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Abstract

Background: SELENON (SEPN1)-related myopathy (SELENON-RM) is a rare congenital myopathy characterized by
slowly progressive proximal muscle weakness, early onset spine rigidity and respiratory insufficiency. A muscular
dystrophy caused by mutations in the LAMA2 gene (LAMA2-related muscular dystrophy, LAMA2-MD) has a similar
clinical phenotype, with either a severe, early-onset due to complete Laminin subunit α2 deficiency (merosin-
deficient congenital muscular dystrophy type 1A (MDC1A)), or a mild, childhood- or adult-onset due to partial
Laminin subunit α2 deficiency. For both muscle diseases, no curative treatment options exist, yet promising
preclinical studies are ongoing. Currently, there is a paucity on natural history data and appropriate clinical and
functional outcome measures are needed to reach trial readiness.
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Methods: LAST STRONG is a natural history study in Dutch-speaking patients of all ages diagnosed with SELENON-
RM or LAMA2-MD, starting August 2020. Patients have four visits at our hospital over a period of 1.5 year. At all
visits, they undergo standardized neurological examination, hand-held dynamometry (age ≥ 5 years), functional
measurements, questionnaires (patient report and/or parent proxy; age ≥ 2 years), muscle ultrasound including
diaphragm, pulmonary function tests (spirometry, maximal inspiratory and expiratory pressure, sniff nasal inspiratory
pressure; age ≥ 5 years), and accelerometry for 8 days (age ≥ 2 years); at visit one and three, they undergo cardiac
evaluation (electrocardiogram, echocardiography; age ≥ 2 years), spine X-ray (age ≥ 2 years), dual-energy X-ray
absorptiometry (DEXA-)scan (age ≥ 2 years) and full body magnetic resonance imaging (MRI) (age ≥ 10 years). All
examinations are adapted to the patient’s age and functional abilities. Correlation between key parameters within
and between subsequent visits will be assessed.

Discussion: Our study will describe the natural history of patients diagnosed with SELENON-RM or LAMA2-MD,
enabling us to select relevant clinical and functional outcome measures for reaching clinical trial-readiness.
Moreover, our detailed description (deep phenotyping) of the clinical features will optimize clinical management
and will establish a well-characterized baseline cohort for prospective follow-up.

Conclusion: Our natural history study is an essential step for reaching trial readiness in SELENON-RM and LAMA2-
MD.

Trial registration: This study has been approved by medical ethical reviewing committee Region Arnhem-
Nijmegen (NL64269.091.17, 2017–3911) and is registered at ClinicalTrial.gov (NCT04478981).

Keywords: LAMA2, Laminin subunit α2 deficiency, Merosin-deficient congenital muscular dystrophy type 1A
(MDC1A), SELENON, SEPN1, Natural history, Outcome measures, Trial readiness, All ages

Background
Selenoprotein N-related congenital myopathy (SEPN1-
or SELENON-RM) is a rare congenital myopathy with
an estimated prevalence of 0.5 in 1000,000 [1]. Core fea-
tures include slowly progressive axial muscle weakness,
early-onset rigidity of the spine, scoliosis and respiratory
insufficiency. Delayed motor development is the most
common presenting sign. Muscle biopsies show multi-
minicores as the most common lesion, often associated
with mild dystrophic features [2]. Laminin α2-related
muscular dystrophy (LAMA2-MD) has a similar clinical
phenotype, with an estimated prevalence of 4 in 500,000
[3]. It has a heterogeneous disease spectrum ranging
from a severe, early-onset congenital muscular dystrophy
(complete Laminin subunit α2 deficiency, also called
merosin-deficient congenital muscular dystrophy type
1A (MDC1A)) to a mild, childhood- or adult-onset
limb-girdle type muscular dystrophy (partial Laminin
subunit α2 deficiency). Additionally, patients may suffer
from epileptic seizures and may show characteristic dif-
fuse brain white matter lesions on magnetic resonance
imaging (MRI) [4]. The clinical diagnosis of SELENON-
RM and LAMA2-MD is confirmed by recessive patho-
genic variants in the SELENON gene (OMIM-number
606210) or LAMA2 gene (OMIM-number 156225), re-
spectively [5–9]. Currently, no curative treatment op-
tions exist for neither SELENON-RM nor LAMA2-MD.
Optimal pulmonary, cardiac, nutrition and orthopedic
management, in combination with supportive care from
rehabilitation and allied health care, is essential for

preventing or treating severe complications [10, 11]. Fur-
ther, promising new therapies are currently being devel-
oped [12–21].
Selenoprotein N is an endoplasmic reticulum (ER) cal-

cium sensor that responds to diminished luminal cal-
cium levels by refilling the ER calcium stores [22].
SELENON-RM has striking similarities at the cellular
level with classical mitochondrial diseases. This has led
to the hypothesis that sonlicromanol, a new clinical stage
chemical entity with a dual activity as antioxidant and
redox modulator developed for mitochondrial oxidative
phosphorylation disturbances, is also beneficial for pa-
tients with SELENON-RM [12, 13]. Interestingly, the
first results of experiments in an animal model (SELE-
NON knock-out zebrafish) showed improved muscular
function (unpublished data). Further, other antioxidants
are also hypothesized to be beneficial in the treatment of
patients with SELENON-RM [13–15]. In general, the
recognition of the interplay between mitochondrial bio-
energetics and endoplasmic reticulum paves the way to
the identification of potential treatment options [16, 17].
Laminin subunit α2 is an extracellular matrix protein
that links with dystrophin on the inner side of the
muscle membrane. This linkage is of high importance
for normal skeletal muscle function as it stabilizes the
sarcolemma and protects the muscle fibers from
contraction-induced damage [23, 24]. Further, a meta-
bolic impairment, with reduced mitochondrial respir-
ation and enhanced glycolysis, was observed in human
Laminin subunit α2 deficient muscle cells [25]. For
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LAMA2-MD, preclinical studies on the use of linker
proteins, on exogenous administration of Laminin-111,
on upregulation of LAMA1, on genome editing technol-
ogy and on the use of antioxidant molecules are being
performed in animal models [18–21, 26, 27]. Moreover,
different research groups are working on revealing the
precise pathophysiology, which could eventually help to
design new treatment strategies for SELENON-RM [14,
28–31] or LAMA2-MD [32–34].
In order to pave the way towards clinical trials, it is es-

sential to identify and characterize the patients clinically
and genetically, and to select clinical and functional out-
come measures that correlate with muscle function and
that are sensitive to change over time. These outcome
measures can be used to determine the effectivity of pos-
sible treatment options in clinical trials. Three large clin-
ical studies have recently been performed, one in
SELENON-RM and two in LAMA2-MD. We discuss the
main findings below.
In SELENON-RM patients, a retrospective clinical,

histologic and genetic analysis of 132 pediatric and adult
patients (age range at last examination 2 to 58 years) was
performed by Villar-Quiles et al. [2]. The main prognos-
tic determinants for disease severity included scoliosis
and respiratory management, body mass abnormalities
and the specific SELENON mutation found in the pa-
tient. The latter indicates a genotype-phenotype associ-
ation between bi-allelic null mutations and more severe
disease. This study reports the largest SELENON-RM
series and the first one including pediatric, adolescent
and adult patients followed-up for several decades. Limi-
tations of this study are its retrospective design, and the
absence of functional measurements and convenient
muscle visualizing techniques (i.e. muscle ultrasound or
MRI) performed in a standardized manner.
In LAMA2-MD patients, a 5-year prospective natural

history study that included 24 patients (age range 4 to
22 years) was performed by Jain et al. [35, 36]. The
MFM-32 was found to be sensitive to change in ambula-
tory and non-ambulatory patients with LAMA2-MD. In
non-ambulatory patients, they found a yearly decline in
knee flexion strength and passive range of motion
(PROM) of left elbow extension. Limitations of this
study included the small subset of examinations per-
formed and the absence of convenient muscle visualizing
techniques. Further, patients were selected based on a
convenience sample, possibly leading to a selection bias.
Moreover, the age range limits the availability on natural
history data in the very young children (< 4 years) and in
older adult patients (> 22 years). Recently, Zambon et al.
published a retrospective longitudinal study on 46 pa-
tients with LAMA2-MD of whom 42 patients had a
complete and 4 patients had a partial Laminin subunit
α2 deficiency (age range at last examination 12 to 22

years) [37]. They found a linear decrease in passive range
of motion of left elbow extension and a linear decline in
percentage predicted forced vital capacity. The intrinsic
limitations included the retrospective nature of data col-
lection, the limited age range and the inconsistencies in
the use of functional scales throughout follow-up (i.e.
frequency of examinations, indication for ancillary exam-
inations etcetera).
In short, a prospective natural history study in an un-

selected group of patients including a plethora of clinical
and functional outcome measures is lacking in both
SELENON-RM and LAMA2-MD. Due to the promising
ongoing preclinical studies, there is a high need to ob-
tain natural history data in order to reach trial readiness
for both muscle diseases. The similarities in the clinical
phenotype of both muscle diseases allows us to combine
both studies in one study protocol.

Objectives
The primary objectives of this study in order to reach
trials readiness, are:

1. to assess 1.5-year natural history in patients with
SELENON-RM or LAMA2-MD;

2. to select relevant and sensitive clinical and
functional outcome measures.

The secondary objectives of this study are:

3. to provide prevalence estimations of SELENON-
RM and LAMA2-MD in the Netherlands and Flan-
ders (Dutch-speaking part of Belgium);

4. to establish a well-characterized baseline cohort of
patients with SELENON-RM or LAMA2-MD for
prospective follow-up and recruitment for future
clinical trials;

5. to assess the clinical features to optimize clinical
management for patients with SELENON-RM or
LAMA2-MD.

Methods / design
Study design
Our study on LAMA2-MD and SELENON-RM To Study
Trial Readiness, Outcome measures and Natural history
(LAST STRONG) is a prospective, single-center, observa-
tional study with repeated measurements performed at the
Department of Neurology and Pediatric Neurology within
the neuromuscular center of the Radboud university medical
center, The Netherlands. Our center is a tertiary referral cen-
ter for neuromuscular diseases. Participation in the study will
not affect the usual care provided by the patient’s own med-
ical team. Patients are invited to visit our hospital four times
over a period of 1.5 year, with an interval of six months. Dur-
ing these visits, a predefined subset of investigations will be
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performed (See Table 1). Further, medical records from rou-
tine clinical care will be requested. Our study has been ap-
proved by the medical ethical reviewing committee Region
Arnhem – Nijmegen (NL64269.091.17; 2017–3911) and is
registered at ClinicalTrials.gov (NCT04478981).

Study population
Based on the prevalence reported in previous studies on
SELENON-RM and LAMA2-MD, we expect to identify be-
tween 20-30 patients in each disease group. Based on our
experience in rare diseases, we estimate that around 50% of
the patients will participate in the study. We therefore aim
to include 10-15 participants in each disease group. Inclu-
sion criteria include a genetic confirmation of SELENON-
RM or LAMA2-MD by two recessive pathologic mutations
in the SELENON or LAMA2 gene, respectively, or typical
clinical and histological alterations combined with genetic
confirmation in a first degree relative. Additionally, patients
must be willing and able to complete (part of) the measure-
ment protocol in the Radboud university medical center. If
patients do not wish or are not able to visit our center, they
are offered to participate in this study by sharing medical
records, completing questionnaires, and undergoing a med-
ical history and physical examination through home visits,
video and/or telephone interview. Exclusion criteria are an
insufficient understanding of the Dutch language and the
unwillingness of the patient or his/her legal representatives
to provide written informed consent for participation in
our study.

Recruitment
Participants will be recruited non-selectively and con-
secutively in the periods from August 2020 to August
2021 (See Fig. 1). In order to estimate the prevalence
and to provide data on the complete spectrum of pa-
tients with SELENON-RM or LAMA2-MD, we aim to
reach all patients in The Netherlands and the Dutch-
speaking part of Belgium (Flanders) in our study. All
Dutch and Dutch-speaking Belgian (pediatric) neurolo-
gists, rehabilitation specialists and clinical geneticists are
personally asked about potential participants. Addition-
ally, all patients known at our own neuromuscular cen-
ter will be personally informed. Moreover, we will
directly recruit participants through promotion of our
study on patient information days, social media and
through patient organizations.

Demographics
Date of birth, sex, weight (kg), height (m), comorbidity
and medication will be recorded.

Genetics
Upon inclusion in our study, all participants (or a first
degree relative) have undergone genetic examination as

part of regular diagnostic work-up. The genetics reports, in-
cluding information on the specific genetic alterations, will
be requested. Regarding LAMA2-MD, we expect to mostly
include patients harboring the Dutch founder mutation in
the LAMA2 gene (c.5562 + 5G>C). All genetic laboratories
in The Netherlands will be contacted to inventory the num-
ber of patients diagnosed with SELENON-RM or LAMA2-
MD in order to contrast this number against the number of
participants in our natural history study.

Muscle biopsy
Pathological records and stained slides will be requested
from participants diagnosed with LAMA2-MD in whom
muscle biopsy material was previously taken as part of
regular diagnostic work-up. Hereby we aim to classify
LAMA2-MD patients as either suffering from a complete
or a partial Laminin subunit α2 deficiency.

Neurological examination and functional measurements
All patients undergo a standard neurological examination
by one assessor (KB). Additionally, muscle strength, facial
muscle weakness, reflexes, muscle tone, and dysmorphic
features are assessed by two independent assessors (KB
and CE or NV). Muscle strength (MRC grading scale) will
be assessed of the following muscles: neck flexor, neck ex-
tensor, sternocleidomastoid, trapezius, deltoid, biceps bra-
chii, triceps brachii, wrist extensor, wrist flexor, finger
extensor, finger flexor, finger spreader, iliopsoas, gluteus
maximus, quadriceps, hamstrings, foot dorsiflexor, foot
plantarflexor, extensor hallucis longus and toe flexor mus-
cles. Further, muscle strength of the following muscles will
be measured using a hand-held dynamometer (Citec,
CT3002) [38–41]:

1. Neck flexors and neck extensors: sitting upright;
head up at 90° from horizontal

2. Elbow flexors and extensors: supine; shoulder
adducted, elbow 90° flexed, forearm supinated

3. Knee extensors: sitting upright; knee 90° flexed
4. Foot plantar- and dorsiflexors: supine; foot 90°

dorsiflexed
5. Pinch grip: sitting upright; shoulder adducted,

elbow 90° flexed, forearm pronated

Additionally, the passive range of motion (PROM) of
the elbow, wrist, hip, knee and ankle joints is assessed by
a goniometer [42]. Functional measurements include:

1. The Children’s Hospital of Philadelphia Infant Test
of Neuromuscular Disorders (CHOP INTEND)
(age < 2 years) [43, 44].
a. CHOP INTEND has been shown to be valid for

the assessment of motor skills of children below
2 years of age.
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Table 1 Examinations performed in LAST STRONG study

Outcome domain Examination Age Visit

Medical history

Past Perinatal period, motor milestones All 1

Current Functional abilities, comorbidities, devices, treatments All All

Neurological examination and functional measurements

Muscle function Muscle strength assessment (Medical Research Council, MRC) ≥ 5 years All

Hand-Held dynamometry (HHD) ≥ 5 years All

The Children’s Hospital of Philadelphia Infant Test of Neuromuscular
Disorders (CHOP INTEND)

< 2 years All

Hammersmith Infant Neurological Examinations (HINE) < 2 years All

Motor Function Measurement (MFM)-20/320 ≥ 2 years All

Hammersmith Functional Motor Scale (HFMS); non-ambulant participants only ≥ 2 years All

Pediatric Balance Scale (PBS); ambulant participants only 2–15 years All

Mini Balance Evaluation Systems Test (miniBEST); ambulant participants only ≥ 16 years All

Graded and timed function tests; ambulant participants only All

1. 30 s sit to stand, climb 4 stairs, rise from the floor, timed up and go (TUG) ≥ 2 years

2. 6-Minute Walk test (6MWT), 10-Meter Walk test (10MWT) ≥ 5 years

Functional Ambulation Classification (FAC) ≥ 5 years All

Vignos and Brooke scale ≥ 2 years All

Contractures Goniometry ≥ 2 years All

Other Coordination, gait, reflexes, cranial nerves and facial muscles,
dysmorphic features

≥ 2 years All

Questionnaires

Quality of Life Pediatric Quality of Life Inventory (PedsQL) (Generic Core Scale,
Neuromuscular Module; Child Self-report and/or parent proxy)

2–17 years All

Research and Development-36 (RAND36) ≥ 18 years All

Individualized Neuromuscular Quality of Life (INQoL) ≥ 18 years All

Pain McGill pain questionnaire ≥ 12 years All

Wong-Baker Faces Pain rating scale ≥ 2 years All

Fatigue Checklist Individual Strength (CIS) ≥ 18 years All

Pediatric Quality of Life Inventory (PedsQL) (Multidimensional Fatigue Scale;
Child Self-report and/or parent proxy)

2–17 years All

Activities and participation ACTIVLIM ≥ 6 years All

Impact on Participation and Autonomy (IPA) ≥ 18 years All

Egen Klassifikation version 2 (EK2) ≥ 12 years All

Borg Rating Scale of Perceived Exertion; prior to and after 6MWT ≥ 5 years All

Imaging

Muscles Muscle ultrasound All All

Full body muscle magnetic resonance imaging (MRI) ≥ 10 years 1, 3

Spine X-ray of total spine (anteroposterior, lateral) and of lumbar spine
(flexion and extension))

≥ 2 years 1, 3

Bone density Dual-energy X-ray absorptiometry (DEXA-)scan ≥ 2 years 1, 3
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2. Hammersmith Infant Neurological Examinations
(HINE) (age < 2 years) [45].
a. HINE is designed to be a simple and scorable

method for evaluating infants from 2months to
2 years of age. It includes three sections that
assess different aspects of neurologic function,
including neurological examination,
developmental milestones and behavioral
assessment.

3. Motor Function Measure – 20/32 (MFM-20/32)
(age ≥ 2 years) [46, 47].
a. Motor function in patients with neuromuscular

diseases can be measured with the MFM. The
MFM is a scale which consists of 20 or 32 items
in three dimensions: D1: standing position and
transfers, D2: axial and proximal motor
function, D3: distal motor function. MFM-32 is
used in adults and in children of 7 years and
older. Children with the age of 2 to 7 years will
undergo MFM-20.

4. Hammersmith Functional Motor Scale (HFMS)
(age ≥ 2 years; non-ambulant participants only) [48,
49].
a. The HFMS was originally developed to assess

the physical abilities of children with non-
ambulant spinal muscular atrophy. It consists of
20 items that were considered as important to
measure the physical functioning of those
patients.

5. Pediatric Balance Scale (PBS) (pediatric patients
aged 2–15 years; ambulant participants only) [50].
a. The PBS is a modified version of the Berg

Balance Scale that is used to assess functional
balance skills in school-aged children with mild
to moderate motor impairments.

6. Mini Balance Evaluation Systems Test (miniBEST)
(age ≥ 16 years; ambulant participants only) [51].
a. The miniBEST evaluates balance control by

scoring of exercises that belong to one of the
following categories: anticipatory postural

changes, reactive postural control, sensory
orientation and walking.

7. Graded and timed function tests (age ≥ 2 years: 30 s
sit to stand, climb 4 stairs, rise from the floor,
timed up and go (TUG); age ≥ 5 years: 6-Minute
Walk test, 10-Meter Walk test; ambulant partici-
pants only) [52–54].

8. Functional Ambulation Classification (FAC) (age ≥
5 years) [55].
a. The FAC assesses functional ambulation in

patients.
9. Brooke and Vignos scale (age ≥ 2 years) [56–58].

a. The Brooke and Vignos scales provide ordinal-
level data to assess the upper and lower extrem-
ity functions, respectively.

Neurological examination and functional measure-
ments will be performed at all four visits.

Questionnaires
Each visit, patients and/or their parent(s) will be asked
to complete age-adapted questionnaires on quality of
life, pain, fatigue, and activities and participation,. These
questionnaires include:

1. Pediatric Quality of Life Inventory (PedsQL)
(Generic Core Scale, Neuromuscular Module,
Multidimensional Fatigue Scale; Child Self-report
and/or parent proxy) (pediatric patients 2–17 years)
[59–61].
a. The PedsQL Generic Core Scale consists of 23

questions in four domains: Physical, Emotional,
Social, and School Functioning. It has been
translated and subsequently validated into many
languages, including Dutch.

b. The PedsQL Neuromuscular Module consists of
25 questions in three domains: Neuromuscular
disease, Communication and Family resources

c. The PedsQL Multidimensional Fatigue Scale
assesses subjective fatigue in three domains,

Table 1 Examinations performed in LAST STRONG study (Continued)

Outcome domain Examination Age Visit

Cardiopulmonary assessment

Heart Electrocardiogram ≥ 2 years 1, 3

Conventional echocardiography ≥ 2 years 1, 3

Lungs Spirometry (forced expiratory volume in the first second (FEV1), forced vital
capacity (FVC), vital capacity (VC), peak cough flow (PCF))

≥ 5 years All

Maximum Expiratory Pressure (MEP), Maximum Inspiratory Pressure
(MIP) and Sniff Nasal Inspiratory Pressure (SNIP)

≥ 5 years All

Ultrasound of the diaphragm All All

Accelerometry

GENEActiv Accelerometry for eight consecutive days ≥ 2 years All
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namely General Fatigue Scale, Sleep/Rest
Fatigue Scale, and Cognitive Fatigue Scale.

2. Research and Development-36 (RAND36) (age ≥ 18
years) [62].
a. Measure for quality of life with 36 items.

3. Individualized Neuromuscular Quality of Life
(INQoL) (age ≥ 18 years) [63].
a. The INQoL is a validated muscle disease

specific measure of quality of life, which can be
used for individuals or large samples.

4. McGill pain questionnaire (age ≥ 12 years) [64].
a. Questionnaire in which the location, level and

characteristics of pain are assessed.
5. Wong-Baker Faces Pain rating scale (age≥ 2 years) [65].

a. The Wong-Baker Faces Pain Scale was originally
created for children to help them communicate
about their pain.

6. Checklist Individual Strength (CIS) (age ≥ 18 years)
[66, 67].
a. The CIS is a questionnaire rating four subscales:

subjective tiredness, concentration, motivation
and physical activity. It consists of 20 items on a
seven-point scale.

7. ACTIVLIM (age ≥ 6 years) [68].
a. Questionnaire to assess the ability to perform 22

activities of daily life on a three-point scale from
impossible to easy.

8. Impact on Participation and Autonomy (IPA)
(age ≥ 18 years) [69].
a. Questionnaire about participation and

autonomy in daily life.
9. Egen Klassifikation version 2 (EK2) (age ≥ 12 years

and sufficient understanding of the English
language) [70].
a. The EK2 is a questionnaire that was designed to

measure functional ability of activities in daily
living in non-ambulant Duchenne muscular dys-
trophy patients. This questionnaire is available
in English. Therefore, only patients who have a
sufficient understanding of the English language
will be asked to complete this questionnaire.

10. Borg Rating Scale of Perceived Exertion (Borg RPE
scale) (age ≥ 5 years) [71].
a. The Borg RPE scale is used to assess physical

activity intensity level. In the LAST STRONG
study participants are asked to assess their
psychical sensations prior to and after the
6MWT.

Imaging
At all four visits, muscle thickness and muscle echogeni-
city (quantitative grayscale analysis and Heckmatt ultra-
sound score) of a subset of bilateral muscles (See
Table 2) will be assessed by muscle ultrasound using an

Fig. 1 Flow chart of recruitment and inclusion of SELENON-RM or LAMA2-MD patients
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Esaote MyLabTwice ultrasound scanner (Esaote SpA,
Genoa, Italy) with an 3–13MHz broadband linear trans-
ducer and a 53-mm footprint, adhering to a strictly de-
fined and fixed measurement protocol [72–78]. To
measure muscle echogenicity, the mean grayscale level
within a manually selected region of interest (ROI) in
the ultrasound image is calculated using an in-house de-
veloped software package in MATLAB (version 2013b,
Mathworks, Natick, MA, USA). The muscle echogenicity
and thickness are standardized by calculating their z-
score: [[measured grayscale level – predicted grayscale
level] / standard deviation grayscale]. The predicted
grayscale level is calculated using a reference equation
including age, length, sex and weight [78, 79]. In
addition, all ultrasound images will be visually evaluated
using the semi-quantitative Heckmatt grading scale [80].
At visit 1 (t = 0) and visit 3 (t = 12months), muscle fea-
tures are additionally qualitatively and (semi-)quantita-
tively described through full body muscle MRI (1,5
Tesla, Siemens, Erlangen, Germany) in accordance with
our locally developed scanning protocol including Dixon
vibe and Short-TI Inversion Recovery (STIR) images
[81–84]. In accordance with previous studies on quanti-
tative assessment of muscle MRI, the water and fat
image of the Dixon sequence will be used to create a fat
fraction map using MATLAB according to the following
equation: Fat/(Fat + Water) [84]. The fat fraction map
will be used to draw ROI (region of interest) per muscle
using ImageJ software (ImageJ 1.47v, National Institutes
of Health, USA). ROI will be drawn at predefined
localization using the localizer sequences. All drawn ROI

will be checked by a second clinician. Muscle cross-
sectional area and fat fractions will be calculated per
ROI. The qualitative and semi-quantitative assessment
will be performed by two independent assessors. It will
include assessment of a predefined subset of bilateral
muscles (See Table 3), including relative reduction of
muscle volume (0: no reduction, 1: mild, reduction of <
30%, 2: moderate, reduction of 30–60%, 3: severe, reduc-
tion of > 60%, 4: non-identifiable muscle), fatty

Table 2 Muscle ultrasound in a large subset of bilateral skeletal
muscles

Muscle Point of measurement

M. Temporalis Parallel to the oculus (above os zygomaticum)

M. Sternocleidomastoid 1/2 line lobulus auriculae to clavicula

M. Biceps brachii 2/3 line acromion – elbow fossa

M. Flexor carpi radialis 1/3 line elbow fossa – caput radii

M. Erector spinae
thoracalis

At the level of seventh thoracic vertebrae

M. Erector spinae
lumbalis

At the level of third lumbar vertebrae

M. Rectus abdominis 2 cm above umbilicus

M. Biceps femoris 1/2 line gluteal sulcus – popliteal fossa

M. Rectus femoris 1/2 line spina iliaca – upper edge of patella

M. Vastus lateralis 2/3 lateral line spina iliaca – upper edge of
patella

M. Gastrocnemius -
caput mediale

1/3 line popliteal fossa – medial malleolus

M. Soleus The place where gastrocnemius disappears
and the fibula appears

M. Tibialis anterior 1/3 line lower edge patella – lateral malleolus

Table 3 Qualitative and semi-quantitative assessment of a large
subset of bilateral skeletal muscles through MRI

Lower extremity and
pelvic girdle

Upper extremity, shoulder
girdle and trunk

m. Extensor digitorum longus m. Sternocleidmastoideus

m. Flexor digitorum longus Neck flexor muscles

m. Gastrocnemius medialis Neck extensor muscles

m. Gastrocnemius lateralis m. Levator scapulae

m. Soleus m. Longus colli

m. Tibialis posterior m. Latissimus dorsi

m. Tibialis anterior m. Trapezius

m. Vastus intermedius m. Deltoideus

m. Vastus medialis m. Rotatorcuff muscles
(Subscapularis)

m. Vastus lateralis m. Pectoralis major

m. Rectus femoris m. Pectoralis minor

m. Biceps femoris - short head m. Serratus anterior

m. Biceps femoris - long head Anterior arm compartment
(m. biceps brachii)

m. Semitendinosus Posterior arm compartment

m. Semimembranosus Anterior forearm compartment
(m. Flexor carpi radialis)

m. Adductor longus Posterior forearm compartment

m. Adductor brevis m. Intercostales

m. Adductor magnus m. Erector thoracalis spinae

m. Gracilis m. Erector lumbalis spinae

m. Sartorius m. Quadratus lumborum

m. Tensor fascia latae Abdominal belt muscles
(m. Rectus abdominis)

m. Quadratus femoris

m. Gluteus maximus Head

m. Gluteus medius m. Temporalis

m. Gluteus minimus m. Masseter

m. Psoas m. pterygoideus medialis

m. Iliacus m. pterygoideus lateralis

m. Piriformis Tongue

m. Obturator internus

m. Obturator externus

m. Perineal muscles

m. Pectineus
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infiltration (Modified Mercuri scale [85–87]), inflamma-
tion (absent/present, plus pattern: patchy, diffuse, per-
ipheral/perifascial, central, other), and fibrosis (absent/
present, plus pattern: fascial, intramuscular or other). A
MRI will only be performed in patients of 10 years or
older who are able to lie still for 45 min without respira-
tory equipment.
At visit 1 (t = 0) and visit 3 (t = 12 months), an X-ray

will be performed to assess deformities of the spine, in-
cluding Cobb’s angle (spinal curvature), pelvic obliquity,
coronal and sagittal balance and lumbar flexion and ex-
tension [88, 89]. In order to assess bone density, a
DEXA-scan of the right femoral neck and lumbar spine,
including a vertebral fracture assessment, will be per-
formed at visit 1 (t = 0) and visit 3 (t = 12months) by
using the Hologic Discovery A Horizon DXA System (S/
N 303053M).

Cardiac assessment
In order to describe the prevalence and progression of
cardiac comorbidities and the need for routine cardiac
assessment, patients (age ≥ 2 years) will undergo electro-
cardiogram and conventional transthoracic echocardiog-
raphy (TTE) with speckle tracking and Tissue Doppler
Imaging (TDI) at visit 1 (t = 0) and visit 3 (t = 12
months). All investigations will be performed by EACVI
TTE certified sonographers using commercially available
ultrasound systems (Affiniti70 General, Philips Health-
care, Best, the Netherlands for adult participants; or
Vivid E9 or Vivid E95, GE Healthcare Ultrasound, Hor-
ten, Norway for pediatric participants). Offline analysis
will be performed using dedicated software (AGFA En-
terprise Imaging Cardiology version 8.1.2, AGFA Health-
Care, Mortsel, Belgium). Global Longitudinal strain
(GLS) will be measured using speckle tracking echocar-
diography on a three beats acquisition with a frame
rate > 60 frames/sec. All measurements will be done ac-
cording to the EACVI recommendations for cardiac
chamber quantification [90].

Pulmonary function
At all visits, patients (age ≥ 5 years) will undergo spirom-
etry (forced expiratory volume in the first second
(FEV1), forced vital capacity (FVC), vital capacity (VC),
peak cough flow (PCF)) in upright and supine position
(SpiroUSB, Vyaire Medical connected to PC Spirometry
software, Spida CareFusion 2.3.0.10 for Windows 7).
Additionally, patients will undergo Maximum Expiratory
Pressure (MEP), Maximum Inspiratory Pressure (MIP)
and Sniff Nasal Inspiratory Pressure (SNIP) assessment
in upright position (Micro RPM, Micro Medical, Care-
Fusion, United Kingdom) [91]. Diaphragm ultrasound
(MyLabTwice, Esaote SpA, Genoa, Italy) will be per-
formed to assess diaphragm thickness (end expiratory

and maximum inspiratory thickness) and thickening,
and diaphragm echogenicity [92–94].

Accelerometry
After all visits, patients (age ≥ 2 years) are asked to wear
an accelerometer (GENEActiv Original, Activinsights
Ltd) for eight consecutive days. In the same time period,
patients or their parents are asked to fill in a diary with
their major activities, including sleeping hours, physical
exercise, work and school. The GENEActiv is a tri-axial,
wrist-worn accelerometer that will be set to measure at
87,5 Hz sampling [95–97]. The raw data will be con-
verted into 1-s epochs by using the GENEActiv Software
(v.3.3, 2019). We will use the gravity subtracted sum of
vector magnitudes (SVMgs) as the activity measure. The
SVMgs will be measured using the following equation:
SVMgs = ∑√(x2 + y2 + z2) -1 g. All data will be subse-
quently analyzed using MATLAB R2018a Update 4
(9.4.0.902940) for windows. A large subset of parameters
will be addressed, including total activity (counts/day),
the percentage of sedentary, light, moderate or vigorous
activity, and total activity during sleep.

Statistical methods
Due to the explorative character of our study, we will
use descriptive statistics (mean, median, SD, 95%-CI) in
order to summarize our data. Further, Spearman’s cor-
relation analysis and non-parametrical testing will be
used to test the correlation between key parameters (i.e.
age, ancillary investigations). Further, parameters will be
corrected for genetic differences and partial or complete
laminin subunit α2 deficiency. If reference values are
available from literature, we will check for overlapping
confidence intervals. In order to assess disease progres-
sion between subsequent measuring moments, we will
perform the Wilcoxon signed-rank test (nonparametric
continuous paired data) and the McNemar’s test (cat-
egorial paired data). Multiple linear regressions will be
used to explore the relationship between potential dis-
ease modifying variables and disease severity. Linear
mixed models will be applied for analysis of differences
in disease progression. Further, we will correct for mul-
tiple testing. We regard p < 0,05 as statistically signifi-
cant. The Statistical Package for the Social Sciences
(SPSS version 25, IBM, Armonk, New York) will be used
to conduct all statistical analyses.

Data collection
All data-management and data-monitoring will be per-
formed within the Castor software (Version 2021)
through direct entry or indirect entry via our electronic
patient system (Epic, version May 2020).
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Selection of outcome measures for future clinical trials
The results of our natural history study on both
SELENON-RM and LAMA2-MD will feed an inter-
national key-opinion-leader workshop in which the in-
and exclusion criteria, follow-up frequency and outcome
measures for the international natural history studies
will be discussed. When the results of preclinical and
clinical work on promising new therapies continue to be
encouraging, a clinical trial will be initiated.

Time plan
Patients will be included between August 2020 and Au-
gust 2021 and will be followed for 1,5 year. The last visit
of the last included patient is expected to take place in
the beginning of 2023.

Discussion
Here we present the design of the LAST STRONG
study, an extensive natural history study in an unselected
cohort of Dutch-speaking SELENON-RM and LAMA2-
MD patients (both children and adults) that includes a
broad plethora of clinical and functional outcome mea-
sures. This enables us to assess the clinical spectrum of
patients diagnosed with SELENON-RM or LAMA2-MD.
Hereby, we aim to fulfill our primary objectives namely,
1. to assess 1.5-year natural history in patients with
SELENON-RM or LAMA2-MD; and 2. to select relevant
and sensitive clinical and functional outcome measures
to reach trial readiness. In addition, our insights will be
vital for reaching our secondary objectives, including
making a prevalence estimation, establishing a well-
characterized baseline cohort and providing adequate
symptomatic management leading to improved clinical
care. We propose elaborate qualitative and quantitative
measurements adapted to the age and functional abilities
of the participant. The structured approach enables us
to give an explorative, full-spectrum clinical description
of patients diagnosed with SELENON-RM or LAMA2-
MD. Further, there is a well-organized health system
with full access to (pediatric) neurology and rehabilita-
tion for every patient. Our center also has a longstanding
history of patient recruitment for scientific research.
Altogether, this is expected to reduce selection bias. Fur-
ther, as a tertiary referral center for neuromuscular dis-
eases, we are widely experienced with the clinical care
and the conduction of studies in patients with rare
neuromuscular diseases. Finally, all participants can
reach our study center within a three-hour travel by car,
which enables us to execute a population based, nation-
wide study. A consequence of our natural history study
might be that the most severely affected patients may be
less likely to participate in our study. We expect to over-
come this problem to some extent by requesting all
available medical records, sending out questionnaires

and performing a medical history by video call/telephone
or home visits for all patients that are not able or do not
wish to visit our center, provided that written informed
consent is given. Due to nationwide travel restrictions
and local hospital measures related to the COVID-19
pandemic, Belgian patients are limited in their participa-
tion in our study.
The rarity of SELENON-RM and LAMA2-MD will re-

sult in a relatively small sample size of Dutch-speaking
patients, which limits our possibilities to verify correla-
tions or differences in subgroups. Consequently, we aim
to contribute to international collaborations in order to
enlarge the availability of natural history data.
The importance to reach trial readiness is warranted

by the recent development of promising new treatment
strategies for SELENON-RM and LAMA2-MD. Out-
come measures need to be reliable and specified per age
and disease severity for an adequate measurement of dis-
ease progression. If these outcome measures are not reli-
able, possible positive effects of future treatments in
clinical trials will remain to be unrevealed. Reliable out-
come measures are thus required in order to start clin-
ical trials.
Further, deep phenotyping of our cohort provides us

with valuable information on disease characteristics, en-
abling us to fulfil one of our secondary objectives, i.e.
improving clinical care. For example, participants in
whom clinically significant (co)morbidities are found
during our study, are referred to the appropriate medical
specialists. Moreover, we can take these (co)morbidities
into account for routine clinical care of patients with
SELENON-RM or LAMA2-MD that are not participat-
ing in our natural history study.
In our study, we do not take into account the selection

of serum or urine biomarkers in order to limit the bur-
den for patients participating in this study. However, in
a study by Bharucha-Goebel et al. serum samples of pa-
tients with LAMA2-MD were analyzed for biomarkers.
Proteins that were found to be altered, primarily con-
sisted of cytokines and proteins involved in development
and cell adhesion. Of the proteins decreased, most were
cytokines, growth factors, and protease inhibitors [98].
We recommend to take serum or urine biomarkers into
account in future studies.

Conclusion
The LAST STRONG study is expected to provide nat-
ural history data, which can be used for the selection of
relevant clinical and functional outcome measures in
order to reach trial readiness in SELONON-RM and
LAMA2-MD patients. Further, our study aims to
optimize clinical management in patients diagnosed with
SELENON-RM or LAMA2-MD.
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