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Background: Diminished ovarian reserve (DOR) significantly increases the risk of female
infertility and contributes to reproductive technology failure. Recently, the role of melatonin
in improving ovarian reserve (OR) has attracted widespread attention. However, details on
the pharmacological targets and mechanisms of melatonin-improved OR remain unclear.

Objective: A systems pharmacology strategy was proposed to elucidate the potential
therapeutic mechanism ofmelatonin on DOR at themolecular, pathway, and network levels.

Methods: The systems pharmacological approach consisted of target identification, data
integration, network construction, bioinformatics analysis, and molecular docking.

Results: From the molecular perspective, 26 potential therapeutic targets were identified.
They participate in biological processes related to DOR development, such as
reproductive structure development, epithelial cell proliferation, extrinsic apoptotic
signaling pathway, PI3K signaling, among others. Eight hub targets (MAPK1, AKT1,
EGFR, HRAS, SRC, ESR1, AR, and ALB) were identified. From the pathway level, 17
significant pathways, including the PI3K-Akt signaling pathway and the estrogen signaling
pathway, were identified. In addition, the 17 signaling pathways interacted with the 26
potential therapeutic targets to form 4 functional modules. From the network point of view,
by regulating five target subnetworks (aging, cell growth and death, development and
regeneration, endocrine and immune systems), melatonin could exhibit anti-aging, anti-
apoptosis, endocrine, and immune system regulation effects. The molecular docking
results showed that melatonin bound well to all hub targets.

Conclusion: This study systematically and intuitively illustrated the possible
pharmacological mechanisms of OR improvement by melatonin through anti-aging,
anti-apoptosis, endocrine, and immune system regulation effects.

Keywords: diminished ovarian reserve (DOR), ovarian reserve (OR), melatonin, potential therapeutic targets,
signaling pathways, biological processes, network pharmacology
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INTRODUCTION

Infertility affects a significant proportion of humanity and is
regarded as a global public health issue by the World Health
Organization (1, 2). Diminished ovarian reserve (DOR), defined
as a reduction in both oocyte quality and quantity, is one of the
most common causes of female infertility and poor ovarian
response to controlled ovarian stimulation with a rapidly
increasing occurrence rate (3, 4). In addition, women with
DOR have exceedingly high rates of recurrent pregnancy loss
and no euploid embryos (5–7). Devine et al. reported that the
prevalence of DOR increased from 19 to 26% in the past few
years, representing a major challenge in reproductive medicine
(8, 9). Despite its prevalence, its pathology remains unclear.
Aging is the most common cause of DOR. Other influential
factors for DOR include genetic predisposition, autoimmune
diseases, chemotherapy, and psychological stress (10–13).

The decline of ovarian reserve (OR) is a continuous, gradual
process starting from the oocyte death of embryos at 20 weeks of
gestation until menopause (14). The premature depletion of OR
eventually results in premature ovarian failure, a more severe
condition, which might lead to a loss of reproductive capacity,
seriously affecting women's quality of life (15, 16). Thus, early
and active interventions should be implemented in women with
DOR before it is too late. However, DOR treatment remains a
significant challenge in reproductive medicine, although various
treatment strategies are currently being used (9). For example,
DHEA, as an adjuvant therapy in in vitro fertilization (IVF),
might increase the number of retrieved oocytes (17); however,
the true benefit is under active debate as DHEA has some side
effects, including acne, sleep problems, and headaches (18).

Melatonin (5-methoxy-N-acetyl tryptamine), a pineal gland
hormone, plays a significant role in regulating the circadian sleep-
wake cycle, reproductive physiology, and immune functions (19).
As a dietary supplement, it has gained widespread popularity
globally. Lerner and colleagues' discovery of melatonin in 1958
presented a new research avenue in reproductive physiology (20,
21). Since Wurtman et al. reported that preovulatory follicles
contain substantial amounts of melatonin, which may affect
ovarian steroidogenesis, many studies have focused on the role
of melatonin in OR (21). Morioka et al. conducted the first clinical
trial to evaluate melatonin as a drug for improving oocyte quality
in women who could not become pregnant because of poor-
quality oocytes (22). The results showed that melatonin treatment
increased oocyte quality. Interestingly, the melatonin-treated
group's intrafollicular melatonin concentration was four times
Abbreviations: AKT1, RAC-alpha serine/threonine-protein kinase; ALB,
Albumin; AR, Androgen receptor; ART, Assisted reproductive technology; BC,
Betweenness centrality; BP, Biological process; CC, Closeness centrality; DC,
Degree centrality; DOR, Diminished ovarian reserve; EGFR, Epidermal growth
factor receptor; ESR1, Estrogen receptor; GO, Gene Ontology; HRAS, GTPase
HRas; KEGG, Kyoto Encyclopedia of Genes and Genomes; MAPK1, Mitogen-
activated protein kinase 1; OR, Ovarian reserve; PPI, Protein–protein interaction;
SMILES, Simplified molecular input entry specification; SRC, Proto-oncogene
tyrosine-protein kinase Src; STRING, The Search Tool for the Retrieval of
Interacting Genes; TCMSP, Traditional Chinese Medicine Systems
Pharmacology Database and Analysis Platform; Uniprot, Universal Protein.
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higher than that of the control group, consistent with Morioka's
study. Similarly, several subsequent studies have confirmed that
melatonin supplementation can ameliorate intrafollicular
oxidative balance, improve the quantity and quality of oocytes,
and improve IVF outcomes in women with DOR and infertility
(23–27). Some experts have suggested that melatonin levels in the
follicular fluid may serve as a biomarker for predicting OR (28,
29). In addition, animal experiments have also confirmed that
melatonin can protect the quality of oocytes and improve OR
through multiple mechanisms (30–35).

Although anti-DOR activities exerted by melatonin have been
reported, in-depth mechanistic preclinical studies are currently
limited. Moreover, details of biomarkers and the biological
pathways through which melatonin exerts its effects in improving
ORare yet to be completely elucidated. In aprevious study, a network
pharmacology-based approach was successfully used to uncover the
target proteins and potential therapeutic mechanisms of drugs (36–
38). Accordingly, this study was performed to reveal the predictive
targets and therapeutic mechanisms underlying melatonin action
against DOR using a systematic network pharmacology-based
approach. Figure 1 illustrates the workflow of the study.
MATERIALS AND METHODS

Identification of Putative
Melatonin Targets
The PubChem database (https://pubchem.ncbi.nlm.nih.gov/) was
used to obtain simplified molecular-input line-entry specification
(SMILES) information and the 3D structure of melatonin (39).
Melatonin's 3D structure was uploaded to the PharmMapper Server
(http://www.lilab-ecust.cn/pharmmapper/), and the SMILES for
melatonin was uploaded to the SwissTargetPrediction database
(http://www.swisstargetprediction.ch/) to predict the potential
melatonin targets (40, 41). DrugBank (https://go.drugbank.com/),
SuperTarget (http://insilico.charite.de/supertarget/index.php), and
TCMSP (https://tcmspw.com/tcmsp.php) databases were used to
identify known melatonin targets (42, 43). All retrieved target
names were corrected to official symbols using the UniProt
database(https://www.uniprot.org/).

Selection of DOR-Associated Targets
DisGeNET (https://www.disgenet.org/), GeneCards (https://
www.genecards.org/), and NCBI Gene databases (https://www.
ncbi.nlm.nih.gov/gene/) were utilized to identify targets related
to DOR (44). The keyword was "diminished ovarian reserve." To
enhance the credibility of the results, DOR-related targets with a
gene-disease score ≥0.1 were set in DisGeNET, and the threshold
of relevance score was set at 10 in GeneCards.

Protein-Protein Interaction (PPI) Data
The protein-protein interaction data were integrated and
obtained from the Search Tool for the Retrieval of Interacting
Genes (STRING) platform (https://string-db.org/) (45). The
species was limited to "Homo sapiens," and the interaction
confidence score was set at 0.7, defined as high confidence on
the STRING platform.
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FIGURE 1 | Research workflow diagram.
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GO and KEGG Pathway Enrichment
To clarify the role of potential therapeutic targets in gene
function and signaling pathways, the ClusterProfiler package of
R 4.0.2 was used to perform GO and KEGG pathway enrichment
analysis of the common genes for melatonin and DOR (46). The
pathway class of every KEGG pathway was obtained from the
KEGG PATHWAY database (https://www.kegg.jp/kegg/
pathway.html) for further analysis.

Network Construction
Five networks were constructed: (1) the melatonin-putative target
network was built by connecting melatonin and its targets; (2) the
PPI network of DOR targets; (3) another PPI network was
constructed using the intersected melatonin and DOR genes; (4)
the melatonin-targets-pathways network was established by
linking melatonin, its targets, and key pathways with literature
support for DOR treatment. For further analysis, the network was
divided into functional modules using the Community Cluster
algorithm (Glay) of clustermaker2 (47) and (5) the sub-networks
of the potential therapeutic targets that were enriched in different
key pathway classes were constructed. All of the above networks
were established using Cytoscape 3.8.0.

Molecular Docking Simulation
Target Protein Preparation
The crystal structures of the protein receptors were obtained
from the RCSB Protein Data Bank (http://www.rcsb.org/). The
downloaded protein structures were pretreated with PyMol 2.4.0
to remove the original ligand, solvent molecules, redundant
protein chains and add polar hydrogen. Then, AutoDock Tools
1.5.6 was used to compute the Gasteiger and determine the
docking box's center and size (48).

Ligand Preparation
The 3D structure of melatonin was treated by polarity hydrogenation
and energy minimization using the MMFF94s force field.

Molecular Docking
AutoDock Vina was then used to evaluate melatonin binding and the
hub targets bymolecular docking (49). Prior to molecular docking, all
protein and melatonin structures were converted to PDBQT format
using AutoDock Tools 1.5.6. Melatonin was then docked onto the
proteins using AutoDock Vina. Finally, the binding affinity calculated
by AutoDock Vina was tallied, and the docking result was visualized
using PyMol 2.4.0 software (Open-source version).
RESULTS

Melatonin−Putative Target Network
A total of 206 melatonin targets were obtained after removing
dupl icat ions from the PharmMapper , SuperTarget ,
DrugBank, SwissTargetPrediction, and TCMSP databases
(Supplementary 1). Then, the melatonin-target network was
constructed using Cytoscape 3.8.0 (Figure 2). As shown in Figure 2,
there were 28 known targets, accounting for 13.6% of the total targets
and 183 putative targets, accounting for 88.8% of the total targets.
Frontiers in Endocrinology | www.frontiersin.org 4
Furthermore, there were five intersecting targets between the potential
and known targets.

PPI Network of DOR Targets
Atotal of 326DOR-related targetswere obtained from theDisGeNET,
GeneCards, and NCBI Gene databases (Supplementary 2). A PPI
network was constructed to demonstrate the interaction of DOR-
related targets (Figure 3). Forty-five significant DOR-related targets
were obtained according to the mean values for degree centrality
(DC), betweenness centrality (BC), and closeness centrality
(CC), which were 47.14553991, 0.004491643, and 0.527211414,
respectively (Supplementary 3).

PPI Network of the Potential
Therapeutic Targets
Based on the above results, 26 commonmelatonin and DOR targets
(potential therapeutic targets) were obtained using the Venn
Diagram tool (http://bioinformatics.psb.ugent.be/webtools/Venn/)
(Figure 4A and Supplementary 4). Then, the PPI network of these
26 common targets was constructed (Figure 4B). To find the hub
targets in this complexbiological network, the topological parameters
were analyzed. As a result, there are eight hub targets in this PPI
network according to DC, BC, and CC mean values, including
MAPK1, AKT1, EGFR, HRAS, SRC, ESR1, AR, and ALB
(Supplementary 5). Meanwhile, as shown in Table 1, all eight hub
targets were significant DOR-related targets. Therefore, these hub
targetsmightplay an essential role inOR improvement viamelatonin
and were used for the subsequent molecular docking study.

GO and KEGG Enrichment Analysis
GO Enrichment Analysis
The 26 potential therapeutic targets were analyzed using the
ClusterProfiler package of R 4.0.2. The top 10 terms of each part of
the GO enrichment results were selected based on the counts of hit
genes and thep-value.The resultswere visualizedusing theRpackage's
ggplot2 and are shown in Figure 5A. After data screening, the top five
enriched GO terms of biological processes (BP) are shown in Figure
5B. We could clearly identify that the top five enriched BPs of
melatonin against DOR effects were mechanistically linked to
reproductive structure development, epithelial cell proliferation, the
extrinsic apoptotic signaling pathway, phosphatidylinositol 3-kinase
signaling, and response to steroid hormones. Seven of the eight hub
genes were also enriched in the top five enriched BPs, including
MAPK1, AKT1, EGFR, SRC, HRAS, ESR1, and AR.

KEGG Enrichment Analysis of the Potential
Therapeutic Targets
We carried out KEGG pathway enrichment analysis of the 26
therapeutic targets using the ClusterProfiler package of R 4.0.2 and
obtained 123 pathways with a p-value <0.05. After data screening,
17 significant pathways were identified (Figure 6A and Table 1).
Then, the genes enriched in each pathway were sorted, and a
melatonin-target-pathway network was constructed (Figure 6B).
In the network, the PI3K-Akt signaling pathway (hsa04151) and
estrogen signaling pathway (hsa04915) were significantly enriched
(Figure 7). To fully understand the mechanism of melatonin in
April 2021 | Volume 12 | Article 630504
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treating DOR, the target-pathway network was decomposed into
functional modules using the community cluster (Glay) algorithm
of clustermaker2. As illustrated in Figure 6C, the target pathway
network was divided into four modules. Module 1 contained six
pathways, including the AGE-RAGE signaling pathway in diabetic
complications (hsa04933), JAK-STAT signaling pathway
(hsa04630), thyroid hormone signaling pathway (hsa04919),
growth hormone synthesis, secretion, and action (hsa04935),
Frontiers in Endocrinology | www.frontiersin.org 5
progesterone-mediated oocyte maturation (hsa04914), and
GnRH secretion (hsa04929). Module 2 consisted of four
pathways, including the VEGF signaling pathway (hsa04370),
apoptosis (hsa04210), IL-17 signaling pathway (hsa04657), and
NF-kB signaling pathway (hsa04064). Module 3 comprised four
pathways, including the PI3K-Akt signaling pathway (hsa04151),
MAPK signaling pathway (hsa04010), FoxO signaling pathway
(hsa04068), and ovarian steroidogenesis (hsa04913). Module 4
FIGURE 2 | Melatonin−putative target network. The blue-colored nodes represent the potential targets. The yellow-colored nodes represent the known targets. The
red-colored nodes represent the intersection of the potential and known targets.
April 2021 | Volume 12 | Article 630504
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comprised three pathways, including the estrogen signaling
pathway (hsa04915), GnRH signaling pathway (hsa04912), and
progesterone-mediated oocyte maturation (hsa04914). In
addition, the pathway class for each of the 123 pathways in the
KEGG database was obtained, and the number of KEGG pathways
classified in different biological systems is shown in Figure 8A.
Meanwhile, according to the pathway class, five sub-networks
were constructed to explain melatonin's multi-mechanism on
DOR integrally.
Frontiers in Endocrinology | www.frontiersin.org 6
Molecular Docking
Eight hub genes were selected for molecular docking analysis with
melatonin. The active site parameters of each target were
calculated and are listed in Table 2. The lower docking affinity
reflects the stronger binding ability between melatonin and its
targets, and the binding pose with the strongest affinity was
selected to analyze the interaction between melatonin and its
targets. As shown in Table 2, except for ALB, the affinity of the
remaining targets and melatonin was lower than -5 kcal/mol,
FIGURE 3 | PPI network related to DOR. The color of the nodes is illustrated from red to cyan in descending order of degree values.
April 2021 | Volume 12 | Article 630504
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indicating a strong binding affinity. Therefore, melatonin may
improve OR by regulating the activity of these proteins. Figure 9
shows the binding mode of melatonin with the hub targets. Taking
Figure 9A as an example, melatonin completely entered the active
site of AKT1 and formed hydrophobic interactions with residues
T291(A) and V164(A). Moreover, the formation of three
hydrogen bonds between melatonin and the active site residues
of AKT1 involved residues E234 (A), L156 (A), and D292 (A).

DISCUSSION

Ovarian reserve plays a crucial role in reproductive potential and
endocrine stability. Driven by societal trends, many young women
choose to postpone marriage and childbirth. However, their OR
sharply declines after the age of 35 years (7, 50). Besides leading to
reproductivedysfunction,DORhasbeenassociatedwith increased risk
factors for cardiovascular disease and depression (51, 52). As
mentioned previously, clinical findings have confirmed that
Frontiers in Endocrinology | www.frontiersin.org 7
melatonin effectively improves OR, but the therapeutic mechanism
ofaction is still not fullyunderstood.Therefore, in thepresent study, for
the first time, systematic and comprehensive network pharmacology
was utilized to reveal the mechanism of action of melatonin against
DOR and to provide relevant information for further preclinical or
clinical research. According to our network pharmacology results,
AKT1, EGFR, MAPK1, HRAS, SRC, ESR1, AR, and ALB play vital
roles in improving OR via melatonin. Interestingly, the molecular
docking of the hub genes and melatonin exhibited high affinities,
implying that the eight hub genes may be highly correlated in the
treatment of DOR with melatonin.

Melatonin’s Eight Hub Targets in DOR
AKT1, which belongs to the AKT subfamily of serine/threonine
kinases, is a multifunctional protein that regulates cell growth,
survival, and proliferation (53). Emerging evidence has shown
that melatonin can inhibit early follicle atresia and slow down the
exhaustion of the ovarian follicle reserve by regulating the PI3K/
A B

FIGURE 4 | Venn diagram and PPI network of potential therapeutic targets. (A) Venn diagram of intersected targets of melatonin and DOR. (B) PPI network of
potential therapeutic targets. The node sizes and colors are illustrated from large to small and orange to green in descending order of degree values.
TABLE 1 | The KEGG results.

Pathway class Pathway Count Total genes p-value

Cell growth and death Apoptosis 6 136 2.78E-06
Endocrine and metabolic disease AGE-RAGE signaling pathway in diabetic complications 8 100 3.79E-10
Endocrine system Prolactin signaling pathway 7 70 1.15E-09
Endocrine system Thyroid hormone signaling pathway 6 121 1.40E-06
Endocrine system Growth hormone synthesis, secretion and action 5 119 2.68E-05
Endocrine system GnRH signaling pathway 4 93 1.73E-04
Endocrine system Ovarian steroidogenesis 3 51 4.95E-04
Endocrine system Estrogen signaling pathway 9 138 1.55E-10
Endocrine system Progesterone-mediated oocyte maturation 4 100 2.29E-04
Endocrine system GnRH secretion 3 64 9.64E-04
Immune system IL-17 signaling pathway 5 94 8.49E-06
Signal transduction JAK-STAT signaling pathway 8 162 1.79E-08
Signal transduction VEGF signaling pathway 5 59 8.32E-07
Signal transduction NF-kappa B signaling pathway 4 104 2.67E-04
Signal transduction PI3K-Akt signaling pathway 12 354 1.30E-10
Signal transduction MAPK signaling pathway 9 294 1.22E-07
Signal transduction FoxO signaling pathway 6 131 2.23E-06
April 2
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A B

FIGURE 5 | GO enrichment analysis and the top 5 enriched biological processes. (A) GO enrichment analysis. The top 10 significantly enriched terms of each part.
BP, biological process; CC, cell component; MF, molecular function. (B) The top 5 enriched biological processes.
A

B

C

FIGURE 6 | The KEGG pathway analysis of the 26 potential therapeutic targets. (A) The 17 significant pathways. The bubbles’ sizes are indicated from large to
small in descending order of the count of the potential targets enriched in the pathways. The bubbles’ colors are indicated from red to blue in descending order
of -lg (p-value). (B) Melatonin-targets-pathways network. The width of the line is proportional to the number of connected points. (C) Module analysis of the target-
pathway network. The diamond nodes represent the pathways, and the circular nodes represent the targets. The red nodes represent the hub genes obtained from
the PPI network of potential therapeutic targets.
Frontiers in Endocrinology | www.frontiersin.org April 2021 | Volume 12 | Article 6305048
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AKT pathway in mice (54). Similarly, Leung et al. found that
melatonin acts as a modulator of ovarian function and stimulates
theca cell steroidogenesis by activating the PI3K/AKT pathway
in bovine small follicles (55). Additionally, melatonin can
ameliorate decreased embryo development caused by the
AKT1 inhibitor SH6 during the in vitro maturation step by
enhancing oocyte maturation, cumulus cell expansion, and
protection from DNA fragmentation (56).

EGFR also plays an essential role in ovarian function (57–59).
LH-induced EGFR activation is an essential component for the
communication between the outer mural granulosa and theca
cells and the inner cumulus cells and oocytes, leading to cumulus
cell expansion and oocyte maturation (60). Interestingly, Tian
et al. found that melatonin can upregulate the expression levels of
EGFR and effectively improve the efficiency of oocyte maturation
in vitro (61). Tian et al. further showed that melatonin enhances
Frontiers in Endocrinology | www.frontiersin.org 9
the expression of EGFR in cumulus cells and improves cumulus-
oocyte complex maturation, mainly via melatonin receptor 1
(62). Moreover, several studies have shown that the activation of
EGFR promotes several signaling pathways, including MAPK,
PI3K/AKT, and JAK/STAT pathways, all of which play a
crucial role in follicle recruitment, development, and
maturation (63–66). These results suggest that melatonin
enhances ovarian reserve variously by upregulating EGFR levels.

MAPK1, also known as extracellular signal-regulated kinase 2
(ERK2), is a downstream effector of the EGFR pathway.
Activated ERK regulates the expression of LHb and FSHb,
which are gonadotropin synthesis genes, and induces follicle
growth and ovulation (67, 68). In addition, the activation of
EGFR-ERK1/2 dependent gene transcription leads to the cascade
of prostaglandin E2 and p38MAPK induction, which in turn stimulates
the production of EGFR ligands (AREG, EREG, andBTC) in granulosa
FIGURE 7 | Distribution of the potential therapeutic targets on significantly enriched pathways. The red nodes represent key genes, the yellow nodes represent
overlapping targets of Melatonin and DOR targets, and the green nodes represent the other targets in estrogen signaling pathway and PI3K-AKT signaling pathway.
April 2021 | Volume 12 | Article 630504
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and cumulus cells, finally activating the entire EGF network (58). For
the first time (2001), Leung et al. found that melatonin via the MAPK
pathway regulates progesterone production, LH receptor, GnRH, and
GnRH receptor gene expression in human granulosa-luteal cells, which
Frontiers in Endocrinology | www.frontiersin.org 10
play a direct role in regulating ovarian function (69). Furthermore,
melatonin has been shown to enhance follicle growth and proliferation
in cadmium-induced injury in rat ovaries via the ERK1/2 and mTOR
pathways (70).
A

B C

E F

D

FIGURE 8 | The KEGG pathway class analysis and sub-networks in different pathway classes. (A) The pathway class distribution. (B–F) Melatonin’s target sub-networks
in different pathway classes. (B) Aging; (C) Cell growth and death; (D) Development and regeneration; (E) Endocrine system; and (F) Immune system. The circular nodes
indicate the primary proteins, and the diamond nodes indicate secondary proteins. The pink nodes indicate the common targets of melatonin and DOR; the red nodes
indicate the PPI network’s hub genes of potential therapeutic targets; the cyan nodes indicate the melatonin targets, and the deep blue nodes indicate the DOR targets.
TABLE 2 | Docking parameters and results.

Targets PDB ID Box_center (x, y, z)/Å Box_size (x×y×)/ Affinity/(kcal/mol)

AKT1 3MV5 5.1, 3.0, 17.9 16.4×15.4×14.7 -7.6
ALB 3JQZ 45.4, 8.9, -36.6 19.2×18.0×11.8 -4.9
AR 2PIU 27.5, 2.8, 5.5 16.4×19.3×13.0 -7.2
EGFR 2ITY -48.9, -0.9, -22.9 21.4×16.1×22.5 -6.5
ESR1 1ERE 9.1, 46.2, 131.2 15.2×18.7×15.4 -7.3
HRAS 6D59 35.2, 30.2, 23.1 18.9×17.5×19.4 -7.1
MAPK1 5NHV -15.6, 13.5, 42.4 19.9×16.0×15.6 -6.9
SRC 4K11 19.6, 23.1, 57.1 17.5×17.4×15.9 -7.2
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As the primary female sex hormones, estrogens are responsible
for maturing and maintaining the female reproductive system and
are also involved in gonadotropin secretion and ovarian follicle
maturation. Estrogens exert their functions by binding to ERa and
ERb, encoded by ESR1 and ESR2, respectively. SRC andHRAS, the
downstream proteins of ESR1 in the estrogen signaling pathway,
participate in various cellular processes, including proliferation,
differentiation, and adhesion (71). Many studies support the
beneficial effects of androgens in follicular development, which
may be related to AR upregulating FSH receptor expression,
stimulating FSH activity in GCs, and promoting follicles from the
Frontiers in Endocrinology | www.frontiersin.org 11
anterior sinusphase to the anal phase (72–75). Inaddition, although
the expression pattern and role of ALB in the ovaries have not been
fully clarified, as a major serum protein, ALB plays a vital role in
steroid hormone (SHs) carriers and acts as a regulator of SHs' access
to their receptors (76, 77). At present, no animal or clinical studies
have directly confirmed that melatonin can improve OR through
the above five targets (ESR1, HRAS, SRC, AR, and ALB). However,
based on themolecular docking results in the current study (as well
as AKT1, MAPK1, and EGFR, the above five targets have a good
binding ability with melatonin) and combining their physiological
roles in the ovaries, we speculate that melatonin could play a
A B

C D

E F

G H

FIGURE 9 | Molecular docking of the eight hub targets with Melatonin. (A) The binding poses of MAPK1 complexed with melatonin. (B) The binding poses of AKT1
complexed with melatonin. (C) The binding poses of EGFR complexed with melatonin. (D) The binding poses of HRAS complexed with melatonin. (E) The binding
poses of SRC complexed with melatonin. (F) The binding poses of ESR1 complexed with melatonin. (G) The binding poses of AR complexed with melatonin.
(H) The binding poses of ALB complexed with melatonin.
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beneficial role in ovaries via these targets. These results provide a
preliminary basis and reference for future in-depth research on the
mechanism of melatonin in animal models.

Important Pathways and Functional
Modules of Melatonin’s Putative Targets
The pathophysiological mechanism of DOR is especially
complicated, and various biological processes and pathways are
involved in the DOR process. The 26 therapeutic targets screened
in this study mainly participate in reproductive structure
development, epithelial cell proliferation, the extrinsic apoptotic
signaling pathway, PI3K signaling, and response to steroid
hormones. Furthermore, the KEGG pathway analysis indicated
that the PI3K-Akt signaling pathway (hsa04151) and the estrogen
signaling pathway (hsa04915) were the two most enriched signaling
pathways (Figure 6A). Accumulating evidence suggests that the
PI3K-Akt signaling pathway plays a key role in folliculogenesis
processes, including follicle recruitment, development, and
maturation (63–65). The estrogen signaling pathway is vital for the
maturation andmaintenance of the female reproductive system (78).

To further understandmelatoninmechanisms in improving OR,
the target pathway network was divided into four densely linked
functional modules, as shown in Figure 6C. The 1st module
consists of pathways in the endocrine system and related
signaling pathways. The 2nd module includes pathways in cell
growth and death, the immune system, and related signaling
pathways, and the 3rd module is related to signal transduction.
The 4th module includes pathways in the endocrine system related
to the regulation of ovarian function. According to the theory of
network biology, the topology of a biological network is bridged to
its function (79). These modules reflected melatonin's effects on
endocrine and immune regulation, anti-apoptosis, and ovarian
function improvement. In addition, exogenous growth hormone
administration has been shown to improve oocyte and embryo
quality in IVF treatment of women with poor OR (80, 81). The
functional modules analysis showed that melatonin is closely related
to the synthesis, secretion, and action of GH, which also supports
the function of melatonin in improving OR.

Biological Processes and Organ Systems
Regulated by Melatonin's Putative Targets
Importantly, in this study, to explain the multi-mechanism of
melatonin on DOR, five sub-networks were constructed. The
aging sub-network (Figure 8B) showed that melatonin targets
AKT1, mTOR, and PIK3A, among others. The AKT/TOR
pathway is a recognized central signaling pathway regulating
lifespan, highlighting the anti-aging effect of melatonin (82, 83).
Consistently, previous studies have shown that melatonin can
prolong the lifespan and delay ovarian aging in mice (84, 85).

Apoptosis is a critical biological process that plays a vital role in
germ cell depletion in mammalian ovaries (86). Follicular atresia
caused by GC apoptosis is the primary process responsible for
follicle loss (87–89). Bcl2-like-proteins are anti-apoptotic factors
that may inhibit apoptosis. In the subnetwork of cell growth and
death (Figure 8C), melatonin acts on BCL2, BCL2L1, BID, and
CASP3, suggesting that melatonin exerts anti-apoptotic effects.

The sub-network of development and regeneration (Figure 8D)
suggests the effect of melatonin in follicle development regulation.
Frontiers in Endocrinology | www.frontiersin.org 12
This network includes AKT, MAPK1, and HARS, which are
involved in follicle growth and survival (90).

In addition to maintaining homeostasis, the immune system is
associated with modulation at every level of the hypothalamic-
pituitary-ovarian axis, as well as the regulation of proliferation and
differentiation of ovarian germline stem cells (91). AKT1 and its
interactions with MAPK1, JAK2, STAT1, etc., are involved in
regulating melatonin in both the endocrine and immune systems
(Figures 8E, F). Although they are not immune genes, they play an
essential role in thedivision, differentiation,development, and function
of various types of immune genes and immunomodulatory cytokines,
including T-cells, IFN, Th17, and dendritic cells (92–94).

CONCLUSIONS

In summary, melatonin may improve OR by intervening in a
series of targets (such as AKT1, EGFR, MAPK1, HRAS, SRC,
ESR1, AR, and ALB), biological processes (reproductive
structure development, epithelial cell proliferation, extrinsic
apoptotic signaling pathway, PI3K signaling, and response to
steroid hormone), and signaling pathways (such as PI3K-Akt
and estrogen signaling pathways). Melatonin could exhibit anti-
aging, anti-apoptosis, endocrine, and immune system regulation.
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