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Abstract: Transfer-RNA-derived fragments (tRFs) are a class of small non-coding RNAs that are
functionally different from their parental transfer RNAs (tRNAs). tRFs can regulate gene expression
by several mechanisms, and are involved in a variety of pathological processes. Here, we aimed
at understanding the composition and abundance of tRFs in squamous cell carcinoma of the head
and neck (SCCHN), and evaluated the potential of tRFs as prognostic markers in this cancer
type. We obtained tRF expression data from The Cancer Genome Atlas (TCGA) HNSC cohort
(523 patients) using MINTbase v2.0, and correlated to available TCGA clinical data. RNA-binding
proteins were predicted according to the calculated Position Weight Matrix (PWM) score from the
RNA-Binding Protein DataBase (RBPDB). A total of 10,158 tRFs were retrieved and a high diversity
in expression levels was seen. Fifteen tRFs were found to be significantly associated with overall
survival (Kaplan-Meier survival analysis, log rank test p-value < 0.01). The top prognostic marker,
tRF-20-S998LO9D (p < 0.001), was further measured in tumor and tumor-free samples from 16 patients
with squamous cell carcinoma of the oral tongue and 12 healthy controls, and was significantly
upregulated in tumor compared to matched tumor-free tongue (p < 0.001). Results suggest that tRFs
are useful prognostic markers in SCCHN.
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1. Introduction

Transfer-RNA-derived fragments (tRFs) are small non-coding RNAs with emerging functions in
regulating gene expression [1–5]. In human cells, tRFs are produced constitutively or in response to a
variety of stress stimuli [6–8]. Based on the cleavage position of tRNAs, tRFs are generally classified
into six subtypes, with lengths of 14–50 nucleotides [7,9,10]. The endoribonuclease RNase Z processes
a precursor tRNA to generate tRF-1 (also known as tsRNA), and angiogenin cleaves mature tRNAs
within the anticodon loop to generate 5′-tRNA halves and 3′-tRNA halves. Other tRFs generated from
the 5′ or 3′ ends or the internal region of mature tRNA, probably by the action of angiogenin or Dicer,
are called 5′-tRFs, 3′-tRFs or i-tRFs, respectively [7,8,10]. tRNA halves are typically 33 nucleotides in
length, whereas other tRFs are of variable length [11,12].
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tRFs were first observed in 1977 in human tumor tissue [13] and suggested as markers of cancer [14].
Today, more than 20,000 tRFs are reported [12]. It is clear that the production of tRFs is associated with
several factors such as gender, population origin, ethnicity, tissue, tissue state and disease subtype [7,15].
By regulating mRNA stability or protein translation initiation/elongation [16], tRFs are functionally
involved in mammalian development [8], metabolic disorders [17], neurological disorders [18] and
oncogenesis [9,10]. Dysregulation of tRFs has been shown in several cancers [15,19–21], exerting either
tumor promoting [22] or tumor suppressive activities [23,24].

Squamous cell carcinoma of the head and neck (SCCHN) represents a heterogeneous group of
tumors arising from squamous epithelium of the oral cavity, oropharynx, larynx and hypopharynx [25].
Human papilloma virus (HPV) infection, smoking and alcohol consumption are risk factors for
development of SCCHN [25,26]. Today the molecular mechanisms underlying development and
progression of SCCHN are better understood [26–28] and as many as 78 protein, DNA or mRNA
prognostic biomarkers have been suggested, such as tumor-infiltrating lymphocytes, somatic copy
number variations, and hypoxia gene signatures [29]. Being a group of small non-coding RNAs,
which are stably enriched in various biofluids and tissues, the great potential of tRFs as cancer
biomarkers has been recognized [30]. However, in SCCHN, even though a small number of tRFs have
been linked to tumorigenesis [31,32], their impact on clinical outcome has not been investigated.

The MINTbase v2.0 is a web-accessible repository comprising tRFs found in multiple human
tissues [12]. According to the MINTmap algorithm [11], a total of 23,413 mature-tRNA-derived
fragments with an abundance of≥1.0 reads-per-million (RPM) were identified by processing 11,198 short
RNA sequencing datasets from The Cancer Genome Atlas (TCGA). Due to the technical limitation of
the short RNA sequencing method used by TCGA, tRFs longer than 30 nucleotides (e.g., tRNA halves)
are under-represented among the TCGA datasets [12]. Nevertheless, MINTbase v2.0 provides the most
comprehensive tRF expression data in 32 cancer types, including SCCHN [12].

In this study, we set out to explore the MINTbase v2.0 collected tRF data to identify the composition
and abundance of tRFs in the TCGA head and neck squamous cancer (HNSC) cohort and to evaluate
their potential use as prognostic markers.

2. Materials and Methods

2.1. Retrieval of tRF Data from MINTbase

The interactive database MINTbase v2.0 was employed to retrieve tRF data from the TCGA
HNSC cohort. GRCh37/hg19 genome assembly was applied by MINTbase. MINTbase unique ID,
which is introduced according to the “license plates” naming scheme, is used for tRF nomenclature.
By definition, tRFs with identical sequence were given the same MINTbase unique ID, although they
might map to multiple genomic locations.

2.2. Identification of Survival-Associated tRFs

Clinical data of the TCGA HNSC cohort was downloaded from TCGA’s data portal https:
//portal.gdc.cancer.gov/. HPV status was downloaded from the Firehose database http://firebrowse.org/.
In order to obtain higher statistical power, we focused on tRFs that were present in at least 100 patients.
Kaplan–Meier survival analysis [33] was conducted by using R survival and survminer packages [34].
Patients were classified into high and low groups according to the median tRF level of tumor samples.
A log-rank test with p-value < 0.01 was considered statistically significant.

2.3. Prediction of tRF Binding Proteins

tRFs can interact with RNA-binding proteins (RPBs) and regulate their function [23,35,36].
To estimate the role of tRFs in SCCHN, we used the RNA-Binding Protein DataBase (RBPDB) [37]
to predict tRF binding proteins. The submitted tRF sequences were scanned with a set of Position
Weight Matrix (PWM) in the database. Every site that scored at least 80% of the maximum possible
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score for that matrix was returned. The predicted Homo sapiens proteins were considered potential tRF
binding proteins.

2.4. Relationship between tRF Level and Clinical Features

The top survival-associated tRF was selected to explore the relationship between gene expression
and clinical features. Associations between categorized clinical variables and categorized tRF levels
were determined by Chi-Square test. The nonparametric Mann–Whitney U test was used to study the
difference between two groups of continuous variables. In multivariate Cox regression analysis,
patient age at diagnosis, gender, HPV status and clinical stage were considered as covariates.
Statistical tests were conducted in IBM SPSS Statistics 26 (IBM Corp., Armonk, NY, USA). A two-sided
p-value < 0.05 was considered statistically significant.

2.5. Quantification of tRF Levels Using Reverse Transcription Quantitative PCR (RT-qPCR)

For the top survival-associated tRF, RT-qPCR was performed to measure expression levels
in our clinical samples: 12 healthy volunteers and 16 patients with squamous cell carcinoma of
the oral tongue (SCCOT) (Table S1). The healthy volunteers and patients were not matched for
gender and age, as the number of healthy individuals willing to donate tongue tissue was limited.
As described previously [38,39], for healthy volunteers not exposed to classical oral cancer risk factors
(smoking and alcohol), biopsies were taken from the lateral border of the tongue. For patients with
SCCOT, biopsies were taken from the tumor, as well as clinically normal tongue contralateral to the
tumor. The study was approved by the Regional Ethics Review Board, Umeå, Sweden (Dnr 08-003 M)
and performed in accordance with the Declaration of Helsinki. Written informed consent was obtained
from all participants.

TaqMan™ small RNA assays were selected for tRF quantification (Thermo Fisher Scientific,
Waltham, MA, USA). tRF-specific reverse transcription primers and PCR primers were designed and
produced by the company and the U6 TaqMan™ Small RNA Control was used as endogenous control.
According to the manufacturer’s protocol, tRF-specific cDNA was synthesized from 7.5 ng of total RNA.
RT-qPCR was performed using the QuantStudio 6 Flex real-time PCR system with TaqMan™ Fast
Advanced Master Mix (Thermo Fisher Scientific). The 2−∆∆CT method was applied to calculate relative
gene expression levels. Using SPSS Statistics 26, nonparametric Mann–Whitney U test or Wilcoxon
signed-rank test were carried out to compare the difference between healthy controls and tumor-free
samples, or between matched SCCOT and tumor-free samples, respectively.

3. Results

3.1. Reported tRFs in the TCGA HNSC Cohort

TCGA has studied 523 patients with SCCHN using short RNA sequencing, including 525 tumor
samples (523 primary and 2 metastatic) and 44 normal controls. In the MINTbase v2.0 database,
expression of 10,158 tRFs were recorded for this cohort, representing 43% of all tRFs reported from all
32 TCGA cancer cohorts. Expression values of 2436 tRFs were reported only in single samples, 3194 in
2 to 9 samples, 2701 tRFs in 10 to 99 samples and 1827 tRFs in 100 to 569 samples. Levels of tRFs ranged
from 1.002 RPM to 61,097.254 RPM. The maximum expression level was lower than 10 RPM for 7473 of
10,158 tRFs (74%).

According to MINTbase v2.0, the 10,158 tRFs might be derived from 549 tRNAs and from
51,755 tRNA genomic loci. As shown in Figure 1A, both mitochondrial (MT) and nuclear tRFs were
identified and the majority of tRFs were mapped to chromosomes 1 and 6. Most tRFs were derived
from tRNAs for glutamic acid (Glu/E) (Figure 1B). The length of tRFs ranged from 16 to 30 nucleotides
(Figure 1C). The i-tRFs comprise the most abundant class of tRFs (71%, 7183/10158), followed by 3′-tRFs
(17%) and 5′-tRFs (12%). Only 23 tRFs belonged to the 5′-half class and no 3′-half tRFs were identified
(Figure 1D).
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Figure 1. Overview of reported tRFs in the TCGA HNSC cohort. (A) Potential mapping of tRFs at 
mitochondria (MT) and different chromosomes. (B) Corresponding tRNA decoded amino acids (three 
letter code). (C) Length-wise distribution of tRFs. (D) Count of fragments according to the five tRF 
classes. 
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To identify prognosis-associated factors, the 1827 tRFs reported in at least 100 samples were 
investigated. Among these, 53% belonged to the i-tRF class, 25% to the 5′-tRFs and 21% to the 3′-tRF. 
There were only nine 5′-tRNA halves, all of which were derived from mitochondrial tRNAs. Patients 
were classified into high- and low-level groups according to the median tRF level of tumor samples. 
Kaplan–Meier overall survival analysis using the Survminer R packages revealed that significant 
differences between high- and low-level groups were seen for 15 tRFs (log-rank test, p < 0.01, Table 
1). Detailed information for the 15 tRFs, which are mapped to 59 genomic locations, is listed in Table 
S2. 

3.3. tRF-Interacting Proteins 

The 15 tRFs with significant impact on survival were scanned through the RNA-Binding Protein 
DataBase (RBPDB). As shown in Table 1, 11 different RNA binding proteins were predicted. Six 
proteins are RNA splicing factors (SRSF1, SRSF9, SRSF10, RBMX, FUS, KHDRBS3), four are splicing 
regulators (YTHDC1, NONO, YBX1, YTHDC2) and one a translation initiation factor (eIF4B).  

Figure 1. Overview of reported tRFs in the TCGA HNSC cohort. (A) Potential mapping of tRFs
at mitochondria (MT) and different chromosomes. (B) Corresponding tRNA decoded amino acids
(three letter code). (C) Length-wise distribution of tRFs. (D) Count of fragments according to the five
tRF classes.

3.2. Prognosis-Associated tRFs in SCCHN

To identify prognosis-associated factors, the 1827 tRFs reported in at least 100 samples were
investigated. Among these, 53% belonged to the i-tRF class, 25% to the 5′-tRFs and 21% to the
3′-tRF. There were only nine 5′-tRNA halves, all of which were derived from mitochondrial tRNAs.
Patients were classified into high- and low-level groups according to the median tRF level of tumor
samples. Kaplan–Meier overall survival analysis using the Survminer R packages revealed that
significant differences between high- and low-level groups were seen for 15 tRFs (log-rank test, p < 0.01,
Table 1). Detailed information for the 15 tRFs, which are mapped to 59 genomic locations, is listed in
Table S2.

3.3. tRF-Interacting Proteins

The 15 tRFs with significant impact on survival were scanned through the RNA-Binding Protein
DataBase (RBPDB). As shown in Table 1, 11 different RNA binding proteins were predicted. Six proteins
are RNA splicing factors (SRSF1, SRSF9, SRSF10, RBMX, FUS, KHDRBS3), four are splicing regulators
(YTHDC1, NONO, YBX1, YTHDC2) and one a translation initiation factor (eIF4B).

3.4. The Association between tRF-20-S998LO9D and Clinical Factors

As shown in Table 1, according to the p-value of the Kaplan–Meier log rank test, tRF-20-S998LO9D,
tRF-16-I8W47WB and tRF-16-884U1DD are the top three tRFs associated with patient survival (p = 0.003).
Compared to the other two tRFs, expression tRF-20-S998LO9D, hereafter referred to as tRF-20, was
reported in more tumor samples (443 primary SCCHN tumors, 1 metastatic sample and 16 normal
controls). Therefore, we considered tRF-20 as the top-ranked tRF associated with patient survival.
tRF-20 is classified as a 5′-tRF and exclusively derived from chromosome 1 tRNA86ArgTCT. According to
RBPDB prediction, this fragment binds to the translation initiation factor eIF4B. Based on these findings,
we decided to further explore the relationship between tRF-20 and clinical features. Patients were
divided into three groups based on log2-transformed RPM levels (less than 2, 2 to 4, higher than
4), as shown in Table S3. The Chi-square test indicated that there was no significant correlation
between tRF-20 levels and gender, age, clinical stage or HPV status (p > 0.05). When comparing
the 443 primary tumors to the 16 normal controls, significantly higher tRF-20 levels were seen in
tumor samples (p < 0.001) (Figure 2A). We also investigated tRF-20 expression in different subtypes of
SCCHN. As shown in Table S4, the top two tumor subsites demonstrating tRF-20 expression were
tongue (n = 113) and larynx (n = 99). No significant difference in tRF-20 levels was seen between
tongue and larynx cancer (p = 0.896). Expression of tRF-20 was found in 64 tumors in the mixed group
of “overlapping lesion of lip, oral cavity and pharynx”, with significantly higher levels compared to
both tongue (p = 0.003) and laryngeal (p = 0.001) SCC.
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Table 1. Prognostic tRFs in SCCHN.

MINTbase Unique ID
(Sequence Derived) Fragment Sequence

p-Value
(Kaplan-Meier
log Rank Test)

Number
of Tumor

Number
of Normal

Average Level
in Tumor

(RPM)

Average Level
in Normal

(RPM)
Chr Type

Amino Acid
and

Anticodon

Predicted RNA
Binding
Protein

tRF-20-S998LO9D GTCTCTGTGGCGCAATGGAC 0.0003 443 16 20 2 1 5′-tRF ArgTCT eIF4B, SRSF1

tRF-16-I8W47WB ATTGGTCGTGGTTGTA 0.0003 285 37 12 29 MT i-tRF GluTTC

tRF-16-884U1DD TCCGGCTCGAAGGACC 0.0003 255 37 10 8 14 3′-tRF TyrGTA SRSF9, eIF4B,
SRSF1

tRF-22-8XF6RE98N TCCTAAGCCAGGGATTGTGGGT 0.0006 466 42 6 11 16 i-tRF ArgCCT NONO, RBMX

tRF-21-NYDRFU8U0 CTTTGAATCCAGCGATCCGAG 0.0011 340 30 3 3 6 i-tRF GlnTTG YTHDC2,
RBMX

tRF-21-I8W47W1R0 ATTGGTCGTGGTTGTAGTCCG 0.0024 507 41 31 49 MT i-tRF GluTTC

tRF-21-LE3JWB61B CGAATCCGGCTCGAAGGACCA 0.0030 209 29 3 2 6 3′-tRF TyrGTA
SRSF9,

YTHDC1, eIF4B,
SRSF1

tRF-20-6S7P4PWJ GGCCGGTTAGCTCAGTCGGC 0.0031 303 14 7 2 6 5′-tRF IleAAT

tRF-23-Z87HFK8SDZ TTTGGGTGCGAGAGGTCCCGGGT 0.0039 375 30 4 2 14 i-tRF ProTGG FUS, RBMX,
SRSF10

tRF-23-H3RXSINH0P ATAGTGGTTAGTACTCTGCGTTG 0.0050 177 8 5 5 1 i-tRF HisGTG YBX1, YTHDC1

tRF-19-Z8SSFKJJ TTTGGGTCCGAGAGGTCCC 0.0063 155 19 2 2 11 i-tRF ProTGG SRSF10

tRF-19-Q99P9PJZ GCTTCTGTAGTGTAGTGGT 0.0063 260 19 4 4 6 5′-tRF ValCAC

tRF-20-MEF91SS2 CGGATAGCTCAGTCGGTAGA 0.0069 115 26 2 2 11 i-tRF LysTTT

tRF-30-XSXMSL73VL4Y TGCCGTGATCGTATAGTGGTTAGTACTCTG 0.0074 388 27 10 3 1 5′-tRF HisGTG YTHDC1

tRF-21-7OFIZ9WUD GTTAAAGACTTTTTCTCTGAC 0.0075 204 8 4 2 MT 3′-tRF ProTGG SRSF10,
KHDRBS3
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Figure 2. Investigation of tRF-20 in SCCHN. (A) Box-plots of tRF-20 levels in 16 normal and 443 tumor
samples (TCGA data). (B) Kaplan–Meier curves showing the impact of tRF-20 levels on overall survival
of patients with SCCHN (TCGA). (C) Box-plots showing relative fold expression levels of tRF-20 in
12 healthy controls and 16 pairs of tumor-free/tumor samples from patients with SCCOT (our clinical
samples). Small circles indicate outliers and asterisks indicate extreme outliers.

Kaplan–Meier survival plot indicated that patients with high tRF-20 have poorer overall survival
than patients with low levels of tRF-20 (Figure 2B). We further studied the impact of tRF-20 using
multivariate Cox-regression analysis. Considering gender, age at diagnosis, HPV infection and
clinical stage as co-variates, tRF-20 remained significantly associated with overall survival (p = 0.002,
HR = 1.624, 95% CI = 1.213 to 2.219). ROC curve revealed that the specificity of tRF-20 in predicting
patient overall survival is 0.614, and the sensitivity is 0.643 (AUC = 0.669, p < 0.001, Figure S1).

3.5. Investigation of tRF-20 in Our Clinical Samples

The differential expression of tRF-20 was validated in a small cohort of patients with SCCOT.
In agreement with the TCGA SCCHN cohort, tRF-20 was significantly upregulated in SCCOT samples
compared to the matched tumor-free tongue tissue (p < 0.001, Figure 2C). Comparing tumor-free
samples to healthy controls, no significant difference was found (p = 0.963, Figure 2C).

4. Discussion

Although several studies have described dysregulation of tRFs in cancer, their impact on patient
survival remains poorly investigated. Here, we investigated the composition and abundance of tRFs in
SCCHN, as well as their prognostic potential.

The MINTbase v2.0 is a web-accessible repository providing the most comprehensive tRF
expression data in 32 TCGA cancer types, including SCCHN. It provides users with access to a
large collection of tRFs, which were identified through a deterministic and exhaustive tRF mining
pipeline [12]. However, so far, the MINTbase v2.0 only comprises mature tRNA derived fragments
with an abundance of ≥1.0 RPM, meaning that if expression was not recorded, levels could be either
0 or just under the threshold. Due to the overall low read-count of tRFs and the low number of normal
controls available, this introduces a problem when calculating differential expression between tumor
and normal samples. To avoid this problem, we aimed at identifying tRFs related to prognosis in
this study Among 10,158 detected tRFs in SCCHN, only 1827 were identified in at least 100 samples.
Together with the large range in tRF levels among samples, it is obvious that tRF expression is highly
diverse and probably varies between cell types and cellular states [7,36]. Nevertheless, according to
Kaplan–Meier analysis, 15 tRFs were potential prognostic markers for patients with SCCHN.

Previously, differential expression of multiple 5′ tRNA halves had been shown in serum
and/or tumor tissue from SCCHN patients as compared to control counterparts, indicating the
potential of 5′ tRNA halves as diagnostic biomarkers for SCCHN [31,32]. However, in this study,
among 10,158 MINTbase recorded tRFs for SCCHN, there were only 23 tRFs belonging to the class of
5′ tRNA halves. Furthermore, no prognostic value of 5′ tRNA halves for SCCHN was seen. Due to the
technical limitation of TCGA data using short RNA sequencing, only fragments shorter than 30 nt
could be reliably identified. Therefore, the contribution of long tRFs, such as tRNA halves that are
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produced under stress and involved in translation regulation [35,40,41], is likely to be underestimated
in this study. The specificity and sensitivity of tRF-20 are not sufficient for predicting patient survival.
Still, we could demonstrate a prognostic potential of tRF-20, and the performance of tRF-20 could be
improved when a multiple biomarker panel is used. In clinical practice classical prognostic factors such
as anatomic location, tumor size (T stage), nodal involvement (N stage), distant metastases (M stage),
tumor grading, treatment and resection margins are widely used [29,42]. Of the many new prognostic
biomarkers human papillomavirus status is the most robust prognostic factor for survival among
patients with oropharyngeal SCC [29,43,44]. However, sensitivity and specificity of these markers have
not been reported. There is thus an unmet need for statistical evaluation of markers with respect to
sensitivity and specificity.

tRFs can bind to RNA or protein and affect mRNA translation [10]. To estimate the functions of
the prognostic tRFs we found, the RBPDB database was used to predict RNA interacting proteins.
Without validation, these results could be considered non-significant. However, we show a common
feature of the predicted proteins being related to RNA splicing, except for eIF4B (eukaryotic translation
initiation factor 4B). We found that eIF4B was predicted to interact with three tRFs. Previous studies
have shown that eIF4B controls cell survival and proliferation and is regulated by oncogenic signaling
pathways [45,46]. eIF4B is a cofactor of the eukaryotic initiation factor 4A (eIF4A), a subunit of
the heterotrimeric cap-binding complex eIF4F. It has been reported that 5′-tRNA halves can bind
directly or indirectly to eIF4G/eIF4A and reduce the rate of translation initiation [35]. However,
interactions between 5′-tRFs and translation initiation factors have not yet been identified, even though
some 5′-tRFs inhibit protein translation [47]. Under certain stress conditions, a 26 nt long 5′-tRF
produced from valine-tRNA competed with mRNA for ribosome binding, resulting in global
translation attenuation [2].

For the rest of the predicted tRF binding proteins, YBX1 (Y-Box Binding Protein 1) is the only one
for which an interaction with specific tRFs has been previously shown. Goodarzi et al. reported that
binding of hypoxic stress induced tRFs to this oncogenic RNA-binding protein led to destabilization of
pro-oncogenic transcripts and thereafter suppresses the development of breast cancer metastasis [23].
RBMX (RNA Binding Motif Protein X-Linked), NONO (Non-POU Domain Containing Octamer
Binding) and FUS (FUS RNA Binding Protein) are the three RNA-binding proteins that have been
demonstrated to be potential cancer drivers [48]. The role of FUS as a tumor suppressor was seen in
bladder urothelial carcinoma and SCCHN [48].

Due to limited and uneven sample size and incomplete clinical information (e.g., primary treatment)
of the TCGA-HNSC cohort, the REMARK (Reporting Recommendations for Tumour Marker Prognostic
Studies) guidelines [49] could not be completely followed in this study. The prognostic value of tRFs
should therefore be further investigated in another cohort with sufficient patients and clinical data.
According to TCGA data, significantly higher tRF-20 levels were seen in 443 tumor samples compared
to 16 normal controls. As the number of tumor samples and normal controls is highly unbalanced,
variability of tRF expression in the normal tissue could not be fully addressed. Nevertheless, using a
small number of clinical samples, we successfully quantified the level of tRF-20 using RT-qPCR,
and demonstrated that tRF-20 was significantly up-regulated in SCCOT compared to matched
tumor-free tongue. Using our clinical samples, we found that there was no significant difference
in tRF-20 expression between healthy controls and tumor-free samples. However, this result was
limited due to the fact that the 12 healthy controls and 16 patients were not gender- and age-matched.
TCGA data showed that the top two tumor subsites demonstrating tRF-20 expression was tongue and
larynx. Due to the lack of laryngeal samples in our biobank, we could not verify expression of tRFs in
this tumor subtype. Finally, as the number of our patients with tumors at different stages was small,
no analysis of the impact of tRF-20 expression on patient survival was performed.
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5. Conclusions

Analysis of TCGA data showed that tRFs act as prognostic markers in several different sub-sites
of SCCHN. The top prognostic marker, tRF-20, emerged as a promising clinical biomarker and its
upregulation in tumor was demonstrated in an independent group of patients with SCCOT.
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specificity of tRF-20 in predicting patient overall survival
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