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Stroke is one of the major devastating diseases with no effective medical therapeutics.
Because of the high rate of disability and mortality among stroke patients, new
treatments are urgently required to decrease brain damage following a stroke. In
recent years, the inflammasome is a novel breakthrough point that plays an important
role in the stroke, and the inhibition of inflammasome may be an effective method
for stroke treatment. Briefly, inflammasome is a multi-protein complex that causes
activation of caspase-1 and subsequent production of pro-inflammatory factors including
interleukin (IL)-18 and IL-1β. Among them, the NLRP3 inflammasome is the most typical
inflammasome, which can detect cell damage and mediate inflammatory response
to tissue damage in ischemic stroke. The NLRP3 inflammasome has become a
key mediator of post-ischemic inflammation, leading to a cascade of inflammatory
reactions and cell death eventually. Thus, NLRP3 inflammasome is an ideal therapeutic
target due to its important role in the inflammatory response after ischemic stroke.
In this mini review article, we will summarize the structure, assembly, and regulation
of NLRP3 inflammasome, the role of NLRP3 inflammasome in ischemic stroke, and
several treatments targeting NLRP3 inflammasome in ischemic stroke. The further
understanding of the mechanism of NLRP3 inflammasome in patients with ischemic
stroke will provide novel targets for the treatment of cerebral ischemic stroke patients.

Keywords: NLRP3 inflammasome, ischemic stroke, inflammatory reaction, death—associated protein kinase,
reactive oxygen species

INTRODUCTION

Nowadays, stroke is a major reason for long-term disability and death worldwide, which
can lead to a heavy burden on patients and the whole society, especially in low- and
middle-income countries (Feigin et al., 2017; Lapchak and Zhang, 2017). It is estimated
that one in four adults will experience a stroke in the course of life, and there are at least
80 million stroke survivors worldwide (Feigin et al., 2018; Lindsay et al., 2019). Stroke
can cause immediate neurological dysfunction, and even in severe patients, the resultant
mass effect and cerebral edema can lead to cerebral herniation and death (Shi et al., 2019).
According to a report, death caused by stroke accounted for 11.8% of all deaths in 2015,
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which is the second leading cause of death in the world next
to heart disease (Benjamin et al., 2018). There are many risk
factors related to the occurrence of stroke. Recent gene studies
on single-gene disorders have shown that common variants at
about 35 genetic loci are associated with stroke risk (Dichgans
et al., 2019). Besides, a variety of environmental risk factors for
stroke have been reported, such as hypertension, smoking, high
body mass index (BMI), atrial fibrillation, diabetes, history of
stroke and high cholesterol (Donnan et al., 2008; Lu Y. et al.,
2014; Hägg et al., 2015). Among these risk factors, hypertension
is one of the most leading causes of stroke, accounting for 35%
of all strokes (O’Donnell et al., 2010). Furthermore, more than
90% of the stroke burden is attributed to modifiable risk factors,
and effective control of metabolic and behavioral risk factors can
preventmore than three-quarters of the stroke burdenworldwide
(Feigin et al., 2016).

Clinically, there are two types of stroke: ischemic stroke and
hemorrhagic stroke. Ischemic stroke caused by cerebral artery
embolization or thromboembolism, which usually accounts for
about 80% of all strokes, while hemorrhagic stroke caused by
rupture of the brain’s blood vessel, which accounts for about
15% to 20% of all stroke cases (Gilgun-Sherki et al., 2002). In
this mini review article, we focus on ischemic stroke because the
incidence of ischemic stroke is much higher than other types of
stroke. Among all types of ischemic stroke, focal ischemic stroke
is the most common type, which is caused by a cerebral aortic
embolization or thrombotic occlusion (transient or permanent)
that results in decreased blood flow to a specific area of the brain
(McAuley, 1995; Hata et al., 2000; Fann et al., 2013a). Inadequate
blood supply can cause cerebral cells to lose essential glucose and
oxygen, disrupting the balance of the intracellular environment
and triggering pathophysiological processes such as oxidative
stress, excitatory toxicity, apoptosis, inflammation, and cell death
(Khoshnam et al., 2017).

Specifically, pathophysiology following ischemic stroke is a
series of complicated processes, including acidosis, excitotoxicity,
bioenergetic dysfunction, destruction of the blood-brain barrier
(BBB), toxicity mediated by reactive oxygen species (ROS),
infiltration of leukocytes, cytokine-mediated cytotoxicity, loss
of cellular ion homeostasis, and production of arachidonic
acid products and activation of complement (Woodruff et al.,
2011). These various pathophysiological processes trigger each
other to form a positive feedback loop, leading to the death
of neuronal cell and brain damage eventually (Siesjo, 1992).
Among diverse potential mechanisms of stroke, oxidative stress
and inflammation are involved in the pathogenesis of cerebral
ischemia-reperfusion (I/R) injury, and appropriate regulation of
inflammation may have an important effect on the prevention
and treatment of stroke (Ahmad et al., 2014).

The treatment of ischemic stroke is based on the
re-establishment of blood flow in the ischemic region (Hong
et al., 2019). However, the re-establishment process of blood flow
can result in further injury to ischemic tissue via infiltration of
neutrophils, deregulation of cell ion homeostasis, accumulation
of ROS, and subsequent inflammatory response leading to cell
death (Minutoli et al., 2016). Nowadays, effective treatments
for acute ischemic stroke include intravenous injection of

tissue-type plasminogen activator (tPA) and endovascular
therapy (Schwamm et al., 2013; Yoshimura et al., 2018).
However, tPA treatment has limitations because the treatment
window is narrow (Schwamm et al., 2013). Besides, endovascular
therapy has been reported to be effective for acute cerebral large-
vascular occlusion, but its actual effect is unclear (Yoshimura
et al., 2018). Based on the above mentioned issues, it is
crucial to find an effective and reliable therapy method for
ischemic stroke.

In recent, researchers have recognized a new inflammasome
signaling pathway—NOD-like receptor pyrin domain containing
3 (NLRP3) inflammasome that may be a crucial mediator in
detecting cell injury and mediating inflammation following
stroke (Abulafia et al., 2009; Savage et al., 2012; Gustin et al.,
2015). Therefore, treatments aiming at NLRP3 upstream and
downstream signaling pathways may provide new strategies for
treating stroke (Fann et al., 2013b). Here, we summarize the
current understanding regarding the structure, assembly, and
regulation of the NLRP3 inflammasome, its potential roles in
ischemic stroke, and recent treatments targeting at suppressing
NLRP3 inflammasome in stroke.

NLRP3 INFLAMMASOME: STRUCTURE,
ASSEMBLY, AND REGULATION

The Structure of NLRP3 Inflammasome
The body’s first line of defense against a variety of diseases
is the innate immune system, which is based on various
pattern recognition receptors (PRRs) that sense pathogenic
microorganisms and other kinds of exogenous or endogenous
pathogens, such as damage-associated molecular patterns
(DAMPs) and pathogen-associated molecular patterns (PAMPs;
Schroder and Tschopp, 2010; Minutoli et al., 2016). When the
innate immune system is activated, inflammatory responses
can be initiated by the secretion of chemokines and cytokines,
resulting in the expression of co-stimulatory and adhesion
molecules that can recruit immune cells and activate adaptive
immune responses (Abderrazak et al., 2015). NOD-like receptors
(NLRs) are a type of PRRs that are expressed primarily in
the cytoplasm and can detect signals of intracellular invaders
(Martinon and Tschopp, 2005). There are different types
of inflammasome-forming NLRs, including NLRP1, NLRP3,
NLRP6, NLRP7, NLRP12, NLRC4, NLRC5, and AIM2 (Pedra
et al., 2009). Among them, NLRP3 (also termed as cryopyrin
or Nalp3) is the most characteristic and closely related to
sterile inflammation, which is coded by the cold-induced
auto-inflammatory syndrome-1 (CIAS-1) gene and highly
expressed in the immune cells and neural cells (Cassel
and Sutterwala, 2010; Liu et al., 2013). As a tripartite
protein, NLRP3 includes the central NACHT (also termed
NOD) domain, the N-terminal pyrin domain (PYD), and the
C-terminal leucine-rich repeat (LRR) domain (Franchi et al.,
2009b). The LRR domain is involved in mediating autoinhibition
and putative ligands, while the NACHT domain is associated
with the assembly of inflammasome and self-oligomerization
(Duncan et al., 2007; Lamkanfi and Dixit, 2009).
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FIGURE 1 | The regulation of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome. There are three potential stimuli for NLRP3 inflammasome
activation, including reduced intracellular K+ concentration, mitochondrial reactive oxygen species (ROS), and lysosomal membrane destruction. Extracellular ATP
can promote K+ efflux via affecting the function of Na+/K+-ATPase pump and triggering autocrine and paracrine P2X7. Impaired autophagy can increase ROS levels,
thereby activating NLRP3 inflammasome and resulting in secretion of Ca2+ and oxidative stress. Various particulates, such as the cholesterol crystals of
atherosclerotic plaque, can disrupt the lysosomal membrane and deliver cathepsin into the cytoplasm, hence activating the NLRP3 inflammasome. Besides, several
negative regulation mechanisms of NLRP3 inflammasome are also demonstrated, including autophagy, nitric oxide (NO), miR-223, type I interferons, and
pyrin-only proteins.

As intracellular oligomeric multiprotein complexes,
inflammasomes play an important role in inducing the body’s
innate immune response to microbial and injury-related signals
(Franchi et al., 2009a). The inflammasome, including the sensor
molecule NLR, the pro-inflammatory caspase (pro-caspase-5,
pro-caspase-1, or both), and adaptive proteins, can detect
various danger signals in the cell, for instance, bacterial RNA
and bacterial flagellin (Martinon et al., 2002; Hong et al., 2019).
Among various inflammasomes, NLRP3 inflammasome is the
most widely studied and is considered to be closely related to
sterile inflammation, which is mainly distributed in the cytosol
(Tschopp and Schroder, 2010; Li et al., 2018). There are three
sections in the NLRP3 inflammasome: the NLRP3 protein,
the inflammatory caspase-1, and the adapter protein ASC
[Apoptosis-associated Speck-like protein containing a caspase
activation recruitment domain (CARD); Abderrazak et al.,
2015]. Full-length caspase-1 includes the central large catalytic
domain (p20), the C-terminal small catalytic subunit domain
(p10), and the N-terminal CARD (Swanson et al., 2019).

Besides, ASC contains two protein interaction domains,
including the N-terminal PYD and the C-terminal CARD
(Swanson et al., 2019).

The Assembly of NLRP3 Inflammasome
As is shown in Figure 1, the activation of the
NLRP3 inflammasome is considered as a two-stage process.
The first stage, known as the priming stage, is induced by
the recognition of PAMPs and DAMPs (Wang et al., 2020).
This causes the activation of the NF-κB signaling pathway
and promotes the expression of precursor proteins, including
the NLRP3, pro-IL-1β, and pro-IL-18 (Shao et al., 2019). The
second stage is the activation stage, which is induced by a
series of stimulation that occurs during tissue injury, infections,
or metabolic imbalances (Zhao and Zhao, 2020). During this
stage, stimulation like K+ efflux, Na+ influx, Ca2+ mobilization,
chloride efflux, lysosomal damage, ROS, and mitochondrial
dysfunction can cause the assembly of the NLRP3 inflammasome
(Kelley et al., 2019).
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FIGURE 2 | Involvement of the NLRP3 inflammasome in the pathophysiological processes following ischemic stroke. After a stroke, the accumulation of ROS plays
an important role in the activation of the NLRP3 inflammasome. Mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways are regarded as crucial
mechanisms for regulating NLRP3 inflammasome. Also, a positive feedback loop formed by functional intergenic repeating RNA element (FIRRE) and NF-κB
promotes the transcription of NLRP3 inflammasome. Furthermore, NLRP3 inflammasome can regulate apoptosis of neuronal cells via cleaved-caspase-1 and
promote inflammation by releasing the pro-inflammatory cytokines.

The assembly of NLRP3 inflammasome is initiated by
interaction between the pyrin domain of ASC and the pyrin
domain of NLRP3 (Vajjhala et al., 2012). After detecting
dangerous signals, NLRP3 monomers can be triggered and
oligomerized to become definite oligomers (Lechtenberg et al.,
2014). These ring structures can recruit ASC monomers to
cause the ASC filaments or specks formation by interacting
with homophile PYD–PYD (Lu A. et al., 2014). Then, ASC
filaments/specks recruit cysteine proteases pro-caspase-
1 for assembling inflammasome complexes through the
interaction with CARD (Proell et al., 2013). And then, pro-
caspase-1 autocatalyzes itself via cleavage and activation
into active caspase-1, resulting in the subsequent processing
of pro-IL-18 and pro-IL-1β into active IL-18 and IL-1β
(Ozaki et al., 2015). Furthermore, activated caspase-1 can
dissociate gasdermin D (GSDMD) to release its N-terminal
domain (Shi et al., 2020). The N-terminal domain of
GSDMD binds to phosphatidylserine and phosphatidylinositol
phosphates in the cytomembrane to form a 1,020 nm pore

and triggers a lytic form of cell death, called pyroptosis
(Shi et al., 2015). Pyroptosis is characterized by cytosolic
swelling and early rupture of the plasma membrane,
which can release DAMPs to trigger inflammatory action,
playing major roles in numerous types of immune diseases
(Lamkanfi and Dixit, 2010).

In addition to the canonical pathway of the
NLRP3 inflammasome in activation of caspase-1, there is
also the non-canonical active manner of NLRP3 activated
caspase-11 in mice (or the homologs caspase-5 and caspase-4
in humans; Viganò et al., 2015; Yi, 2018). In the non-canonical
pathway, caspase-11 may produce abnormal protein secretion
and pyroptosis in a manner independent of caspase-1 (Tan et al.,
2013). Specifically, caspase-11 can directly recognize and bind to
intracellular lipopolysaccharide, leading to its oligomerization
and subsequent processing of activation by autoproteolytic
cleavage (Kayagaki et al., 2015). And then, caspase-11 can
directly cause the cleavage of GSDMD to trigger pyroptosis
(Kayagaki et al., 2015; Shi et al., 2015).
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The Regulation of NLRP3 Inflammasome
Positive Regulation of NLRP3 Inflammasome
So far, the exact mechanism and cellular stimulation resulting
in the activation of NLRP3 inflammasome are not clear
(Gao et al., 2017). Py et al. (2013) suggested that the
deubiquitination mechanism plays an important role in
regulating the NLRP3 inflammasome activation and BRCC3 is a
key regulator of NLRP3 activity via promoting deubiquitination.
Death-associated protein kinase (DAPK) is considered as a
crucial molecule, which is necessary for a full generation of IL-1β
and accurate assembly of NLRP3 inflammasome (Chuang et al.,
2011). Recently, it has been reported that stress granule protein
DDX3X can interact with NLRP3 to activate inflammasome,
and assembly of stress granule could suppress the activation of
NLRP3 inflammasome via the sequestration of DDX3× (Samir
et al., 2019). Besides, Sharif et al. (2019) demonstrated that
NIMA-related kinase 7 (NEK7) could mediate the activation of
the NLRP3 inflammasome by bridging adjacent NLRP3 subunits
with bipartite interactions. Upon inflammasome activation,
the interaction between NEK7 and NLRP3 is enhanced to
form a complex that is critical to form ASC speck and activate
caspase-1 (He et al., 2016; Shi et al., 2016). Although our
understanding of NLRP3 inflammasome has gradually increased
in recent years, we need more studies to further clarify the
detailed mechanism of NLRP3 in the process of stroke in
the future.

Different activators of the NLRP3 inflammasome complex
have been reported, including exogenous (such as tissue injury,
infection, and metabolic imbalance) and endogenous factors
(such as Aβ fibrils, hyaluronan, extracellular ATP, and uric
acid crystals; Lamkanfi and Dixit, 2009; Koizumi et al., 2012).
Because of the large amount of NLRP3 inflammasome activators,
it seems unlikely that all of themwill bind to the NLRP3 structure
to form the NLRP3 inflammasome (Zhou et al., 2016). In
general, researchers have reported three potential stimuli for
the activation of the NLRP3 receptor: decreased intracellular
K+ concentration, mitochondrial ROS, and lysosomal membrane
destruction (Martinon et al., 2002; Garg, 2011).

Decreased Intracellular K+ Concentration
In most cases, decreased intracellular K+ concentration
is an essential upstream event during the activation of
NLRP3 inflammasome (Swanson et al., 2019). Extracellular
ATP is a typical danger signal to activate NLRP3 inflammasome,
which can affect the function of Na+/K+-ATPase pump, and
the increased Na+ influx through aquaporin promotes the
osmotic movement of water into the intracellular environment,
resulting in K+ efflux (Mongin, 2007; Li et al., 2018). Besides, the
secretion of ATP can also activate autocrine and paracrine P2X7,
resulting in the reduction of K+ concentration in the cytoplasm,
which activates NLRP3 inflammasome (Lamkanfi et al., 2009).
Furthermore, the reduction of intracellular K+ level could result
in the activation of NLRP3 inflammasome through pore-forming
bacterial toxins or endogenous ion channels (Pétrilli et al.,
2007). Additionally, the K+ channel inhibitor glibenclamide
effectively inhibited the activation of inflammasome to many
NLRP3 activators (Lamkanfi and Dixit, 2009).

Mitochondrial ROS
ROS has been shown to exert important effects on the activation
of NLRP3 inflammasomes, which was mainly related to the
function of mitochondria (Gross et al., 2011). ROS is primarily
produced in the mitochondrial inner membrane, which is
closely associated with the enzyme complex in the mitochondrial
respiratory chain (Liu et al., 2002). Approximately 2% of the
oxygen in normal mitochondria can be converted into ROS
(Wang S. et al., 2019). Under normal physical conditions, the
small amounts of ROS can be removed by several endogenous
antioxidant systems (Sanderson et al., 2013). However, when
mitochondria are impaired or oxygen supply is insufficient, a
large number of ROS can be produced, further aggravating
the damage of mitochondrial structure and function (Turrens,
2003). Increased level of ROS can induce oxidative stress
and release of Ca2+, cause endoplasmic reticulum (ER) stress,
cellular organelles injury, and lead to apoptosis eventually
(Gao et al., 2017). Autophagy (i.e., mitophagy) can remove
the ROS-producing mitochondria to protect cells, but this
process may not occur effectively because autophagy-related
proteins such as Beclin1 and microtubule-associated protein
1 light chain 3B (LC3B) are depleted in case of cellular stress
and ischemic brain injury (Tian et al., 2010; Nakahira et al.,
2011). Thus, impaired autophagy promotes the accumulation
of impaired mitochondria in the cytoplasm, thereby increasing
ROS levels that activate the NLRP3 receptor (Nakahira et al.,
2011; Zhou et al., 2011). Also, the thioredoxin-interacting
protein (TXNIP), as a ROS-sensitive regulator, could activate
NLRP3 inflammasome (Zhou et al., 2010). In unaffected cells,
TXNIP is bound to and inhibited by the oxidoreductase
thioredoxin (Fann et al., 2013a). With an increased level of
cytoplasmic ROS, this complex begins to dissociate and causes
the TXNIP to bind to the NLRP3 receptor (mainly in LRR),
resulting in activation of NLRP3 receptor (Zhou et al., 2010; Lane
et al., 2013).

Lysosomal Membrane Destruction
Lysosomal disruption is also one of the well-known mechanisms
of NLRP3 inflammasome activation (Li et al., 2018).
NLRP3 inflammasome is activated by cathepsin delivered
into cytoplasm because of lysosomal membrane damage,
which is triggered by crystalline or particulate structure (Gao
et al., 2017). Phagocytosis of a variety of particulates, whether
self-originated particulates such as cholesterol crystals and uric
acid or foreign-originated particulates such as silica, alum,
and asbestos, results in lysosomal disruption and delivering
the particulates into the cytoplasm (Hornung et al., 2008). For
instance, the cholesterol crystals of atherosclerotic plaque in
the location of occlusion can be taken by the endosomes and
fuse with the lysosomes, resulting in disruption of lysosomal
membranes and release of cathepsin into the cytoplasm (Duewell
et al., 2010). Besides, Yamasaki et al. (2009) demonstrated that
cathepsin B or cathepsin B-modified proteins are necessary for
NLRP3 inflammasome activation; and the Cathepsin B inhibitor,
CA-074-Me, could partially suppress NLRP3 activation (Dostert
et al., 2008; Bruchard et al., 2013). Furthermore, Okada et al.
(2014) suggested that the TAK1-JNK pathway was triggered
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via lysosome rupture and that this activation played an
important role in the NLRP3 inflammasome formation via the
ASC oligomerization.

Other Mechanisms
There are several other mechanisms involved in the activation
of the NLRP3 inflammasome. The ER is the main intracellular
organelle for protein synthesis and processing, and the
main calcium reservoir for maintaining calcium homeostasis
(Bauernfeind et al., 2011; McCaffrey and Braakman, 2016). ER
stress can affect the activation of NLRP3 inflammasome through
a variety of effects including calcium or lipid metabolism,
the unfolded protein response (UPR), and the production of
ROS (Chen X. et al., 2019). Recently, Piippo et al. (2018)
suggested that oxidative stress strongly promoted the activation
of NLRP3 inflammasome upon dysfunctional cellular clearance.
Besides, NLRP3 inflammasome can also be activated by Ca2+

mobilization regulated mitochondrial injury and dysfunction
(Lee et al., 2012; Murakami et al., 2012). Mitochondria related
cardiolipin also plays an important role in the recruitment and
activation of NLRP3 inflammasome (Iyer et al., 2013). Also,
intrinsic and extrinsic apoptosis is contributed to driving the
assembly of NLRP3 inflammasome via activating pannexin-1
(Chen K. W. et al., 2019).

Negative Regulation of NLRP3 Inflammasome
A series of studies demonstrated that many factors can negatively
regulate the activity of NLRP3 inflammasome. Autophagy can
remove injured mitochondria, prevent mtDNA, and ROS release
into the cytoplasm and block assembly of NLRP3 inflammasome
(Nakahira et al., 2011). What is more, autophagosome can
degrade NLRP3 inflammasome via autophagy adaptor p62
(Harris et al., 2011; Shi et al., 2012). Further, Zhou et al.
(2011) reported that 3-MA, an autophagy inhibitor, was able
to induce the NLRP3 inflammasome activation. Besides, nitric
oxide (NO) has effects on suppressing NLRP3 inflammasome
activation through the stabilization of mitochondria, in both
humans and mice (Mao et al., 2013). Additionally, it has been
shown that NLRP3 could be directly regulated by miR-223
because NLRP3 mRNA includes a conserved miR-223 binding
region in its 3’UTR (Yang et al., 2015). Other negative regulators
also have been reported, such as type I interferons and pyrin-only
proteins (Guarda et al., 2011; de Almeida et al., 2015).

INVOLVEMENT OF THE
NLRP3 INFLAMMASOME IN THE
PATHOPHYSIOLOGICAL PROCESSES
FOLLOWING ISCHEMIC STROKE

As is shown in Figure 2, several mechanisms can regulate
NLRP3 inflammasome after ischemic stroke. Following ischemic
stroke, the generation of ROS can activate both cerebral
inflammatory reactions and NLRP3 inflammasome, triggering
neuronal cell injury, brain edema, and neural dysfunction (Wang
et al., 2007; Minutoli et al., 2016). Mitochondrial dysfunction also
exerted a crucial role in the activation of NLRP3 inflammasome
after OGD/R in microglia, and mitochondrial protector

was able to suppress the NLRP3 inflammasome activation
in ischemic stroke rats (Gong et al., 2018). Ishrat et al.
(2015) report that TXNIP could induce the activation of
the NLRP3 inflammasome, resulting in the neuronal damage
after ischemic stroke. Besides, serum amyloid A can contribute
to the NLRP3 inflammasome activation of microglial cells in
ischemic stroke (Yu et al., 2019). Bromodomain-containing
protein 4 (BRD4) also plays an important role in the activation
of NLRP3 inflammasome in MCAO mice (Zhou et al., 2019).
TPEN, a membrane-permeant zinc chelator, can bloke the
elevated levels of NLRP3 and caspase-1, suggesting that zinc
is closely related to the formation of NLRP3 inflammasome
(Park et al., 2020). Furthermore, TPEN inhibits the elevation
of NLRP3 inflammasome in the oxygen-glucose deprivation
(OGD) model, indicating that increased zinc is essential for
the NLRP3 inflammasome activation in OGD models (Park
et al., 2020). Besides, mitogen-activated protein kinase (MAPK)
and nuclear factor-κB (NF-κB) signaling pathways played an
important role in regulating the expression and activation of
NLRP3 inflammasomes in brain tissue and primary cortical
neurons during ischemia (Fann et al., 2018). Additionally, an
in vitro research suggested that lncRNA functional intergenic
repeating RNA element (FIRRE) and NF-κB could form a
positive feedback loop to facilitate NLRP3 inflammasome
transcription, hence cause OGD/R injury of microglia in brain
(Zang et al., 2018).

Increasing evidence has suggested that NLRP3 inflammasome
is a crucial mediator of neuroinflammation and plays an
important role in the progression and pathogenesis of
ischemic stroke (Fann et al., 2013a). Gong et al. (2018)
demonstrated that the NLRP3 inflammasome was firstly
activated in microglial cells after brain I/R injury onset
and subsequently expressed in microvascular endothelial
cells and especially in neurons (Gong et al., 2018).
NLRP3 inflammasomes can regulate glial and neuronal
cell death in ischemic stroke via enhancing generation and
secretion of the pro-inflammatory cytokines including IL-
1β and IL-18 and through pleiotropic impacts of cleaved-
caspase-1 in regulating neuronal cell apoptosis (Fann et al.,
2013a). Also, NLRP3 inflammasomes can cause damage to
the IL-23/IL-17 axis, thus aggravating cerebral I/R injury
(Wang H. et al., 2019).

The expression level changes and abnormal gene mutation
of coding components of NLRP3 can impact NLRP3-regulated
inflammatory response, thus disturbing the immune balance
of the internal environment and the occurrence of ischemic
stroke (Fann et al., 2013b; Xie et al., 2014; Yang et al.,
2014). For instance, inhibition of NLRP3 significantly prevents
neuronal death and reduces I/R injury in both in vitro and
in vivo cerebral ischemic settings (Deroide et al., 2013; Yang
et al., 2014). Besides, it was reported that polymorphism of
the NLRP3 gene may affect the risk of ischemic stroke via
changing plaque vulnerability in the Chinese population (Zhu
et al., 2016; Cheng et al., 2018). Further, NLRP3 deficiency
improved neurovascular damage in mice model following focal
ischemic stroke via decreasing BBB damage and infarct volumes
according to the evaluation of Evans blue permeability, magnetic
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resonance imaging (MRI), and electron microscopic analyses
(Yang et al., 2014).

INTERVENTION MEASURES AND
RELATED MECHANISMS VIA INHIBITING
NLRP3 INFLAMMASOME IN ISCHEMIC
STROKE

Medicants
Currently, there are a series of molecules that play a
neuroprotective role in ischemic stroke models by inhibiting the
NLRP3 inflammasome pathway. Lu et al. (2016) suggested that
minocycline administrated 1 h following reperfusion improved
neurological dysfunction, decreased infarct volume, and reduced
cerebral edema via inhibiting activation of microglia and
NLRP3 inflammasome signaling. IMM-H004, a novel coumarin
derivative, could decrease the expression level of chemokine-like
factor 1 (CKLF1) combining with C-C chemokine receptor
4, further inhibiting the NLRP3 inflammasome activation
and inflammation, thereby exerting therapeutic effects on
rats following ischemic stroke (Ai et al., 2019). Additionally,
progesterone and steroids 17b-estradiol (P and E2) have
positive effects on ischemic stroke. For instance, Lammerding
et al. (2016) suggested that P and E2 application following
cerebral ischemia decreased the expression of NLRP3, suppressed
the inflammatory response, and reduced the infarct volume
in transient focal ischemic rat models. Also, Zhang et al.
(2017) indicated that Arctigenin pretreatment could reduce
the neurological score, infarct volume, and brain water
content, by suppressing the level of NLRP3, IL-1β, and
IL-18 and activating SIRT1 signaling pathway. Further, these
authors administrated EX527 (SIRT1 inhibitor) under oxygen-
glucose deprivation (OGD) condition, and they found that
EX527 could reverse the suppressive effect of Arctigenin on
NLRP3 inflammasome activation, indicating that activation of
SIRT1 signaling pathway plays an important role in inhibiting
NLRP3 inflammasome activation induced by Arctigenin (Zhang
et al., 2017). What is more, it has been reported that
pretreatment with umbelliferone for 7 days could improve
infarct volume, neurological outcomes, and brain edema
in middle cerebral artery occlusion (MCAO) rat models
by suppressing TXNIP/NLRP3 inflammasome and activating
peroxisome proliferator-activated receptor-γ (PPAR-γ; Wang
et al., 2015). Huang et al. (2018) demonstrated that Stachybotrys
microspora triphenyl phenol-7 (SMTP-7) could reduce the
expression of NLRP3, TNF-α, NF-κB, and cleaved-caspase-
3 positive cells in ischemic stroke mice model. Hispidulin
could reduce brain edema and infarct size, as well as
provide neuroprotective effects via inhibiting NLRP3-mediated
pyroptosis through regulating the AMPK/GSK3β signaling
pathway both in vitro and in vivo (An et al., 2019).
Also, purified anthocyanin extracts (PAEs) could decrease
the cerebral infarction volume and brain damage through
Toll-like receptor 4 (TLR4) /NF-κB and NLRP3 pathways
(Cui et al., 2018). Besides, ruscogenin is a crucial steroid
sapogenin derived from Ophiopogn japonicus, and ruscogenin

could improve neurological dysfunctions of ischemic stroke mice
via suppressing expression levels of NLRP3, IL-1β, caspase-1,
TXNIP, MAPK, and ROS (Cao et al., 2016). Sinomenine, an
effective natural anti-inflammatory, and anti-apoptotic molecule
inhibited the activity of NLRP3 inflammasome in the cerebral
ischemic model, and the protective effect can be reversed
by AMPK inhibitors, indicating that suppressive effect of
sinomenine on NLRP3 inflammasome was mediated by AMPK
pathway (Qiu et al., 2016). In summary, many medicants have
positive effects on improving neurological dysfunction, infarct
volume, and cerebral edema in ischemic stroke model via
suppressing NLRP3 pathways.

Molecular Inhibitors
MCC950
MCC950 is an NLRP3-inflammasome inhibitor that has been
shown to exert positive effects on ischemic stroke models.
Ismael et al. (2018) demonstrated that MCC950 could improve
neurological deficits and reduce infarct volumes and edema,
which was related to the suppression of cleaved-caspase-1,
IL-1β, TNF-α, poly (ADP-ribose) polymerase (PARP) and
cleaved-caspase-3 and paralleled less phosphorylated IκBα

and NF-κB p65 expressions in ischemic stroke mouse model.
Besides, Wang H. et al. (2019) suggested that MCC950 was
able to inhibit the expression of IL-23 receptor and the
activation of the IL-23/IL-17 axis in ischemic stroke mice model.
What is more, it was also reported that MCC950 improved
neurological dysfunction at 24 h after cerebral I/R and
promoted 28-day survival rate in diabetic mice with ischemic
stroke, involving in the mRNA transcription level changes
of NLRP3, caspase-1, and IL-1β (Hong et al., 2018). Also,
MCC950 exerted beneficial effects on improving the vascular
integrity and cognitive dysfunction and preventing the
hypoxia-regulated decrease of brain-derived neurotrophic
factor (BDNF) secretion in stroke rat models with diabetes
(Ward et al., 2019).

Other Molecular Inhibitors
Several other molecular inhibitors also have beneficial effects
by reducing the expression of NLRP3 in ischemic stroke. NOX
inhibitor apocynin and nicotinamide adenine dinucleotide
phosphate (NADPH) could inhibit the level of NLRP3,
ASC, caspase-1, IL-1β and IL-18 in the cortex, improve the
neurological functions, and decrease the infarct volume in
ischemic stroke mouse model (Qin et al., 2017). Further,
the beneficial effects for the mouse model could be greatly
improved by combination therapy of NADPH and NOX
inhibitors (Qin et al., 2017). Nafamostat mesilate (NM), as
a wide-spectrum serine protease inhibitor, has immune-
modulatory impacts on ischemic stroke rats, which is related
to the suppression of NLRP3 inflammasome and NF-κB
signaling pathway (Li et al., 2016). NM also reduced the level
of various pro-inflammatory molecules) including IL-1β,
TNF-α, COX-2, and iNOS) and increased the expression of
anti-inflammatory factors (including TGF-β, CD206, IL-4, and
IL-10; Li et al., 2016). Besides, JQ1, a bromodomain-containing
protein 4 inhibitors, has been reported to exert protective
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effects on ischemic stroke mice via several mechanisms,
including inhibiting the expression of NLRP3, caspase-1, ASC
and gasdermin D, blocking the NF-κB signaling pathway
and suppressing glial activation (Zhou et al., 2019). Besides,
Bruton’s tyrosine kinase (BTK), as a member of the Tec
family structurally associated with spleen tyrosine kinase
(Syk), which is related to ASC phosphorylation, can form
ASC specks and activate AIM2 and NLRP3 inflammasomes
(Hara et al., 2013). Ito et al. (2015) demonstrated that
BTK inhibitor (ibrutinib) could effectively influence the
activation of the NLRP3 inflammasome, attenuate infarct
volume growth and improve the neurological damage,
suggesting that BKT is important for the activation of
NLRP3 inflammasome. Taken together, all of these molecular
inhibitors can inhibit the expression of NLRP3 and have a
neuroprotective effect on ischemic stroke. In Table 1, we
have summarized several molecular inhibitors mentioned
above that can inhibit NLRP3 inflammasome in the cerebral
ischemic model.

Intravenous Immunoglobulin
Intravenous immunoglobulin (IVIg) was used to treat a variety
of inflammatory diseases, which could attenuate neuronal cell
loss, apoptosis, infarct size, and improve function in ischemic
stroke model (Widiapradja et al., 2012). The mechanism by
which IVIg protects brain cells from ischemic injury is the
inhibition of NLRP3 and NLRP1 inflammasomes, indicating
that therapeutic interventions targeting inflammasome assembly
and activity have obvious therapeutic benefits (Fann et al.,
2013b). Furthermore, Fann et al. (2018) indicated that IVIg
induced inhibition of NLRP3 and NLRP1 inflammasomes was
mediated byMAPK andNF-κB signaling pathways. Besides, IVIg
could also increase the expression of anti-apoptotic proteins,
such as Bcl-2 and Bcl-xL (Fann et al., 2018). Therefore,
IVIg is a promising therapeutic method for protecting brain
cells against cerebral ischemic via inhibition of NLRP3 and

NLRP1 inflammasomes, which is regulated by the MAPK and
NF-κB signaling pathways.

Electroacupuncture
Electroacupuncture (EA) is a complementary and alternative
medical treatment that applies electric currents to specific
acupuncture points (Cai et al., 2019). It has been reported
that EA treatment could decrease the inflammatory response
mediated by NLRP3 inflammasome and regulate the balance
between pro-inflammatory and anti-inflammatory cytokines
(Jiang et al., 2019). The α-BGT, a 7nAChR antagonist,
was able to reverse the EA induced suppressive effects
on NLRP3 inflammasome and break the balance between
pro-inflammatory and anti-inflammatory factors, suggesting
that EA has neuroprotective effects on cerebral ischemic rats
by regulating 7nAChR-mediated NLRP3 inflammasome (Jiang
et al., 2019). Sha et al. (2019) indicated that EA remarkably
reduced the neurological dysfunction and infarct volume,
increased level of miR-223 and attenuated expressions of
NLRP3, caspase-1, IL-18, and IL-1β. However, these beneficial
effects of EA could be partially reversed by antagomiR-223,
suggesting that the therapeutic effects of EA are associated with
the suppression of the miR-223/NLRP3 pathway (Sha et al.,
2019). In a word, EA could decrease the inflammation, infarct
volume, and neurological dysfunction through suppressing the
expression level of NLRP3 inflammasome mediated by 7nAChR
and miR-223 in ischemic stroke.

Other Therapeutic Methods
Several other therapeutic methods have been used to
treat the ischemic stroke animal models by suppressing
NLRP3 inflammasome. Intermittent fasting (IF) for 4 months
could suppress the inflammation and brain tissue injury in the
MCAO mice model via suppressing the level of NLRP1, NLRP3,
IL-1β, and IL-18, and inhibiting the up-regulation of MAPK and
NF-κB signaling pathways (Fann et al., 2014). Human umbilical

TABLE 1 | Several molecular inhibitors via inhibiting NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome in ischemic stroke.

Treatments Models Main effects Reference

MCC950 Transient MCAO mice model Inhibiting the level of cleaved-caspase-1, IL-1β,
TNF-α, PARP, and cleaved-caspase-3 and
paralleled less phosphorylated IκBα and
NF-κBp65.

Ismael et al. (2018)

MCC950 Transient MCAO mice model Suppressing the expression of IL-23 receptor
and the activation of IL-23/IL-17.

Wang et al. (2020)

MCC950 Transient MCAO with type 2 diabetic mice
model

Inhibiting mRNA transcription levels of NLRP3,
caspase-1, and IL-1β.

Hong et al. (2018)

MCC950 Transient MCAO with high-fat
diet/streptozotocin-induced (HFD/STZ) diabetic
male rats model

Improving vascular integrity and cognitive
dysfunction and preventing the decrease of
BDNF secretion.

Ward et al. (2019)

Apocynin NADPH Transient MCAO mice model Inhibiting the level of NLRP3, ASC, caspase-1,
IL-1β, and IL-18 in the cortex.

Qin et al. (2017)

NM Transient MCAO rats model Suppressing NLRP3 inflammasome,
inflammation, and NF-κB signaling pathway.

Li et al. (2016)

JQ1 Transient MCAO mice model Inhibiting the expression of NLRP3, caspase-1,
ASC, gasdermin D, and the NF-κB signaling
pathway.

Zhou et al. (2019)

Ibrutinib Transient MCAO mice model Influencing the activation of
NLRP3 inflammasome.

Ito et al. (2015)
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cord blood mononuclear cells (cbMNCs) transplantation
had beneficial effects on improving the neurologic deficits,
memory function and learning ability in ischemic stroke rats,
which is associated with the activation of NF-κB, inhibition of
NLRP3 inflammasome, increased level of vascular endothelial
growth factor (VEGF) and Angiopoietin-1, and reduction
of cleaved caspase-1 and mature IL-1β (Liu et al., 2018).
Besides, light-emitting diode (LED) treatment could decrease
neuroinflammatory reactions and brain damage after ischemic
stroke via reducing cell death, decreasing IL-1β and IL-18,
and inhibiting NLRP3 inflammasome, MAPK signaling, TLR-2
levels and NF-κB activation (Lee et al., 2017). Also, ketogenic
diets may inhibit ER stress and protect mitochondrial integrity
from ischemic brain damage via inhibiting mitochondrial
transposition of dynamin-related protein 1 (Drp1), thereby
suppressing activation of NLRP3 inflammasome and playing
a neuroprotective role in ischemic stroke (Guo et al., 2018).
Taken together, these above-mentioned treatments could
improve neurological dysfunctions following ischemic stroke via
inhibiting NLRP3 inflammasome.

CONCLUSION

In recent years, we have further deepened our understanding
of the NLRP3 inflammasome. Increasing evidence has shown
that inhibition of NLRP3 may significantly reduce the infarct
volume and improve neurological function in cerebral ischemic
animal models. In summary, the study of the effect of
NLRP3 inflammasome and its potential mechanism in ischemic
stroke will provide new therapeutic targets for the treatment
of ischemic stroke. On the one hand, the discovery of
NLRP3 inflammasome provides a new way to study the
molecular mechanism of ischemic stroke. On the other hand,
regulation of multiple levels of inflammation targeting NLRP3,

such as its assembly, expression, and activation, may provide new
ideas for saving penumbral tissue and preventing neurological
deterioration after ischemia stroke.

In addition to ischemic stroke, inflammatory pathways
also play an important role in the treatment of patients
with cardiovascular disease (Grebe et al., 2018; Sardu et al.,
2020). Numerous studies demonstrate that the activation of
NLRP3 inflammasome plays a crucial role in the occurrence of
cardiovascular disorders, such as atherosclerosis, hypertension,
myocardial ischemia, cardiomyopathy, infectious cardiac disease,
and heart failure (Pasqua et al., 2018; Wang et al., 2018).
Furthermore, treatments targeting the NLRP3 inflammasome are
effective for the improvement of cardiovascular disease (Wang
et al., 2018). Therefore, we emphasize that there may be a
correlation on the role of NLRP3 informsome between the
cardiovascular and cerebrovascular networks.

However, the exact mechanisms by which
NLRP3 inflammasomes perceive various activators are not
fully understood and need further research in the future. Also of
note, the role of NLRP3 inflammasomes in the pathogenesis of
ischemic stroke is not clear and requires further investigation.
Furthermore, a key focus of future research is to identify specific
NLRP3 inhibitors and related mechanisms via our further study
on NLRP3 inflammasome activation during a stroke. Besides,
due to the complexity of the pathogenesis of ischemic stroke,
it is important to determine the stages of disease at which the
NLRP3 inflammasome targeted treatment is effective.
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