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ABSTRACT 

Macromolecular structures embedded in the cell 
plasma membrane called ‘porosomes’, are involved 
in the regulated fractional release of intravesicular 
contents from cells during secretion. Porosomes 
range in size from 15 nm in neurons and astrocytes 
to 100-180 nm in the exocrine pancreas and 
neuroendocrine cells. Porosomes have been isolated 
from a number of cells, and their morphology, 
composition, and functional reconstitution well 
documented. The 3D contour map of the assembly 
of proteins within the porosome complex, and its 
native X-ray solution structure at sub-nm resolution 
has also advanced. This understanding now 
provides a platform to address diseases that may 
result from secretory defects. Water and ion binding 
to mucin impart hydration, critical for regulating 
viscosity of the mucus in the airways epithelia. 
Appropriate viscosity is required for the movement 
of mucus by the underlying cilia. Hence secretion 
of more viscous mucus prevents its proper 
transport, resulting in chronic and fatal airways 
disease such as cystic fibrosis (CF). CF is caused by 
the malfunction of CF transmembrane conductance 
regulator (CFTR), a chloride channel transporter, 
resulting in viscous mucus in the airways. Studies 
in mice lacking functional CFTR secrete highly 
viscous mucous that adhered to the epithelium. 
Since CFTR is known to interact with the t-SNARE 
protein syntaxin-1A, and with the chloride channel 
CLC-3, which are also components of the porosome 
complex, the interactions between CFTR and the 

porosome complex in the mucin-secreting human 
airway epithelial cell line Calu-3 was hypothesized 
and tested. Results from the study demonstrate the 
presence of approximately 100 nm in size porosome 
complex composed of 34 proteins at the cell plasma 
membrane in Calu-3 cells, and the association of 
CFTR with the complex. In comparison, the nuclear 
pore complex measures 120 nm and is comprised of 
over 500 protein molecules. The involvement of 
CFTR in porosome-mediated mucin secretion is 
hypothesized, and is currently being tested. 
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1. Introduction 

 

It is well established that cup-shaped macro-
molecular lipoprotein structures called porosomes 
are secretory portals embedded in the cell plasma 
membrane in cells, where membrane-bound 
secretory vesicles transiently dock and fuse to expel 
intravesicular contents during secretion1-10. 
Porosomes have been isolated from a number of 
cells, including the exocrine pancreas5,6 (Figure 1), 
neurons3 (Figure 2), and in the mucin-secreting 
human airway epithelial cell line Calu-3 (Figure 
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3,4)11. The morphology, composition, and 
reconstitution of porosomes in the exocrine 
pancreas (Figure 5-7) and in neurons are well 
documented2-12, and the 3D contour map of the 
assembly of proteins within the structure has also 
been determined in great detail10. This new 
understanding of the secretory machinery in cells 
now provides a platform to address diseases 
resulting from secretory defects. The structure, and 
composition of the porosome complex in Calu-3 
cells expressing cystic fibrosis (CF) transmembrane 
conductance regulator (CFTR) has been determined 
for the first time11, with promise to help better 
understand cystic fibrosis. CFTR is a plasma 
membrane chloride selective cyclic AMP-activated 
ion channel, localized at the apical membrane of 
secretory epithelial cells, including the conducting 
airways13. Besides mediating the secretion of Cl-, 
CFTR also regulates several other transport 
proteins, including K+ channels, aquaporin water 
channels, anion exchangers, the membrane fusion 
protein syntaxin-1A, and sodium bicarbonate 
transporters14-26. Accordingly, studies show that 
CFTR and its associated proteins are present in 
large macromolecular signaling complexes via 
scaffolding proteins containing PDZ domains13,25,27. 
The C-terminus of CFTR in humans contains the 
sequence Asp-Thr-Arg-Leu, that mediate binding to 
several PDZ domain proteins13. For example, ezrin 

and moesin present in the Calu-3 porosome 
complex11 are also known CFTR-PDZ binding 
protein13. In addition, CFTR has several other 
regions that mediate protein-protein interactions, 
such as a domain at its N-terminus that binds to 
syntaxin-1A and SNAP-2315,23. CFTR also contains 
a protein phosphatase-2A (PP2A)-binding, and an 
AMP kinase (AMPK)-binding domain12. Similarly, 
CFTR has a regulatory domain that is a substrate to 
both protein kinase A (PKA) and C (PKC)28. These 
interactions facilitate CFTR to form large CFTR-
associated macromolecular signaling complexes at 
the plasma membrane. CF as a disease was first 
identified as cysts observed in the pancreas and the 
highly viscous mucus found in the lung of patients. 
However, since discovery that these observed 
defects are a result of a dysfunction of the CFTR 
chloride channel29.30, there has been little progress 
in our understanding of the link between CFTR 
dysfunction and the secretion of such highly 
viscous mucin in the lung of CF patients31. The 
surface of the airways is coated with a thin film of 
mucous composed of essentially mucin, salt, 
proteases, antioxidants, and antibodies31,32. Mucin 
lubricates, trap foreign particles and pathogens, and 
assists in the clearance of foreign particles from the 
airways via ciliary transport31,32. A key property of 
mucus is its appropriate viscosity that enables its 
movement by the underlying cilia. Secretion of 

Figure 1. Atomic force microscopy 
(AFM) micrographs demonstrate the 
presence of microvilli and 
interspersed mucin-secreting 
porosomes at plasma membrane in 
Calu-3 cells11. Microvilli measuring 
on average 96 nm in thickness 
(mean ± SEM; 96 ± 3.3, n=50) are 
densely packed at the cell plasma 
membrane exposed to the medium, 
and is demonstrated both in low (A-
C) and high (D-H) resolution AFM 
images. Interspersed among the 
microvilli are the 102 nm in 
diameter porosome openings (mean 
± SEM; 102 ± 3, n=50) shown in 
figure G (red and green 
arrowheads). Similarly, the 
microvilli shown in figure H (red 
and green arrowheads) demonstrate 
some that appear coiled around each 
other, possibly as a consequence of 
secreted mucus11. ©Bhanu Jena. 
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more viscous mucus disallows its proper transport, 
resulting in chronic and fatal airways disease such 
as CF32. Similar to other secretory cells that 
undergo secretory vesicle volume increase during 
secretion35-45, goblet cells of the airways epithelia 
that store mucin in a dehydrated state within 
membrane-bound secretory granules are no 
exception. Since vesicle swelling is a requirement 
for cell secretion41, and both ion channels and water 
channels or aquaporins regulate this process42,44, 
altered chloride transport would impair secretory 
vesicle hydration and optimal release. Furthermore, 
recent studies in mice lacking functional CFTR31 
showed that these animals secrete highly viscous 
mucous that adhered to the epithelium. Since CFTR 
is known to interact with syntaxin-1A, chloride 
channel CLC-3, and aquaporins14-26, which are 
components of the porosome complex1,2,5-7,46, the 
possible interactions between CFTR and the 
porosome in goblet cells was hypothesized and 
tested in a recent study11. Results from the study 
demonstrate the presence of approximately 100 nm 
in size porosomes and microvilli at the surface of 
the plasma membrane in Calu-3 cells (Figure 1,2)11. 

The t-SNARE SNAP-25 specific antibody 
conjugated to protein A-sepharose® has been 
utilized to isolate the porosome complex from Calu-
3 cells11. For each immunoisolation, 1 mg of Triton-
Lubrol-solubilized Calu-3 cells was used. The 
Triton/Lubrol solubilization buffer contained 0.5% 
Lubrol, 0.5% Triton X-100, 1 mM benzamidine, 5 
mM Mg-ATP, and 5 mM EDTA in PBS at pH 7.5, 
supplemented with protease inhibitor mix (Sigma, 
St. Louis, MO). Ten micrograms of SNAP-25 
antibody conjugated to the protein A-sepharose® 
were incubated with the 1 mg of the solubilized 
cells for 1 h at room temperature followed by three 
washes of 10 volumes of wash buffer (500 mM 
NaCl, 10 mM Tris, 2 mM EDTA, pH 7.5). The 
immunoprecipitated porosome attached to the 
immunosepharose beads was eluted using low pH 
buffer (pH 3.5) to dissociate the complex from the 
antibody bound to the bead, and the eluted sample 
immediately returned to neutral pH and stored at -
80 degrees11. A combination of proteomics, 
Western blot analysis, and immunocytochemistry, 
were all used to determine the composition and 
distribution of the porosome complex in Calu-3 

 

 

 
Figure 2. Representative electron micrographs 
of Calu-3 cells in culture demonstrating the 
presence of microvilli (MV) and porosomes (P) 
at the cell plasma membrane [11]. (A) Calu-3 
cells demonstrate the presence of dense 
microvilli and scattered porosomes at the cell 
plasma membrane. (B-D) Note the flask-shaped 
porosomes measuring nearly 100 nm in 
diameter (E) and from 200-300 nm in depth, 
with openings to the cell surface (red 
arrowhead). Mucus (C), is found at the opening 
of the porosome to the cell exterior. Of the two 
porosomes shown in (D), the one to the center 
appears to be sectioned right through the center 
of the organelle, where as the porosome to the 
left, has been sectioned at its base. (E) Similar 
to the AFM images in Figure 1, the microvilli 
measure on average 92 nm in diameter [11]. 
©Bhanu Jena. 
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cells11. Proteomic analysis of isolated Calu-3 
porosomes using mass spectrometry demonstrate 
the presence of CFTR as well as several proteins 
found in the neuronal porosome complex, including 
Syntaxin-1A, actin, rabs, heterotrimeric G-protein, 
and the GTPase activating protein GAP (Table I)11. 
Immunoblot analysis (Figure 3) of the isolated 
Calu-3 porosome complex, and 
immunocytochemistry (Figure 4) further confirms 
CFTR association with the porosome complex, 
reflecting important implication of CFTR in both 
normal mucus secretion in the airway epithelium in 
health, and in the impaired state in CF disease. In 
the past two decades, employing a combination of 
approaches including AFM, biochemistry, 
molecular biology, electrophysiology, EM, mass 
spectrometry, SAXS analysis, and database 
searches such as STRING 9.1 of known functional 
and predicted protein-protein interactions, further 
structural details of the porosome complex have 
been determined1-12. Although great progress have 
been made in our understanding of the porosome, of 

Ca+2 and SNARE-mediated membrane fusion47-76, 
and on secretory vesicle volume regulation required 
for regulated fractional release of intravesicular 
contents35-45 during cell secretion, a molecular level 
understanding of porosome-mediated secretion in 
mucin-secreting cells remains to be determined. 
Therefore, a clear understanding of the porosome in 
mucin secreting in Calu-3 cells, and the role of 
CFTR in porosome-mediated mucin secretion is 
critical in revealing how mucin secretion is 
precisely regulated.  

 
2. Porosome in Calu-3 cell 
 

High resolution imaging using atomic force 
microscopy (AFM) (Figure 1) reveal in great detail 
the surface topology of Calu-3 cells, demonstrate 
the presence of approximately 102 nm in diameter 
porosome openings (mean ± SEM; 102.4 nm ± 3.0 
nm), and 96 nm thick (mean ± SEM; 96 nm ± 3.3 
nm) microvilli, at the cell plasma membrane. 
Nearly the entire cell surface is covered with the 

Figure 3. Photon correlation spectroscopy (PCS) 
demonstrate the immunoisolated porosome 
complex from Calu-3 cells to measure on average 
271 nm (trimmers), and both immuno-
precipitation and immunoblot analysis 
demonstrate the interaction of CFTR with the 
porosome complex in the cell11. (A) PCS on 
isolated porosomes from Calu-3 cells demonstrate 
an average size of 271.2 nm. (B) Immunoblot 
analysis using CFTR-specific antibody of CFTR-
expressing HEK cell proteins resolved using 
SDS-PAGE, followed by electrotransfer to 
nitrocellulose membrane, demonstrates the 
presence of a 180 kD band representing CFTR 
(lane 1, positive control). SDS-PAGE resolved 
immunoisolated porosome complexes also 
demonstrate immunopositive for CFTR (lane 2). 
(C) Immunoblot analysis of the total Calu-3 cell 
homogenate (CH) and isolated porosome complex 
(P), demonstrate the presence of porosome 
proteins actin, Gαi3, and vimentin. Note the 
enriched presence of the proteins in the porosome 
complex. (D) Similarly, immunoisolated CFTR 
complex using the CFTR-specific antibody, 
results in the pull-down of porosome associated 
proteins such as Syntaxin-1A (present as 70 kDa 
t-/v-SNARE complex), SNAP-25 (present as 70 
kDa t-/v-SNARE complex), SNAP-23, present as 
68 kDa t-/v-SNARE complex, and actin11. 
©Bhanu Jena. 
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microvilli, with interspersed porosome openings. In 
certain areas of the cell surface devoid of microvilli 
or porosome openings, cytoskeletal structures 
underlying the cell plasma membrane are observed 
(Figure 1B)11.  Transmission electron microscopy 
(TEM) performed on Calu-3 cells confirms the 
AFM results (Figure 2), demonstrating the presence 
of dense microvilli (Figure 2A), and cup-shaped 
porosomes (Figure 2B-D) at the cell plasma 
membrane. Immunoisolated Calu-3 porosome 
complexes demonstrate a particle size of 

approximately 300 nm (Figure 3A) using photon 
correlation spectroscopy (PCS), possibly a result of 
trimerization in their isolated state in suspension11. 
Immunoblot analysis of isolated Calu-3 porosome 
complex (Figure 3B), demonstrate the co-
association of CFTR with the porosome complex 
that contains among other proteins Gαi3, actin, and 
vimentin (Figure 3C). Similarly, when CFTR is 
immunoisolated from solubilized Calu-3 cells, the 
porosome complex is co-immunoisolated with 
CFTR, as demonstrated by the presence of 

Figure 4. Schematic drawing depicting the evidence view of predicted interactions between identified proteins 
within the mucous-secreting Calu-3 porosome proteome and other regulatory proteins. These interactions are 
generated from inputs of the identified proteins in the Calu-3 porosome, using STRING 9.17,11. STRING 9.1 
is a database of known functional and predicted protein-protein interactions. The interactions include direct 
(physical) and indirect (functional) associations derived from genomic, high-throughput, conserved co-expression, 
and earlier knowledge. Note the two clusters of protein-protein interactions identified in the porosome complex. 
The one cluster to the top, and most likely present at the apical end of the porosome cup are cytoskeletal structure 
and signalling proteins. The bottom cluster represents proteins that are primarily involved in membrane fusion 
including SNARE proteins and CFTR, and therefore their location would be at the base of the porosome complex 
facing the cytosol. The confidence of the predicted functional interactions shown are >99%. ©Bhanu Jena. 
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porosome-associated proteins Syntaxin-1A, SNAP-
25, SNAP-23, actin, and vimentin (Figure 3D). 
Mass spectrometry on the immunoisolated 
porosome complex from Calu-3 cells, demonstrates 
the presence of various porosome-associated 
proteins (found in the neuronal and pancreatic 
porosome complexes) as well as CFTR11. 
Furthermore, mass spectrometry results confirm the 
interaction between CFTR and the porosome 
complex in Calu-3 cells, as determined using 
imunoprecipitation and immunoblot analysis. Using 
the STRING 9.1 database search77 similar to the 
neuronal porosome complex12, two clusters of 
protein-protein interactions within the mucin-
secreting Calu-3 porosome have been identified 
(Figure 4). The cluster to the top-right in figure 4, 
represent primarily cytoskeletal and signaling 
proteins, whereas the bottom-left cluster represents 
proteins that are primarily involved in membrane 
fusion, including SNAREs, ion channels and CFTR. 
Therefore the bottom cluster is located at the 
porosome base facing the cytosol where mucin-
containing vesicles dock and fuse, and the top 
cluster at the porosome opening to the outside.  

Therefore in these studies, the porosome proteome 
in human airways epithelia has been determined. 
The interaction between CFTR and the porosome 
complex in the human airways epithelia is further 
demonstrated. The possible regulation by CFTR on 
the quality of mucus secretion via the porosome 
complex at the cell plasma membrane is 
hypothesized. These new findings will facilitate 
understanding of CFTR-porosome interactions 
influencing mucus secretion, and provide critical 
insights into the etiology of CF disease.  

In view of this, an integrated approach is 
being used to characterize the molecular 
architecture of the mucin-secreting porosome 
complex of the human airways epithelia cell line 
Calu-3; determine the distribution of CFTR and its 
interaction with proteins and lipids within the 
mucin-secreting porosome complex; characterize 
the molecular architecture of the mucin-secreting 
porosome; and build and test a functional 
architectural model to determine how SNAREs, 
lipids, and calcium, establish continuity between the 
secretory vesicle membrane and the porosome. 
These studies will allow a molecular understanding 
of the porosome function in mucin secretion, and 
the role of CFTR in the process.  
 
3. Ongoing studies 
 

Among the 34 core porosome proteins in mucin-
secreting Calu-3 cells, are included CFTR, actin, 
vimentin, annexin, filamin, Gαi3, tubulin, syntaxin-
1A, profiling, ezrin, spectrin, chloride channels 
CLC-1 and CLC-3, rab1A and rab3A, myosin, 
SNAP-25, and the ADP-ribosylation factor ARF311. 
It is anticipated that due to the nature of proteome 
studies and the dynamics of porosomes12 that this 
initial analysis includes most of the core porosome 
proteins, but not all the peripheral proteins 
associated with the complex. The STRING 9.177 
database search utilizing known physical and 
functional associations between proteins suggests 
additional candidates likely involved in protein-
protein interactions within the Calu-3 porosome 
complex (Figure 4). Similarly, preliminary 
lipidomic studies using lipid overlay assays on 
isolated Calu-3 porosome complex, demonstrate the 
enriched presence of PA and PIP2. Furthermore, 
interactions of PA and other polyphosphoinositides 
with syntaxin-1A, and their involvement in cell 
secretion have previously been reported78. These 

 

Figure 5. Small angle X-ray solution scattering 
structure of a native 35 nm synaptic vesicle (violet) 
docked with a 15 nm neuronal porosome complex 
(pink) at the presynaptic membrane. Note the 
prominent central plug of the porosome, which has 
been implicated in the rapid closing and opening of 
the complex80. ©Bhanu Jena. 
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observations indicate the importance of lipid 
interactions in the structure and function of the 
porosome. Based on this information, and since 
mucin containing vesicles dock at the porosome 
base, and the t-SNARE syntaxin-1A and SNAP-25 
associated with CFTR, rab3C, CLC3, and SNAP91 
are among other proteins present at the porosome 
base (Figure 4), it could be surmised that PA and 
PIP2 together with these proteins are present at the 
porosome base. The protein cluster composed of 
cytoskeletal and signaling proteins on the other 
hand, is likely associated with the porosome 
opening to the outside of the cell, regulating 
dilation of the porosome opening during mucin 
secretion. Since in the presence of the actin 
depolymerizing agent cytocholasine, there is loss of 

mucin secretion (unpublished observation) as in 
the case of the exocrine pancreas7 or growth 
hormone secreting cells1, further supports the 
presence of signaling and motor proteins at the 
porosome opening, that regulate dilation of the 
porosome opening and mucin secretion.  
 Unlike individual proteins or lipids, 
determination of the atomic structure of such 
dynamic macromolecular lipoprotein complexes 
such as the porosome, poses a difficult challenge, 
requiring the use of several experimental and 
computational approaches to maximize resolution 
and accuracy. Although recently the isolated Calu-3 
porosome has been functionally reconstituted as in 
case of the exocrine pancreas or neurons, further 
functional reconstitution studies are under way 

 

Figure 6 Schematic drawing depicting the presence and increased association of dynamin with the porosome complex 
following stimulation of neurotransmitter release12, which may be similar in the mucin-secreting Calu-3 cell. 
Following stimulation of secretion, synaptic vesicles would dock at the porosome base, develop intravesicular pressure 
via active transport of water through water channels or aquaporins (AQP) at the vesicle membrane, transiently fuse at 
the porosome base via SNAREs and calcium, and expel neurotransmitters. After secretion, NSF an ATPase, and 
dynamin a GTPase, would work synchronously to disassembly t-/v-SNARE complexes and fission the neck of fused 
vesicles at the porosome base respectively. By this mechanism, partially empty vesicles could go through multiple 
rounds of docking-fusion-expulsion-dissociation. Unlike protein and peptide containing vesicles, synaptic vesicles 
have neurotransmitter transporters at the vesicle membrane to rapidly refill vesicles12. In case of the Calu-3 cell, once 
mucin containing vesicles empty, they may recycle via the endosome or lysosomal pathway. ©Bhanu Jena. 
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♦  Mucin-secreting porosomes are 100 nm cup-shaped secretory portal at the 

plasma membrane; the porosome has been isolated from Calu-3 cells and its 

proteome determined  

♦  Porosome structure has been determined using EM and AFM 

♦  Distribution of lipids and various proteins especially CFTR within the 

porosome complex is under way 

 
using the established lipid bilayer EPC9 system6. 
These experiments further determine if the entire 
porosome complex has been isolated prior to 
determination of its composition and molecular 
structure-function. Electron microscopy (EM) 
especially single particle cryo electron tomography, 
small angle X-ray solution scattering (SAXS), supra 
resolution microscopy (SRM), and AFM analyses 
are being used and complemented by techniques 
from structural mass spectrometry and proteomics 
to obtain molecular details of the mucin-secreting 
porosome structure. The mass spectrometry studies 
include subunit stoichiometry, interacting subunits, 
and site of contact between subunits. Changes to 
porosome subunit composition and subunit 
interactions during the secretory process are being 
studies using these approaches. CXL-MS and 
multiple quantitative mass spectrometry techniques 
are being utilized to determination details of the 
protein-protein interactions within the native 
mucin-secreting porosome complex, which is 
central to building a structural model of the 
complex for a molecular understanding of its 
structure-function.  

New and  recently developed crosslinkers79 
combined with tandem mass spectrometry are being 
carried out, which will provide identities of 
interacting subunits and provide the identities of 
specific residues crosslinked both between and 
within subunits in the porosome complex. Results 
from these studies will provide information on 
interaction domains and distance constraints on 
protein structures. Quantitative mass spectrometry 
using iTRAQ are also being carried out, which will 
provide additional information on changes in 
porosome subunits composition and dynamics, as a 
function of the secretion status of the organelle. 
Immuno-AFM5, immuno–EM, and SAXS80 (Figure 
5) studies on isolated Calu-3 porosomes as in 
porosomes of the exocrine pancreas and neurons, 
are being performed to determine the distribution of 

some of the major proteins within the complex. 
Similar to studies using SRM on the nuclear pore 
complex81, SRM is being employed to obtain 
additional information on the structure of the 
mucin-secreting porosome complex. Finally, 
computational approaches are being employed, such 
as coarse-grain molecular docking studies82-97, 
homology modeled interactions98-100, and fitting of 
known atomic structures of protein-protein 
interactions and complexes101-108. It is becoming 
increasingly clear that the ultrastructural and mass 
spectrometry methods show promise in providing 
complementary information and the high degree of 
cross-validation required to build an accurate 
structural model of the mucin-secreting porosome 
complex. Collectively, the outlined studies briefly 
discussed here will enable an understanding at the 
molecular level, the elegant mechanism of 
porosome-mediated secretion (Figure 6) in Calu-3 
and other cells. 
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