
OPEN

ORIGINAL ARTICLE

Additive effects of gastric volumes and macronutrient
composition on the sensation of postprandial fullness
in humans
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BACKGROUND/OBJECTIVES: Intake of food or fluid distends the stomach and triggers mechanoreceptors and vagal afferents. Wall
stretch and tension produces a feeling of fullness. Duodenal infusion studies assessing gastric sensitivity by barostat have shown
that the products of fat digestion have a greater effect on the sensation of fullness and also dyspeptic symptoms than
carbohydrates. We tested here the hypothesis that fat and carbohydrate have different effects on gastric sensation under
physiological conditions using non-invasive magnetic resonance imaging (MRI) to measure gastric volumes.
SUBJECTS/METHODS: Thirteen healthy subjects received a rice pudding test meal with added fat or added carbohydrate on two
separate occasions and underwent serial postprandial MRI scans for 4.5 h. Fullness was assessed on a 100-mm visual analogue scale.
RESULTS: Gastric half emptying time was significantly slower for the high-carbohydrate meal than for the high-fat meal, P= 0.0327.
Fullness significantly correlated with gastric volumes for both meals; however, the change from baseline in fullness scores was
higher for the high-fat meal for any given change in stomach volume (P= 0.0147), despite the lower energy content and faster
gastric emptying of the high-fat meal.
CONCLUSIONS: Total gastric volume correlates positively and linearly with postprandial fullness and ingestion of a high-fat meal
increases this sensation compared with high-carbohydrate meal. These findings can be of clinical interest in patients presenting with
postprandial dyspepsia whereby manipulating gastric sensitivity by dietary intervention may help to control digestive sensations.
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INTRODUCTION
The main functions of the stomach are to receive and
accommodate food, break it down chemically and mechanically
and deliver the digesta to the small intestine. This process is
regulated by the central and enteric nervous system and
neuroendocrine cell networks within a chain of ingestive
(cognitive, sensory) and postingestive (nutrient feedback, meta-
bolic responses) satiation and satiety mechanisms.1–6 The sense of
fullness and satiation increases with the volume of food ingested7

and a linear relationship is present between these sensations and
gastric volumes on 3D ultrasound and magnetic resonance
imaging (MRI) using model liquid meals.8–10 In addition to meal
volume, the macronutrient composition and oro-sensory aspects
of the meal have effects on fullness and satiation.11 Recent MRI
studies have detailed independent effects of volume and caloric
load on gastric motor function.12 However, it is clear that satiation
cannot be explained by changes in gastric relaxation, emptying
and nutrient delivery to the small bowel alone.13 Gastric sensation
also has an important role in determining how much is eaten at a
meal. Intake of food or fluid distends the stomach and triggers
mechanoreceptors and vagal afferents.14 Increased wall stretch
and tension produces a feeling of fullness15,16 and reduces
short-term food intake.17 Similar sensations can be induced by
gradual distension of an intra-gastric balloon and this has been
shown to inhibit neural responses in the amygdala and insula in

brain imaging studies; areas that are closely involved in the
regulation of appetite and feeding.18 In contrast, the stomach
does not sense the caloric and nutrient content of food. Rather,
nutrient sensing occurs when the products of digestion are
absorbed by the small bowel. Simple sugars, amino acids and
lipids trigger the release of peptide hormones that directly, and
indirectly via vagal afferents, regulate gastric function, satiation
and satiety.17,19,20

Physiological studies that combined duodenal infusion of
different nutrients with assessment of gastric sensitivity during
stepwise distension of an intra-luminal bag by electronic barostat
have shown that the products of fat digestion have a greater
effect on the sensation of fullness and also dyspeptic symptoms
such as nausea than carbohydrates or proteins.21–23 Excessive
fullness, early satiation and nausea after meals are associated with
impaired relaxation (‘accommodation’) of the stomach in patients
with functional dyspepsia24 who are also hypersensitive to intra-
duodenal fat.25,26 These findings suggest that gastric volume and
intestinal nutrient feedback have independent effects on the
sensations of fullness and satiation. However, the relative
contributions of and interactions between these two factors in
regulating gastric sensation have not been well described for
normal meals because existing investigations are either highly
invasive or cannot provide accurate measurements of gastric
volume under physiologic conditions.
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We hypothesized that gastric volume and meal composition
have additive effects on the sensation of postprandial fullness. To
investigate this, we performed a randomized, crossover trial to
examine the relationship between gastric volumes and the sense
of fullness after test meals high in fat or high in carbohydrate in
healthy volunteers using MRI: a technology that provides non-
invasive measurement of gastric volume change and meal
emptying.27

SUBJECTS AND METHODS
Study design
This study was approved by the University of Nottingham Medical School
Research Ethics Committee and all participants gave informed written
consent. Eighteen healthy volunteers (nine male and nine female) were
enrolled and participated to this study. Previous studies showed significant
differences in gastric emptying due to meal characteristics using 8–12
subjects, 18 were recruited to allow for possible dropouts. Five did not
finish one of the study meals within the time required and were excluded.
Thus, 13 healthy volunteers (8 male and 5 female, 20.8 ± 0.2 years old, with
a body mass index of 22.6 ± 0.5 kg/m2) completed the study successfully.
The participants were apparently healthy and with no contraindication for
MRI scanning. They were asked to avoid alcohol and concomitant
medications for 24 h, caffeine and strenuous exercise for 18 h and to have
a light, non-fatty meal on the evening before the study day. They were
asked to fast after this meal until the experimental session the next
morning.
The participants attended on two separate occasions ~ 7 days apart,

with each study day lasting ~ 6.5 h. Subjects were scanned to obtain
baseline images of the stomach. Baseline sensation was assessed by visual
analogue scale (VAS) scores28–30 (T=− 45min). One of two test meals
(T=− 30min) was then ingested. Subjects were scanned again at T= 0min
and every 45min after that with the final scan at T= 270min. Immediately
after every scan, the volunteers’ fullness VAS scores were collected. The
two meals were given using a Latin Square design to avoid order effects.
Two test meals were used in this study. They both had, as a common

base, the same creamed rice pudding test meal that we have used in
previous studies.31,32 This consisted of 220 g Sainsbury’s creamed rice
pudding (Sainsbury, London, UK), 34 g Robertson seedless raspberry jam
(Robertsons, Addlestone, UK) eaten with a drink of 100ml Sainsbury’s
smooth orange juice from concentrate (Sainsbury). The high-carbohydrate
meal contained an additional 50 g of Maxijul powder (Nutricia, Trowbridge,
UK), a glucose polymer nutritional supplement. The high-fat meal
contained instead an additional 22 g of Sainsbury’s double cream
(Sainsbury). The macronutrient composition of the two meals is shown
in Supplementary Table 1. Accordingly, the high-carbohydrate meal
contained 47 g of carbohydrate more than the high-fat meal, which by
contrast contained 10 g fat more. The meals were designed to be equally
palatable but the overall calorie content was 18% higher in the
carbohydrate than the high-fat meal and calorie density was also higher
for the carbohydrate meal (5.4 kJ/ml) than for the fat meal (4.3 kJ/ml).
Immediately after each scan, the subjects marked on a VAS their feeling

of fullness. The VAS was 100mm long and each individual score was later
measured in mm. The anchors of the VAS were from ‘not full’ to ‘extremely
full’.33 The mean fullness scores were plotted against time for each meal
and the area under the curves (AUCs) calculated as above.

Magnetic resonance imaging
MRI was carried out using a Philips Achieva 1.5T whole-body MRI scanner
(Philips, Best, The Netherlands). Volunteers were positioned supine in the
scanner with an abdominal 4-element receiver coil placed around the
abdomen. At each time point, a transverse balanced turbo field echo was
acquired across stomach to measure gastric volumes. This had 24 slices
with no gap between them, matrix 160× 179, in-plane resolution
1.56× 1.56mm2, slice thickness 10mm, flip angle 45°, repetition time
2.4 ms, echo time 1.19ms. The images were acquired under an expiration
breath hold of 11 s to minimize respiratory motion artefacts. The subjects
spent supine in the magnet only a few minutes at each time point and for
the rest of the time they were instructed to sit quietly, upright, in the
volunteers’ lounge near the scanner room.

Data analysis and statistical methods
Measurements of the volume of the meal and of the gas in the stomach
were carried out manually by tracing regions of interest on each slice using
the Analyze6 software (Biomedical Imaging Resource, Mayo Foundation,
Rochester, MN, USA) and summing across the slices to determine the total
gastric volume. The averaged data sets of volume against time were then
analysed by calculating the time for half emptying (T50%) following
recently improved gastric emptying modelling34,35 by fitting the data to
equation (1)

V tð Þ ¼ V0 f 1þ kt
tempt

� �
e
- t
tempt þ 1 - fð Þ 1 -Gtð Þ

� �
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where V0 is the gastric volume at time 0 and f, k, tempt and G are fitting
parameters.
The AUC was also calculated with a classic trapezoidal method as overall

integration over the study day.
The dependence of fullness on gastric volumes was assessed at

individual level using the absolute values and reporting slope, R2 and
P-value of the individual linear regressions. However, clinical relevance of
sensation is very often not related to absolute values, which can be very
different between subjects, but more closely to how much a given change
in a physiological parameter relates to a reported change in sensation. To
this effect, the changes from baseline (Δ) in fullness scores were plotted
against the mean changes from baseline (Δ) in total gastric volumes at
corresponding scan time points postprandially and up to 180min, which
was the point after which the stomach volumes returned to baseline.
Statistical analysis was carried out using Prism 5.04 (Graph Pad Software

Inc., San Diego, CA, USA). The data were initially tested for normality using
the Shapiro Wilk test. Some of the data were not normally distributed even
after log transform hence two-way ANOVA was not used. Comparisons
between time points (Bonferroni corrected) for the two meals and
between the AUCs for the two meals were performed using two-tailed,
paired t-test (normal data) or Mann–Whitney U-test (non-normal data).
Correlation was tested using Pearson’s test. For all data, Po0.05 was
considered as statistically significant. The results are given as mean± s.e.m.

RESULTS
The T2-weighted balanced turbo field echo MRI images in both
meals showed early postprandial sedimentation of a dark
particulate phase of the meals at the bottom of the stomach
with a bright upper layer of fluid (Figure 1). Layering of fat from
the aqueous phase was not seen in these T2-weighted images
with the low- or high-fat meal.
The dynamic change in gastric volumes over time is shown in

Figure 2. As expected, the fasted stomach contained a small
volume of gastric secretions with no difference between the two
study days (P= 0.67). Gastric volumes increased after the meal to
just over 500ml with no significant difference between meals
(P= 0.12) and then declined back to baseline within 3 h. Gastric
emptying was significantly slower for the high-carbohydrate meal
than for the high-fat meal as indicated by the time to half empty
T50% (122 ± 10min versus 99 ± 8min, respectively, P= 0.0327) and
by the AUCs (83 195 ± 3718 versus 70 711 ± 3182ml min, respec-
tively, P= 0.0016). Gastric volumes at time points 90 and 135min
were significantly different (Bonferroni corrected).
The change in subjects’ reported fullness VAS scores over time

is shown in Figure 3. There was no difference at baseline (P= 0.51).
Fullness increased threefold to fourfold after both meals and
returned to baseline by the end of the study day. Fullness was
higher after the high-carbohydrate meal than the high-fat
meal (AUC 107 17 ± 1009 versus 8631 ± 834 mmmin, respectively,
P= 0.021). Fullness at the time points at time 90 and 135min was
significantly different with Po0.05 uncorrected for multiple
comparison; however, the Bonferroni correction removed the
significance from the difference due to variability.
The absolute values of fullness were significantly correlated

with gastric volumes for both meals (Supplementary Figure 1).
Fullness and gastric volumes were correlated at individual level
(Supplementary Table 2). The fullness/volume individual slopes for
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the carbohydrate meal (0.098 ± 0.015 scores/ml) and for the fat
meal (0.12 ± 0.01 scores/ml) were not significantly different
between meals (P= 0.1600). This was despite the differences
between meals.
To assess the relationship between gastric volumes and fullness,

the mean changes from baseline (Δ) were calculated for each
individual at each scan time point after the meal until the stomach
volumes returned to baseline (T= 180min). For each individual, a
Pearson’s correlation R2 between Δ fullness and Δ gastric volume
was calculated. These data show that fullness and gastric volumes
were highly correlated with a mean R2 = 0.83 ± 0.04 for the high-
carbohydrate meal and R2 = 0.94 ± 0.01 for the high-fat meal. The
individual data were then averaged by time point and by meal
and these data are shown in Figure 4. The lines of best fit show a
linear relationship between fullness and gastric volume for both
the high-carbohydrate meal (R2 = 0.97, P= 0.0026) and the high-fat
meal (R2 = 0.99, P= 0.0002). There was no significant difference
between the gradient of the linear relationship between meals
(P= 0.5214). However, the line of fit for the high-fat meal is shifted

up compared with the high-carbohydrate meal with a significant
difference between intercepts (P= 0.0147), indicating higher
fullness for the high-fat meal at any given stomach volume. This
occurred despite the lower energy content and faster gastric
emptying of the high-fat meal.

DISCUSSION
This non-invasive MRI study demonstrates the important interac-
tion between the volume and macronutrient composition of a
meal on gastric motor and sensory function in healthy subjects
under physiological conditions.
Gastric volume measured immediately after ingestion of the

two test meals was almost identical; however, half gastric
emptying time of the meal was 19% faster following the high-
fat meal compared with the high-carbohydrate meal. This could
well be related to the proportionately lower energy content (18%)
and lower energy density of the high-fat compared with the high-
carbohydrate meal.13,36 Effects of osmolality on gastric emptying
may also be important because a previous MRI study reported
similar differences in the gastric emptying curve even when the
calorie load was strictly controlled in 500 ml fat and glucose

Figure 2. Total gastric volumes (chyme plus gas) with time after
eating the high-carbohydrate and the high-fat meal. Values are
mean± s.e.m., n= 13. *Po0.05, **Po0.001 between time points,
paired t test, Bonferroni corrected.

Figure 3. VAS feelings of fullness measured after eating the high-
carbohydrate and the high-fat meal. Values are mean± s.e.m., n= 13.

Figure 1. Representative example MRI images of the stomach of a volunteer taken at the first time point after eating (a) the high-carbohydrate
and (b) the high-fat meal on two separate occasions. In the images of the stomach the less intense lower portion belongs to the particulate
phase of the meal while the brighter upper phase belongs to a fluid layer. The black part on the top of the stomach is a pocket of intra-
gastric gas.
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solutions.10 During gastric emptying MRI showed that both test
meals layered in the stomach, with a liquid phase collecting above
the solid phase. Subsequently, as we have described for other test
meals,37 the liquid component was seen to empty first (gastric
sieving) and arrived at the duodenum before the solids. The
composition of this liquid layer is not certain; however, unlike our
studies of oil in liquid emulsions where separate fat and aqueous
layers were observed in the stomach,38 no fat layering was
observed on T2-weighted scans. This is likely to relate to a
combination of buffering of gastric acid by the protein in the meal
and the stabilizers in the double cream preventing ‘cracking’ into
separate lipid and water phases.33

Consistent with previous MRI studies,8–10 the sensation of
fullness decreased after the meals as food emptied from the
stomach. This was closely correlated with the decrease in gastric
volume. The individual and average slopes of regression of the
fullness versus total gastric volume were not significantly different
despite the differences between meals. However, when consider-
ing how much a change in gastric volume impacted on the
sensation of fullness, the line of fit for fullness versus gastric
volumes was shifted up in the high-fat meal compared with the
high-carbohydrate meal. This indicates that subjects experienced
a greater degree of fullness at any given gastric volumes for the
high-fat compared with the high-carbohydrate meal. Such results
cannot be explained by differences in gastric emptying, which was
quicker, or energy load, which was lower for the high-fat meal.
Rather, this is evidence that the high-fat meal increased visceral
sensitivity to gastric distension compared with the high-
carbohydrate meal. Further, these findings support the study
hypothesis that volume and meal composition have additive
effects on the perception of postprandial fullness. The mechanism
by which fat increases visceral sensitivity has been studied. The
peptide hormone cholecystokinin released by the duodenum in
response to products of lipid digestion has been shown to
enhance fullness, satiation and other sensations induced by
distension of an intra-gastric balloon39; an effect that is partially
blocked by administration of loxiglumide a specific cholecystoki-
nin antagonist.26 Other peptides such as glucagon-like peptide 1
and polypeptide YY are also involved in nutrient feedback and
satiety signalling.40–42

The key strength and novel contribution of this study was the
use of validated, non-invasive MRI technology to acquire serial,
high-resolution measurements of gastric volumes in subjects
under physiologic conditions.27 MRI measures of total gastric
volumes provide a direct measurement of gastric relaxation
and contraction. This is a good approximation of meal
accommodation although a true measure of gastric tone requires
concomitant intra-gastric volume and pressure measurements.12

Two different meals were used, one high in fat and one high in
carbohydrate, which are known to have differing hormonal,
metabolic and satiation responses,43,44 properties that allowed
us to test the study hypothesis. One limitation is that the two test
meals were not equicaloric nor matched for osmolality or taste;
however, they were equally palatable. Perfect calorie matching
would probably have increased the effect size. However, our
ability to measure accurately the gastric volumes provided in the
final analysis convincing data that fat increases visceral
sensitivity. The lack of a control meal made it difficult to
deconstruct more precisely the additive role of macronutrients
and volume. Another limitation was the relatively high percen-
tage of subjects (30%) that did not finish the meal in the time
allowed leading to exclusion from the Per Protocol analysis.
Rather than palatability, the relatively large size and rich calorie
content of the meal could have played a role because failure to
complete occurred with both the meals; we could have avoided
this by allowing more time in the protocol to finish eating the
meal. No meal preference assessment was made. We did not
have the resources to carry out serial blood sampling and
hormone assays; however, future studies should include sam-
pling of peptide hormone levels to allow assessment of the role
of cholecystokinin and other gastrointestinal peptides as well as
assessment of ad libitum test meal consumption to assess
whether the different effect on satiation leads to changes in
subsequent food consumption.
In conclusion, we have shown that total gastric volume

correlates positively and linearly with postprandial fullness and
that ingestion of a high-fat meal increases this sensation
compared with high-carbohydrate meal. Unfortunately, these
findings may not help to reduce short-term food intake and
facilitate weight control as high-fat foods usually have higher
energy density than high-carbohydrate foods and so the volume
needed to take on the same calorie load would also be lower.
Moreover, high-fat foods are often highly palatable. These issues
highlight the complex interplay of hedonic and physiological
signalling that drives food (over)consumption.4 Our findings could
also be of clinical interest in patients presenting with postprandial
dyspepsia. Here, manipulating gastric sensitivity by dietary
intervention may help to control digestive sensations. One clinical
and physiological trial has shown a reduction in reflux sensations
of 40% in patients on an high-carbohydrate compared with
equicaloric, high-fat diet,45 and similar effects could be inferred
from our findings in healthy volunteers and in functional
dyspepsia.25,26
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