine whether prairie dogs colonize agricultural grasslands 
before	 or	 after	 rapid-	growing	 species	 have	 a	 chance	 to	 grow,	 or	
whether	 other	 mechanisms	 are	 at	 work	 (e.g.,	 drought	 avoidance;	
Blumenthal	et	al.,	2020).	We	further	found	no	evidence	of	positive	
or	negative	effects	on	FEve	and	FDiv	between	grassland	types,	nor	
between	any	other	of	the	measured	conditions.	This	indicates	that	

traits	were	mostly	unchanged	in	their	distribution	and	abundance	be-
tween communities in the functional space volume. Our results are 
in	accordance	with	the	studies	of	Carmona	et	al.	(2012)	and	Jäschke	
et	al.	(2020),	showing	that	these	plant	traits	are	usually	unaffected	
by	grazing	under	restrictive	water	availability	conditions.	Therefore,	
we can assume that the redundancy of traits is most likely increas-
ing due to the restrictive environmental conditions, such as gypsum 
soil	and	low	precipitation	in	GPCA	El	Tokio,	which	only	well-	adapted	
species	can	withstand	 (Mouillot	et	al.,	2013;	Villéger	et	al.,	2008).	
Likewise,	the	restrictive	environmental	conditions	might	also	explain	
the	 lack	of	clear	composition	dissimilarity	patterns	between	WOP	
and	WP	by	the	correspondence	analysis	(Figure 3; Figure S2_1).

It is also important to mention that other aspects not fully con-
sidered in our study could positively influence the minor effects we 
found	of	prairie	dog	disturbance	on	vegetation	functional	and	taxo-
nomical	diversity.	For	example,	we	here	focus	on	grassland	ecosys-
tems.	We	found	that	WP	sites	contribute	 to	 the	overall	 landscape	
gamma	diversity	(Table	S2_4).	Yet,	WP	sites	have	lower	species	rich-
ness,	and	a	lower	number	of	unique	species	than	WOP	sites	within	
all	grassland	types.	However,	other	studies	(e.g.,	Baker	et	al.,	2012)	
have shown the strong positive effects prairie dogs have on over-
all	 landscape	diversity	when	considering	both	shrub	and	grassland	
ecosystems.	Furthermore,	prairie	dogs	have	been	shown	to	increase	
multiple ecosystem functions, such as soil productive potential and 
water infiltration, which could have direct or indirect effects on veg-
etation,	 but	 was	 not	 considered	 for	 this	 study	 (Martinez-	Estevez	
et al., 2013).

4.2  |  Grassland types as important effect drivers

We	found	that	grassland	types	and	not	prairie	dog	disturbance	ex-
plained	most	of	 the	effects	on	plant	 functional	 and	 taxonomic	di-
versity	as	well	 as	CWM	of	 traits.	There	was	very	 strong	evidence	
that mountain grasslands were positively affected in almost all 
measures,	 usually	 followed	 by	 arid,	 calcareous	 and	 agricultural	
grasslands,	 respectively.	This	can	be	explained	by	the	tendency	of	
mountain	 grasslands	 to	 have	 leptosol	 soils,	 highly	 variable	 slopes	
as well as higher elevation and lower atmospheric pressure, leading 
to	higher	precipitation	and	lower	temperatures	(Anjos	et	al.,	2015; 
Gommes, 2002).	These	conditions	are	known	to	often	cause	an	in-
crease	in	plant	species	richness	and	cover	(Buzhdygan	et	al.,	2020; 
Speed	et	al.,	2013).	 In	addition,	Pando	Moreno	et	al.	 (2013)	 found	
that	many	of	the	sites	in	mountain	grasslands	within	GPCA	El	Tokio	
had	a	lower	level	of	electrical	conductivity	and	absence	of	gypsum,	
whilst sites that fall within calcareous, arid and agricultural grass-
land types had at least some percentage of gypsum in them. Gypsum 
soils are known to limit plant life due to their chemical and physical 
properties	which	restrict	plant	growth	(Escudero	et	al.,	2015),	 it	 is	
therefore	 likely	 that	 the	presence	of	 gypsum	acts	 as	 a	 habitat	 fil-
ter	for	CWM	traits.	Calcareous	and	mountain	grasslands	had	simi-
lar	filtering	effects	on	perennial	and	C4	cover.	The	effect	could	be	
explained	because	calcareous	soils	have	 lower	gypsum	 levels;	 and	

F I G U R E  5 Comparison	of	marginal	effects	on	trait	filtering	
model	effects.	Effects	are	shown	only	for	fixed	effect	estimates	
of uncertainty. The graphs are shown only for models revealing 
very strong, strong, and moderate evidence of effects. For models 
with	no	interactions	(a–	h):	Results	with	p < .05	are	represented	by	
lowercase letters, levels sharing a letter had weak to no evidence of 
effects.	For	models	with	interactions:	(i)	graminoid	cover:	Results	
comparing	prairie	dog	disturbance	in	the	same	season	are	shown	
with p < .05
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higher precipitation compared to the arid grasslands, therefore 
being	less	restrictive	for	vegetation,	and	having	a	similar	response	as	
mountainous	grasslands	for	vegetation.	Arid	grasslands	in	this	study	
are	also	dominated	by	gypsum	soils	and	have	higher	temperatures	
which, together with low precipitation, result in higher level of arid-
ity	which	can	act	 as	 a	 strong	 filter	 for	most	CWM	traits	 (Munson	
et al., 2013;	Vicente-	Serrano	et	al.,	2012).	Similarly,	the	strong	filter-
ing effect of agricultural grasslands is most likely due to the land use 
history	of	agricultural	grasslands,	which	allows	the	establishment	of	
new,	less	adapted,	species	(Gustavsson	et	al.,	2007),	opposed	to	the	
restrictive	conditions	faced	by	vegetation	on	gypsum	and	calcareous	
soils	(Meyer	et	al.,	1992).	Future	studies,	disentangling	the	climatic	
and edaphic effects of these grasslands types are needed to prop-
erly understand patterns of their interactive effect on vegetation 
(Le	Bagousse-	Pinguet	et	al.,	2017).	On	the	other	hand,	the	Inverse	
Simpson	evenness	showed	an	opposite	result	compared	to	the	other	
diversity metrics for which grassland type had a strong effect. It was 
higher	 for	 agricultural	 grasslands,	which	may	 be	 explained	 by	 the	
fact	that	the	index	assigns	a	higher	evenness	value	to	communities	
with	an	almost	equal	amount	of	rare	and	dominant	species	(Smith	&	
Wilson,	1996).	Hence,	the	higher	the	number	of	rare	species	is,	the	
lower	is	the	Inverse	Simpson	evenness	(Magurran,	2004).

4.3  |  Seasonal effects

Season	affected	species	richness,	cover	of	species	with	annual	life	
history,	 forb	growth	 form,	and	CWM	 leaf	 area	 independently	 to	
prairie	 dog	 disturbance.	 Leaf	 area	 and	 other	 leaf	 traits	 are	 con-
sidered	 to	 be	directly	 related	 to	 the	 amount	 of	water	 plants	 re-
ceive,	especially	in	dry	habitats	(Sack	&	Holbrook,	2006;	Wellstein	
et al., 2017).	Most	 plants	 thus	 have	 higher	 leaf	 area	 during	 the	
wet	 season.	 Additionally,	 multiple	 studies	 have	 shown	 that	 an-
nual	and	forb	species	strongly	respond	to	increased	precipitation	
levels	 (Spence	 et	 al.,	2016;	 Yan	 et	 al.,	2015).	 This	 is	most	 likely	
due to their high germination rates and seed innate and water- 
controlled dormancy, as well as specific dispersal adaptations 
(Freas	&	Kemp,	1983;	Miranda	et	al.,	2009)	which	together	allow	
them	to	grow	when	the	best	conditions	occur.	 In	 line	with	other	
studies from shortgrass and arid environments, our study shows 
that	 seasonality	 plays	 a	 bigger	 role	 on	 annual	 plant	 species	 and	
forb	cover	than	prairie	dogs.	A	result	which	has	shown	to	be	dif-
ferent	 in	 mixed-	grass	 prairie	 habitats	 where	 precipitation	 most	
likely	 does	 not	 play	 such	 a	 big	 role	 (Baker	 et	 al.,	 2012;	 Pérez-	
Camacho et al., 2012).	Furthermore,	we	think	the	lack	of	evidence	
on the positive effect of prairie dogs on annual cover increases 
(Augustine	et	al.,	2014),	could	be	explained	by	the	specialized	soil	
types	which	allow	only	for	certain	species	to	be	present,	and	the	
presence of Muhlenbergia villiflora on all grassland types. However, 
understanding	these	dynamics	was	beyond	the	scope	of	this	study	
and further research is needed to unravel these relationships.

Moreover,	 season	 modulated	 the	 effect	 of	 prairie	 dog	 distur-
bance	 on	 RaoQ.	 We	 found	 strong	 evidence	 that	 this	 index	 was	

different	 between	 prairie	 dog	 disturbance	 conditions	 during	 the	
dry	season,	where	disturbed	sites	had	a	lower	RaoQ.	No	difference,	
however,	was	found	between	disturbance	conditions	during	the	wet	
season. Interestingly, this result is consistent with a recent 3- year 
study	conducted	in	the	highly	distinct	mixed-	grass	prairies	of	north-
eastern	Wyoming	(Connell	et	al.,	2019).	The	similar	results	could	be	
due	to	the	influence	of	WOP	mountain	grasslands	in	GPCA	El	Tokio,	
which have taller vegetation compared to the vegetation in all other 
grassland	types	(Table	S2_6).	Furthermore,	we	found	no	differences	
in	graminoid	cover	for	sites	with	prairie	dog	disturbance	between	the	
dry	and	the	wet	season.	Additionally,	there	was	strong	evidence	that	
sites	 without	 prairie	 dog	 disturbances	 increased	 graminoid	 cover	
during the dry season. This is most likely due to prairie dogs feeding 
on graminoids after the wet season, which reduces the grass cover 
that	could	remain	in	the	dry	season	but	allows	to	maintain	an	overall	
stable	graminoid	cover	throughout	the	year	 (Mellado	et	al.,	2005).	
However,	due	to	the	nature	of	drylands	to	have	variable	precipita-
tion	(D'Odorico	&	Bhattachan,	2012),	further	long-	term	studies	are	
needed to monitor these interactions, especially in light of future 
climate change projections for the area, which predict an increase 
in	rainfall	variability	(Baez-	Gonzalez	et	al.,	2018).	Likewise,	although	
our	results	show	interactions	between	seasonality	and	disturbance,	
these	effects	only	show	short-	term	trends.	Sampling	multiple	years	
and	seasons	 is	necessary	 to	obtain	an	overall	pattern	and	 identify	
the	mechanisms	behind	it,	as	so	many	variables	are	interdependent	
and	most	likely	have	non-	linear	effects	(Paruelo	et	al.,	2008).

5  |  CONCLUSION

To	the	best	of	our	knowledge,	this	is	the	first	study	to	examine	the	
effects	 of	 prairie	 dog	 disturbance	 on	 vegetation	 using	 functional	
diversity metrics. Like previous research, our findings support the 
idea	 that	 community	 trait-	based	 measures	 are	 closely	 associated	
with	 abiotic	 (grassland	 types	 and	 season)	 and	 biotic	 (prairie	 dog	
disturbance)	filtering,	compared	with	taxonomy-	based	approaches.	
Tailored	management	strategies	using	vegetation	traits	as	a	proxy	to	
understand	vegetation	responses	to	environmental	pressures	will	be	
key for the conservation and restoration of this threatened, semiarid 
ecosystem. The use of traits can provide information on how and 
to	what	extend	 is	vegetation	being	most	affected	by	 the	environ-
ment,	helping	managers	to	focus	efforts	on	the	traits	that	are	being	
most	impacted.	Additionally,	we	found	that	prairie	dogs	had	only	a	
minor negative effect on vegetation cover, even though our study 
design	 focused	on	burrows	 and	 surrounding	disturbance,	 favoring	
the	detection	of	stronger	differences	between	conditions	with	and	
without active prairie dog colonies. The effects of prairie dogs on C4 
and graminoid cover were particularly demonstrated in the dry sea-
son, with the latter negatively affecting functional diversity only in 
the dry season, while offsetting it in the wet season. Our study pro-
vides further evidence of the large impact environmental conditions 
have on these short- grass, water- restricted grassland ecosystem. It 
is	 therefore	 likely	 that	plant	 responses	will	 be	negatively	 affected	
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under future climate change scenarios. Hence, longer- term interan-
nual	variation	 studies	combining	both	 types	of	diversity	measures	
should	be	undertaken.	Future	studies	in	GPCA	El	Tokio	can	take	ad-
vantage	of	the	fixed	 location	of	prairie	dog	disturbance,	as	well	as	
varying environmental conditions within the relatively small area, to 
assess	responses	of	different	grasslands	to	disturbance	and	environ-
mental change.
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