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ABSTRACT: The process of sorption enhanced steam methane reforming (SE-SMR) is an emerging technology for the production
of low carbon hydrogen. The development of a suitable catalytic material, as well as a CO2 adsorbent with high capture capacity, has
slowed the upscaling of this process to date. In this study, to aid the development of a combined sorbent catalyst material (CSCM)
for SE-SMR, a novel approach involving quantitative structure−property relationship analysis (QSPR) has been proposed. Through
data-mining, two databases have been developed for the prediction of the last cycle capacity (gCO2

/gsorbent) and methane conversion
(%). Multitask learning (MTL) was applied for the prediction of CSCM properties. Patterns in the data of this study have also
yielded further insights; colored scatter plots were able to show certain patterns in the input data, as well as suggestions on how to
develop an optimal material. With the results from the actual vs predicted plots collated, raw materials and synthesis conditions were
proposed that could lead to the development of a CSCM that has good performance with respect to both the last cycle capacity and
the methane conversion.

1. INTRODUCTION

Hydrogen is seen as an attractive energy source for many
reasons, including the high potential to reduce carbon
emissions by decarbonizing multiple sectors and higher
efficiency due to a higher energy density, compared to
hydrocarbon fuels such as diesel or gasoline.1,2 This gives
hydrogen the ability to store a lot more energy for every unit
weight of fuel in comparison. Hydrogen production as a fuel
source is vital in the race toward the 2050 Net-Zero Target.
One of the most promising methods for the future production
of low carbon H2 is via sorbent enhanced steam methane
reforming (SE-SMR),3 (reaction 3), which combines the two
processes of steam methane reforming (SMR) (reaction 1) and
calcium looping (CaL) (reaction 2).

+ ↔ + Δ = +HCH 2H O CO 4H 165 kJ/mol4 2 2 2 r,298K

(1)

+ ↔ Δ = −HCaO CO CaCO 178 kJ/mol2 3 r,298K (2)

+ + → +

Δ = −H

CH 2H O CaO 4H CaCO

13 kJ/mol
4 2 2 3

r,298K (3)

In the SE-SMR process, the reforming reaction takes place in
the presence of a calcium oxide (CaO)-based sorbent, which
allows it to capture in situ the produced CO2, which then
drives the reaction equilibrium of reaction 1 to the right,
leading to higher hydrogen yields. So, while the introduction of
a sorbent in the conventional steam reforming process is
beneficial for those two reasons, there are also some challenges
that come with the use of a sorbent.
First, the selection of sorbent itself poses an issue as the

material of choice must process several properties in order for
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efficient operation, in terms of economics and operating
conditions. One of the important requirements of a sorbent in
the use of SE-SMR is its carrying capacity over multiple
cycles.4,5 Other important factors include the following:

• the ability for the adsorbent to be regenerated
• the adsorbent having a high CO2 capacity in the kinetic

limited regime
• economic viability with a potential export market for the

spent material
• having fast reaction kinetics for the absorption and

desorption steps
• maintaining adequate mechanical strength after multiple

cycles

From early studies on sorbents used in steam methane
reforming, further knowledge has been gained on what makes
an efficient and appropriate sorbent material. For example,
additional factors include durability comparable to the
catalysts, to minimize the purge requirements for the spent
sorbent;6 an adequate pore size distribution with large pore
volume in the 50−100 μm range, and active surface of fresh
sorbent.7 Reaction temperature, carbonation and calcination
duration times, atmospheric conditions, sorbent precursor, and
sorbent particle size are all key influencers in determining the
suitability of a sorbent for SE-SMR. A principal indicator of
sorbent performance is the number of reaction cycles and the
capacity capability at the last cycle, which essentially suggests
the lifetime of a sorbent before replenishment is required.8

CaO is a favorable material due to its low cost and wide
availability in naturally occurring minerals, for example,
limestone and dolomite. Despite calcium-based sorbents
being a favored material, a disadvantage of naturally occurring
calcium-based materials is the rapid decrease of their CO2
uptake capacity with cycle number, due to sintering or pore
plugging. Some proposed mechanisms to improve the CO2
capture characteristics of limestone, include methods such as
hydration or thermal pretreatment.9 The choice of the CaO
precursor has also been reported to have an effect on the
sorption properties of the final synthesized material, with
calcium acetate proven to be a high performer.10

Another challenge faced in the SE-SMR process is catalyst
selection. Catalyst materials used for SE-SMR should resist
coke formation and sulfation poisoning, be inactive for side-
reactions, maintain the activity at high temperature, and have
high mechanical strength, as well as good heat transfer
properties.11 Preferably, they should also be able to operate at
low steam/carbon ratios in order to improve the energy
efficiency of the process.12 The mechanisms of several catalysts
(nickel, rhodium, platinum, ruthenium, and iridium) for SMR
reactions were investigated,13 for which it was reported that
platinum catalysts were most reactive. Nickel oxide has widely
been proven to be preferable for use in SE-SMR due to its high
catalytic activity, that is, high conversion rate of methane and
lower cost compared to rare earth elements.14−16 However,
nickel does have its disadvantages:17

• Nickel nanoclusters (as opposed to a skeletal structure)
are prone to sintering from the high temperatures.

• Nickel nanoclusters have a tendency toward coking
leading to particle fracturing and active site loss.

• The production of hydrogen-rich gas with a low
concentration of CO is a challenge using nickel catalysts,
as they are not as active in the water gas shift reaction as
other catalysts.

Other factors to consider in catalyst choice include their
sensitivity to sulfur poisoning. It is assumed that the natural gas
feed will have undergone desulfurization; however, most
naturally occurring limestones and dolomites may still contain
small quantities of sulfur. Therefore, in the reforming reaction,
with enough sulfur present, it can be transferred from the
sorbent to the gas phase to quickly poison the nickel reforming
catalyst.18 The use of metal dispersion and alloying
(particularly with platinum, palladium, or ruthenium), are
both effective methods to enhance certain properties of
catalysts, including resistance to sintering as well as resistance
to nickel oxidation, which promotes its activation.19 The
addition of a metal such as iron, copper, or tin, also has the
possibility to improve the catalytic activity.17

The concept of a material that possesses both catalytic and
adsorbing properties is not a new one and has been of interest
for the last 20 years. A combined sorbent catalyst material
(CSCM), or a bifunctional material, is a one-particle system
that contains a metal for the catalysis, and a sorbent for the in
situ CO2 sorption. Due to the intimate contact of catalyst and
sorbent in the solid, the CSCM particle system enables greater
heat transfer and reduced mean path length for mass transfer of
the reaction products, which enables a greater conversion
efficiency compared to a two-particle system.20 Additionally,
the overall reactor volume can be reduced by using a sorbent
that acts as a support.
There have been different approaches taken to develop and

predict the behavior of optimal properties for a suitable
CSCM, such as the determination of kinetic and diffusion
parameters and computational modeling,21−25 as well as
material synthesis and experimental studies in a fluidized bed
reactor26 or fixed bed reactors.27−29 The application of CSCM
also is not limited to the process of SE-SMR with methane as a
carbon source, as there are many studies conducted on CSCM
applied in sorption enhanced steam reforming using other raw
materials such as glycerol,30,31 phenol,32 coal,33 biomass,20

ethanol,34 methanol.35

The development of an “optimal” CSCM has proven to be a
complicated and monotonous task; however, this can be
overcome with the application of machine learning, specifically
the process of quantitative structure−property relationship
analysis (QSPR). This analysis is based on using the molecular
structure of a material to predict its physical behavior. QSPR
modeling has long been used particularly in the pharmaceutical
industry for drug development, and it has recently seen
expansion into various physical chemistry fields, including the
adsorption of metal organic frameworks.36−39 Additionally, the
use of QSPR in combination with other computational
methods such as DFT or process simulation has also garnered
effective prediction within research in the energy field;40,41

however, to the best of our knowledge, QSPR has not been
applied to the development of a CSCM material for use in SE-
SMR.
In this study, we propose a new QSPR machine learning

approach for the prediction of a CSCM, through the
development of a calcium-based sorbent database and nickel-
based catalyst database, consisting of SE-SMR, and SMR
experimental data from the literature. The properties of
interest used as a measure of the performance for the
CSCM, is the methane conversion and the CO2 adsorption
capacity for the last cycle calcination/carbonation. The
individual databases were first developed into QSPR models
for the prediction of separate sorbent and catalyst materials,
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then eventually integrated for the prediction of unseen CSCM
materials.

2. METHODOLOGY
The methodology typically used in QSPR studies consists of
six steps that fall into four main categories outlined in Figure 1:

Preparation of data:
1. The collection or measurement of property data

points (here, the last cycle capacity and the
methane conversion).

2. Collection of descriptor data (descriptor data was
selected via the OCHEM software. Different
descriptor sets were trialled and compared.
Examples include constitutional or topological
descriptors).

Data preprocessing:
3. Analysis of the data to ensure its suitability;

application of processes such as feature selection,
normalization, standardization, and outlier detec-
tion. (Specifically in this study, the preprocessing

included standardization, neutralization, removing
salts, and cleaning the structure, which were
processes applied in the OCHEM software, prior
to model predictions).

Model development:
4. Training and validation of the model; develop-

ment of various machine learning models to
obtain high prediction metrics.

Model application and interpretation
5. Recognition of the applicability domain.
6. Statistical evaluation and interpretation of the

model.
In addition to using examples from literature,42,43 care was

made to ensure the development followed the principles
outlined by the Organisation for Economic Co-operation and
Development (OECD). These are guidelines that were
formulated in 2002 by QSPR experts to regulate the use and
development of these models.44 Further details are given in
Supporting Information Table S1.
The stages involved in QSPR development are described in

the following sections.

Figure 1. Process flow diagram of the development of QSPR models.

Table 1. Properties and Their Respective Experimental Conditions per Database

database property (units) experimental conditions (units)

sorbent last cycle capacity
(gCO2

/gsorbent)
CaO concentration (%), cycle number, calcination and carbonation temperatures (°C) and times/(mins), synthesis method,
CaO precursor, initial cycle capacity (gCO2

/gsorbent)

catalyst methane conversion
(%)

nickel concentration (wt %), calcination temperature (°C), calcination duration (h), SMR reaction temperature (°C) fresh
BET surface area (m2/g), steam/carbon ratio

Figure 2. Correlation heatmap of sorbent input features.
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2.1. Database Development. The data collection method
took the form of a data-mining process, often used in model
building, where data are gathered by sifting through large
amounts of data from the literature in order to obtain new
patterns, correlations, or structures in data.45 Literature ranging
from around 20 years ago to the present was studied to build
up two separate databases, and eventually, an overall combined
database, consisting of the properties of interest (last cycle
sorbent capacity and catalyst methane conversion) as well as
the experimental conditions used to obtain these results.
Care was taken to ensure the data collected was based on

experimental measured data as opposed to computational
modeling work. Additionally, some literature was omitted
where the properties were present in the work, however with a
large percentage of the details of the conditions missing, as this
would cause a skew in the ability to predict the properties. For
instance, the sorbent database went from a size of 248, to 239,
and the catalyst database was reduced from 249 data points to
183, due to the aforementioned reasoning. The conditions
chosen to aide in the predictions of the properties are shown in
Table 1. These were chosen because they have been proven to
have an influence on the properties’ outcome. Additionally,
principal component analysis (PCA) was conducted to confirm
that all input categories were not redundant (Figure 2 and
Figure 3).
PCA is a mathematical model that is used to reduce the

dimensionality of a data set, while retaining most of the
variation in the data set and as an effective procedure for the
determination of input parameters.46 The reduction of features
is achieved by identifying the directions (principal compo-
nents) where the variation is highest.47,48 From the PCA
heatmaps the variance across the 9 and 6 principal components
(PCs) for the sorbent and catalyst databases, respectively, was
shown to be relatively evenly distributed across the first few
PCs (e.g., for the catalyst database, the first PC explains 32% of
the variance, PC2, PC3, PC4, PC5, and PC6 explain 20.3%,
15.7%, 13.3% 11.6%, and 7.1%, respectively), therefore it was

not essentially necessary to remove any parameters. That
would be necessary if the first two components contributed to
around 70−95% of the total variance (see Table S2 for sorbent
variance data).
An additional data set garnered from the PCA heatmaps was

feature importance. From Figure 2 it can be calculated that the
top three features that contribute to the PCs of the last cycle
capacity, are the precursor type, CaO concentration, and
calcination temperature, and from Figure 3, the top three to
contribute to methane conversion are calcination temperature,
S/C ratio, and BET surface area (see Table S3 for full feature
importance data).
See Tables S4 and S5 for the individual sorbent and catalyst

databases, respectively, and Table S9 for the CSCM literature
data.

2.2. Molecular Descriptors. Once the experimental
conditions were confirmed, the molecular descriptors were
evaluated. Molecular descriptors are defined as mathematical
representations of a molecule, from characteristics related to
the structure of the chemical.43 They are calculated from
quantum chemistry methods and allow for the modeling of
many different properties in fields such as physical chemistry,
pharmaceuticals, and analytical chemistry.49

The use of different descriptor sets has been shown to result
in variable performance in the modeling of the properties of
interest.50 Therefore, a selection of descriptors were trialled by
measuring the accuracy metrics with varying descriptors using
the OCHEM platform,51 which is an online chemical database
with a QSPR/AR modeling environment. A list of the
descriptors trialled is given in Table 2. Alongside the molecular
descriptors and experimental conditions from the literature, a
fundamental input was the structures of the molecules in
SMILES format (simplified molecular-input line-entry system),
that is, CaO would be represented as O = [Ca].

2.3. Machine Learning Models. Several types of models
were used in this study along with the application of the
inductive transfer approach. This is the use of a combination of

Figure 3. Correlation heatmap of catalyst input features.
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several conventional single task learning (STL) machine
learning models, used in parallel, also known as multitask
learning (MTL), to act as additional nodes of the original
model as opposed to separate models, (shown in Figure
456,57).

2.4. Single Task Learning (STL). The conventional
approach of STL in QSPR is to focus on obtaining the target
of one property, using only descriptors and conditions relating
to that single property. This was the first approach taken to
predict the properties of last cycle capacity and methane
conversion using their respective databases, alongside compar-
ing performance with descriptors. The machine learning
models trialled were associative neural network (ASNN),
deep neural network (DNN), and least-squares support-vector
machine (LSSVM). These models were chosen as they can be
applied as MTL models, as well as with the use of molecular
descriptors on the OCHEM platform.
A built-in function of OCHEM called unsupervised forward

selection (UFS) was implemented. This is a method used for
eliminating redundant descriptors and is specifically used in the
development of QSPR models. Redundancy can be common in
QSPR data sets due to high or exact linear dependencies
between subsets of the variables, and high multiple correlations
between subsets of the variables. These factors hinder the
development of models that have the ability to effectively
predict new data. UFS produces a reduced data set that
contains no redundancy and has a minimal amount of
multicollinearity, via the method depicted in Figure 558 (see
Supporting Information for other descriptor filter settings in
addition to UFS).

ASNN, DNN, and LSSVM were implemented in OCHEM,
and then compared against each other to first observe the
effect on ability to predict the properties using molecular
descriptors with experimental conditions, then the best
performing algorithms were used to further predict unseen
properties using more data from the literature. Details on the
architectures of the machine learning models can be found in
the Tables S6−S8.

2.5. Multitask Learning (MTL). With MTL, multiple
properties are trained and learned in parallel.59 This approach
improves the performance of STL due to the training data
from the extra tasks acting as a suggestive bias, adding in effect
constraints for the other task at hand, which aids in the
accuracy and the speed of learning.60

Two types of comparisons were conducted, the first being a
combination of finding the machine learning model and
molecular descriptor set, which resulted in the highest
prediction accuracy. For efficiency, this was trialled using
STL data only, and the models were conducted using
OCHEM’s automatic multiple models setting. The results
from this were used in the second comparison which was STL
compared against MTL, all using default model settings, to
observe which inductive transfer approach was the best
performing for this data.
Following this, the approach that yielded the best accuracy

metrics was then taken and the model settings were optimized
to obtain the best predicting model, which was then used to
predict unseen CSCM molecules.

2.6. Model Development and Performance Measure-
ment. Each model was validated using a grid search method
based on 5-fold cross-validation procedure, which is useful to
mitigate overfitting, parameter optimization as well as
evaluating the predictive validity of linear regression models.61

On the OCHEM platform, the five-cross validation process
develops a new model on each validation step without the use
of known information about the molecule, as they are only
calculated following the completion of the model developed.

Table 2. Descriptors Used for Comparison50,52−55

descriptor description

ALogPS,
OEstate

prediction of logP by ALogPS2.1 program, calculated from
each atoms’ intrinsic electronic properties and the influence
of other atoms in the molecule

Fragmentor molecular fragments which contain from 2 to 4 atoms
generated by the ISIDA module in OCHEM

GSFrag descriptors based on the occurrence of certain special
fragments

alvaDesc
v.2.0.2
(3D)

calculates and analyzes molecular descriptors and fingerprints,
such as constitutional, topological, and geometrical
descriptors

QNPR (quantitative name property relationship) uses substrings of
SMILES or IUPAC name as a representation of molecules

Figure 4. Schematic of a neural network configuration using different
inductive transfer approaches: (a) conventional single task learning
(STL) and (b) multitask learning (MTL).

Figure 5. Process flow diagram showing the steps involved in
unsupervised forward selection (UFS) to remove unneeded molecular
descriptors.
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This approach is reported to be the correct validation
approach, as no prior information about the test molecules is
used to skew the models’ development.50 Additionally, the
models themselves had internal validation which can be seen in
the Supporting Information.
To assess the predictive performance, the accuracy metrics

used were root-mean-square error (RMSE), mean absolute
error (MAE), and the coefficient of determination (R2), shown
in eqs 4 to 6, The aim of the machine learning models was to
obtain the highest R2 and lowest RMSE and MAE, where n is
the quantity of data required for the network training, ̂y is the
predicted value of y, yi is the target output, and ̅y is the mean
value of y.
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Additionally, as a recommended tool when dealing with large
data sets, in order to evaluate the models’ prediction
capabilities of new molecules, the absolute relative error
(ARE) for each molecule was calculated using eq 7 and the
models’ average (AARE) was calculated, eq 8, where n is the
number of molecules predicted per model, and i is the
predicted molecule.62

=
− ̂y y

y
AREi

i

i (7)

=
∑ =

n
AARE

AREi
n

i1
(8)

3. RESULTS AND DISCUSSION
3.1. Comparison of the Models. A comparison of

molecular descriptors and machine learning models for the
sorbent database, Figure 6, shows that the ASNN model gave
the highest R2 and lowest RMSE, across all models. In terms of
the “most optimal” set of descriptors, although not clear in the
figure, AlogPS/OEstate, Fragmentor, and GSFrag resulted in
equally strong values, while QNPR and alvaDesc consistently
underperformed for this database. On the other hand,
interestingly, as shown in Figure 6, in a comparison of
machine learning models and descriptors for the catalyst
database, the best performing model was in agreement with the
sorbent database (ASNN), whereas the descriptors that
performed best were the opposite. Here, alvaDesc and
QNPR were the top two and Fragmentor was the least
accurate predictor.
ASNN stood out with both the catalyst and sorbent results,

and suggestions for this include the learning method behind
this algorithm. It is a combination of an ensemble of the feed
forward artificial neural network model (ANN) and the K-
nearest neighbor technique (kNN). ANN is a supervised
learning algorithm, which does not require any preassumption
of the input−output relationship.63 This would have a positive

effect on the prediction capability as it would allow the model
to rely more on the molecular descriptors calculated to provide
a prediction. The model uses the correlation between
ensemble responses as a measure of distance within the
analyzed cases for the kNN,57 which corrects the bias of the
neural network ensemble.64 The combination of two
algorithms, proved to be optimal in this case.
As all five descriptors resulted in high predictions for either

of the databases, it was too ambiguous to decide which was
optimal at this stage, therefore it was decided to take all sets to
the next step of applying the inductive transfer approach of
multitask learning, to see if what effect, if any, this approach
had on the results, which yielded interesting results.
Figure 7 gives the accuracy metrics for sorbent database, and

Figure 8 gives the results for the catalyst database, using the
ASNN model. The results show that MTL gave the highest R2,

Figure 6. Comparison of machine learning modelsleast-squares
support vector machine (LSSVM), deep neural network (DNN),
associative neural network (ASNN), and molecular descriptors on the
catalyst methane conversion database: (a) coefficient of determination
(R2), (b) root-mean-square error (RMSE), and (c) mean absolute
error (MAE).
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and the lowest MAE and RMSE. The MTL improved accuracy
predictions over STL mainly due to having additional data
points, with 422 for the MTL compared to 239 and 183 for the
sorbent and catalyst STL models, respectively. Extra data are
not always a good thing and, instead, the quality of data has
more bearing, due to the effect of overfitting. If the model is
tuned with too much data, it starts to memorize data instead of
“learning”, which leads to high errors for unseen data.65

However, it has also been shown that more data can lead to
lower estimation variance and therefore better predictive

performance. More data increase the probability that they
contain useful information, which is advantageous.66 With
these opposing arguments in mind, for this particular data set,
it is suggested that the additional data points improved the
generalization of the prediction, by using the domain-specific
information contained in the training signals of the added
related property, which allowed for these training signals to act
as an inductive bias.56

As mentioned before, the molecular descriptors gave
interesting results between the two databases, with AlogPS/

Figure 7. Comparison of the effect of the inductive transfer approach and molecular descriptors, on the associative neural network (ASNN)
algorithm, for the sorbent database: (a) coefficient of determination (R2), (b) root-mean-square error (RMSE), (c) mean absolute error (MAE).
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OEstate and Fragmentor descriptors performing well with the
sorbent database, and alvaDesc and QNPR giving good results
for the catalyst database. As seen in Table 2, AlogPS/OEstate
calculates descriptors based on each atom’s intrinsic electronic
properties, as well as looking at the counts of atom or bond
types and Fragmentor set of descriptors focus on molecular
fragments which contain between 2 and 4 atoms. The QNPR
set of descriptors uses substrings of SMILES as a
representation of molecules,50 and alvaDesc calculates
descriptors such as constitutional indices, charge descriptors,

and atom pairs for example, with most descriptors being 2D
based. When looking at the two databases, a main difference is
first the number of experimental conditions as inputs; however,
this is unlikely to affect the way the descriptors behaved with
the databases, and another difference is the SMILES format. As
a percentage, more of the sorbent database had a SMILES
format that incorporated bonds and functional groups (31%
compared to catalyst 22%), whereas the catalyst database had
more data that was a “mixture”. This could explain why it
yielded good results for the catalyst data set. Typical molecules

Figure 8. Comparison of the effect of the inductive transfer approach and molecular descriptors, on the associative neural network (ASNN)
algorithm, on the catalyst methane conversion database: (a) coefficient of determination (R2), (b) root-mean-square error (RMSE), and (c) mean
absolute error (MAE).
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used in QSPR are standard compounds and therefore the
SMILES input often involves structures such as aromatic rings,
functional groups, and the bond type, for example.
As most of the catalyst molecules included in this study are

not whole compounds but rather a physical mixture, the
SMILES input format, in this case, was simply the element in
the molecule along with its charge, as a string. Therefore,
considering that QNPR relies on the substrings to calculate
descriptors as opposed to focusing on bonds or functional
groups, it is suggested that it could readily calculate more
accurate and relevant descriptors to the databases used in this
study. Additionally, alvaDesc looks at aspects such as charge
descriptors, and 2D matrix-based descriptors for example
which would favor the catalyst database based on the SMILES
input. Conversely, looking at the sorbent database, the
reasoning behind why AlogPS/OEstate and Fragmentor
would be favorable here, is that it specifically looks at the
bond types, as well as the molecular fragments and neighboring
atoms, which would allow for better prediction if the SMILES
input data consisted of this information.
In terms of STL vs MTL, as seen in Figure 7 and Figure 8,

the descriptors that favor the STL approach for the sorbent
database, that is, the set that yields higher R2, and lower
RMSE/MAE, in order is AlogPS/OEstate > Fragmentor >
GSFrag > alvaDesc > QNPR. For the STL catalyst database
the performance is alvaDesc > QNPR > GSFrag> AlogPS/
OEstate > Fragmentor, which is in line with the aforemen-
tioned reasoning. Interestingly, the set of molecular descriptors
that sit in the middle for both databases in terms of predictive
ability, is GSFrag. For this reason, it is the best performing set
of descriptors for both databases when used with the MTL
approach, as it provides equally strong performance for each
database, thus resulting in an overall high performing
prediction capability when a combined sorbent and catalyst
database is the input data.
The GSFrag descriptors are the occurrence numbers of

certain special fragments containing 2−10 non-hydrogen
atoms, and it is been proven that the occurrence of specific
fragments produces a unique code of a chemical structure for
wide sets of compounds.67 As most QSPR descriptors sets are
predominately developed on the field of drug discovery, it is
unlikely that other descriptors (such as Fragmentor, which is
based on the pharma industry), to have fragments common to
sorbents and nickel catalysts. QSPR equations constructed
from these descriptors usually provide good statistical
characteristics and high predictive ability. Molecular fragments
of this type provide good correlations between properties and
chemical structure for many classes of compounds.68

Consequently, as the results indicated that the GSFrag was
favorable, along with the MTL ASNN approach, these settings
were taken forward to predict new unseen CSCM molecules.
When predicting new unseen molecules using this ML

model setup, although the accuracy metrics were almost
perfect, the prediction capability was less than optimal, giving a
range of accuracy between 11 and 300% between the actual vs
predicted values for both the methane conversion and last
cycle capacity. This can be due to a number of reasons, namely
overfitting and having the experimental conditions skew the
effects of the molecular descriptors.65 In this case what may
have occurred can be due to either the limits of the data, either
from being limited in size or having too much “noise”, or it
may be down to the constraints of the algorithm itself, which
may be too complicated or too simplified to this type of data.69

It is difficult to say, but the molecular descriptors may also
have a limitation on the prediction abilities as they are seldom
used in sorbent and catalyst materials, therefore the ability to
“learn” is only as good as the past research in which they will
have been used.
Because of these various reasons, in order to reduce the

cumulative discrepancies on the end results, the machine
learning model development stage was repeated with some
omitted steps. First, the only model taken forward was the
ASNN as that outperformed the other two clearly. Addition-
ally, GSFrag was the molecular descriptor set taken forward
because it resulted in equally good results for both databases.
What was changed however was the data set inputs, the
validation, and the model architecture. After trial and error and
using data from the PCA information, a new model that
resulted in more accurate predictions was developed, with the
input data and ASNN structure given in Table 3.

3.2. Applicability Domain. The Applicability Domain
(AD) is a theoretical region in “physicochemical space” on
which the training set of the model has been developed, and
for which a QSPR model should make predictions with a given
reliability.70,71 Due to this, it is recommended that new data be
predicted within the AD by interpolation as opposed to
extrapolation. In this study the AD was well-defined with
validation data falling within the AD; however, the prediction
results for the unseen CSCM molecules did not fall within the
AD, and therefore they were calculated by extrapolation. To
visualize the spread of data a distance-to-model plot (Williams
plot) was generated, which assesses how “far” a molecule is
from the model. Compounds that are “further from the
model”, are expected to have lower prediction accuracy than
compounds that are “closer”.72

Table 3. Properties of the Final ML Model Used for the Prediction of Unseen Combined Sorbent Catalyst Materials (CSCM)

database property (units) experimental conditions (units)

sorbent last cycle capacity
(gCO2

/gsorbent)
CaO concentration (%), cycle number, calcination and carbonation temperatures and times (°C/mins), synthesis method,
CaO precursor, initial cycle capacity (gCO2

/gsorbent)

catalyst methane conversion
(%)

nickel concentration (wt %), calcination temperature (C), calcination duration (h), SMR reaction temperature (°C) fresh
BET surface area (m2/g), steam/carbon ratio

validation 5 cross-validation
ASNN architecture

training method SuperSAB
number of neurons in hidden layer 32
learning iterations 1000
ensemble 256
additional Parameters partition = 3, selection = 2
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Figure 9 gives the Williams plot for the graphical
visualization of outliers for the predicted results in the

developed model. The red dots indicate the prediction
capability, where its X-position is the “distance-to-model”
given by ASNN-Standard Deviation (STDEV) and its Y-
position is the expected RMSE. From this, it can be suggested
that OECD guideline 3 is adopted, as the predicted data for
the model development largely falls within the AD.
Conversely, when applying this model to new unseen data,

the results are not as fruitful. The green data points in Figure 9,
which are the new predicted compounds, all indicate an RMSE
value of, or around, 0.086 and 0.4 for the sorbent and catalyst
properties, respectively. This is expected as when looking at the
original metrics, the RMSE values for the developed models
were 0.09 ± 0.03 for the sorbent training data and 0.23 ± 0.08
for catalyst training data. Therefore, the expected RMSE for
the predicted CSCM molecules is in line with the developed
model training data, with the catalyst RMSE being slightly
higher. In terms of distance-to-model, they are on the high end,
meaning the predictions are not as reliable as they could be.
Reasons for why this occurred could be due to the nature of
the input data vs the CSCM predictions.
However, distance-to-model plots estimate the reliability of

predictions, and while accuracy is an objective measure that
has a fixed calculation procedure, reliability is subjective and
can be estimated in numerous ways.73 Because of this, data that
falls out of the AD is not necessarily invalid, however, it is less
reliable.
3.3. Model Prediction Capability. The GSFrag/ASNN

model was used to predict the last cycle capacity of CSCM
molecules, again where the data was collected through
literature data-mining, the difference being that the new
molecules possessed both catalytic and sorbent properties,
compared to the molecules used to create the predictive
model, which had one or the other. As the study of CSCMs is
not as exhaustive as that for nickel-based catalysts and calcium-
based sorbents, there were less data available to which to apply

the model, with only 41 data points. Furthermore, with some
of the data collected, some literature did not provide both last
cycle capacity and methane conversion despite reporting on a
CSCM. The database along with the predicted properties can
be found in Tables S9 and S10. Lastly, through trial and error,
a pattern was observed in the type of input data fed into the
machine learning model. A combined sorbent and catalyst
database made up of just the 239 and 183 data points (422
data points) yielded a model that could not predict the output
behavior at all, that is, no clear regression pattern was seen in
the actual vs predicted graphs. Consequently, splitting the
CSCM database of 41 data points into two and adding some to
the overall MTL database (resulting in 446 data points overall)
and using some as the validation unseen data (17 data points)
was successful, and the model was able to “learn” and predict
some of the CSCM behaviors.
Figure 10. shows the percentage of molecules’ predictions

that fell in specific AARE ranges (%), for the last cycle capacity

prediction, the methane conversion prediction, and an average
of the two for the unseen CSCM molecules. From this figure, it
is clear that although a meaningful amount of unseen CSCM
were predicted well (around 30−35% of data falling in an error
range of 10% or less), a significant amount also fell in the error
range above 100%.
The molecules with the highest ARE (%) were those at the

extremities, in this case, the molecules with very low sorbent
capacities, the molecules missing highly influential conditions
(e.g., CaO concentration %), and molecules with conditions
that were not commonly occurring in the databases that
developed the model. In these cases, the information provided
was not sufficient for the model to extrapolate well, based on
existing data.
The average prediction capability of the overall model is not

tremendously high, with only 58% of the data resulting in an
AARE of 50% or less; however, given this new approach, and
the fact that high ARE (%) values have an explanation behind
them, the models’ application on new data is a fairly positive
one.
Looking at the prediction capability of the individual

properties, the catalyst properties are predicted ever so slightly
better at 61% of data falling in an AARE range of 50% or less,
compared to 58% for the sorbent properties. This occurs
because the catalyst database uses fewer experimental
conditions and relies on the molecule more to predict the
behavior. This can be a good and bad thing; it allows for less

Figure 9. Williams plots for the model when applied to predict
unseen CSCM molecules, with ASNN-Standard Deviation used as the
distance to the model. Black lines represent the averaged RMSE over
different distance-to-model intervals: (a) last cycle CO2 capacity
(gCO2

/gsorbent) and (b) methane conversion (%).

Figure 10. Comparison of the percentage of data belonging to each
average absolute relative error (AARE) range for the last cycle
capacity and methane conversion prediction of CSCM molecules.
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literature data to be gathered to predict an output from ML
and QSPR. On the other hand, it prevents the ability to
observe correlations in the input data, which can help further
the development of a CSCM, as described in the next section.
3.4. Patterns in Data. Further to obtaining a measure of

how well the model could predict new molecules, additional
information was also garnered from the results. Patterns in the
output prediction data were seen as a function of input data,
specifically the two main influencers CaO concentration (%)
and nickel wt % (Figure 11).

Figure 11 (a) and (b) show certain patterns in the input
data; a low concentration of calcium oxide in a sorbent
material yields lower CO2 capacities in the last cycle, as
expected, but there is also an optimal concentration, as too
much CaO % also does not yield the maximum CO2 capacity
in the last cycle. Similarly, the wt % of nickel in a catalyst is
shown to yield low conversion if it is too high. In both cases,
this is likely to be due to dispersion and availability of active
sites.

Additional parameters have an effect on where a data point
sits on an actual vs prediction plot, therefore color plots such
as these, prove helpful to narrow down the best direction to go
in CSCM development. Further information garnered from
color plots generated from this study include the calcium
precursor and the inert support in the sorbent. As you can see
from Figure 12, there is an indication that the naturally

occurring precursors of calcium carbonate and calcium oxide,
yield a lower last cycle capacity. Conversely, the best
performing precursors are shown to be calcium gluconate
and calcium nitrate. Other precursors that gave good
performance but equally underperformed were calcium acetate
and calcium chloride. The reason for this is that it is well-
known that calcium oxide from natural precursors undergoes a
rapid loss of reactivity after several carbonation/calcination
cycles. Additionally, it has been reported that natural sorbents,
such as limestones, form product layers with higher cohesion
than those formed by the synthetic sorbent. Thus, once the
small pores have largely filled and a thin layer of product has
been deposited, the natural sorbents CO2 uptake rapidly
decreases.74

From Figure 13 it can be seen that Mayenite (Ca12Al14O33),
provides both good and underpar performance. From this
color plot, very little information can be gathered, in terms of
the type of support that is optimal for the sorbent
development. This can be due to the fact that there are
other more influential factors, and that the inert support, as

Figure 11. Actual vs predicted scatter plots showing the effect of an
influential input for (a) last cycle capacity (gCO2

/gsorbent) as a function
of CaO concentration (%) and (b) methane conversion (%) as a
function of nickel wt %.

Figure 12. Actual vs predicted scatter plot showing the effect of the
calcium precursor on the last cycle capacity (gCO2

/gsorbent).

Figure 13. Actual vs predicted scatter plot showing the effect of the
inert support on the last cycle capacity (gCO2

/gsorbent).
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inferred from the name, has little effect on the overall
performance. A color plot that did provide a definitive output
is the synthesis method, Figure 14 and Table 4. From this

color plot, it can clearly be seen that the sol−gel method
outperforms the other methods consistently. A method that
consistently underperformed was the surfactant template
method/ultrasound-assisted technique. Reasons for this
include that the former is a well-researched method and has
had time to be perfected in time, whereas the latter is a fairly
new and novel method.
Additional information gathered from other color plots for

the sorbent properties (see Figures S4 to S6) was data such as
the optimal cycle number, calcination/carbonation time, and
calcination/carbonation temperature.
Data gathered from the catalyst color plots equally gave

some conclusive and some ambiguous results. Figure 15
represents the optimal steam-to-carbon ratio during the
reforming step. Clearly its shown that the higher is the S/C
the higher is the methane conversion (%). Likewise, from
Figure 16, it can be seen that an average calcination
temperature for the catalyst, at around 600 °C, results in a
high methane conversion (%). On the other hand, a color plot
that seemed inconclusive is Figure 17, the catalyst calcination
time. Even with changing the y-axis to a smaller time range, the
data did not provide a definitive time, as shown in both color
plots. What can be inferred from this plot is that a relatively
low time, for example, 10 h, is sufficient.
Additional information gathered from other color plots

include sorbent properties such as cycle number, carbonation/

calcination time and temperature, and catalyst properties such
as BET surface area and the SMR reformer temperature (see
Figures S1−S4.) When all the results from the actual vs
predicted plots are collated, the results of the route that should
be explored to develop a CSCM that has good performance
with respect to both the last cycle capacity and the methane
conversion are shown in Table 5.

4. CONCLUSIONS
In this work, a database for the prediction of Combined
Sorbent Catalyst Material (CSCM) properties was developed
through the application of data-mining, quantitative structure−
property relationship analysis (QSPR), and multitask learning
(MTL).
The development of the databases was discussed as well as

the parameters chosen to produce accurate predictions for the
properties of interest, last cycle capacity (gsorbent/gCO2

) and
methane conversion (%). A thorough comparison of machine
learning models, molecular descriptors, and their respective
settings are also detailed. From the results, the application
MTL was shown to improve the prediction capability of new
molecules, compared to single-output models. Consequently,

Figure 14. Actual vs predicted scatter plot showing the effect of the
synthesis method on the last cycle capacity (gCO2

/gsorbent)

Table 4. Key for the Synthesis Method

synthesis method

method 1 mixing
method 2 sol−gel/sol gel combustion/sol mixing/gel template
method 3 flame spray pyrolysis (FSP)/flame synthesis/combustion

synthesis
method 4 wet mixing/mixing + pelletization
method 5 four-step heating method
method 6 coprecipitation
method 7 surfactant template/ultrasound-assisted technique
method 8 wet impregnation

Figure 15. Actual vs predicted scatter plots showing the effect of
steam to carbon ratio on methane conversion (%).

Figure 16. Actual vs predicted scatter plots showing the effect of
catalyst calcination temperature (°C) on methane conversion (%).
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the MTL model was used to predict properties of unseen
CSCM molecules somewhat effectively, 58% of the data
resulting in an AARE of 50% or less.

Overall, this study has presented a methodology for the
prediction of CSCM that has not been conducted before, with
promising results. The study concludes that a combination of
machine learning models and the application of molecular
descriptors has the capability to predict the properties for a
CSCM for the process of SE-SMR. The results from this aim to
streamline and accelerate the experimental discovery of an
optimal CSCM, by reducing the repetitive trial and error
processes involved in material development. This study also
possibly paves a route into expanding the QSPR approach for
applications beyond drug discovery or biochemistry, which is
the main use of molecular descriptors and QSPR.
Future directions for this study would be to use information

from Table 5 to synthesize a new material using the model as
is, then make changes to the models as appropriate, from the
findings of this study, namely the reduction of experimental
conditions. This would allow for, first, the synthesis of a
material that would be assumed to possess the desired
properties for a CSCM, but with the removal of the conditions,
after this data are obtained, the prediction of how it would
perform is assumed to be more accurate with fewer conditions
specified. The material could then be synthesized and the
performance compared against the models’ predictions, thus
further validating this QSPR and MTL application for the
process of SE-SMR. This could also pave a route for the
application of multitask learning to be more utilized to predict
the behavior of materials that rely on more than one type of
property feature.
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Table 5. Data Gathered from the Color Plots, Indicating
Parameters That Lead to a Good/Poor Performing CSCM

parameter good performance poor performance

calcium
precursor

calcium nitrate, calcium
gluconate

calcium carbonate/
oxide

inert support Y2O3, CeO2 Ca12Al14O33, CaZrO3

synthesis method sol gel surfactant template
optimal synthesis details

CaO concentration (%) 70−90%
cycles 10−15
SMR reformer temperature 650 °C
SMR S/C ratio 6
carbonation time/temperature 15−20 min/650−700 °C
calcination time/temperature 5−10 min/900 °C
nickel wt % 2.5−10%
catalyst calcination temperature 600−700 °C
catalyst calcination time 10 h
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