POSTER PRESENTATION

Open Access

Evaluation of left atrial myocardial deformation in patients with acute MR after STEMI using CMR feature tracking

Tomas Lapinskas^{1*}, Laura Urbonaite¹, Paulius Bucius², Augustinas P Fedaravicius², Agnieta Stabinskaite¹, Marta Ejsmont², Antanas Jankauskas³, Remigijus Zaliunas¹

From 19th Annual SCMR Scientific Sessions Los Angeles, CA, USA. 27-30 January 2016

Background

Left atrium (LA) is an important predictor of cardiovascular morbidity and mortality. Data related to LA functional changes during acute MR after ST-segment elevation myocardial infarction (STEMI) are limited. CMR is rapidly evolving imaging modality and feature tracking becomes very promising technique for assessment of myocardial deformation. The aim of this study was to investigate LA functional changes during acute MR in patients with STEMI using cardiac magnetic resonance (CMR) feature tracking.

Methods

A total of 30 participants (mean age 59 years; 70% male) were enrolled into the study and underwent CMR at 1.5 Tesla (Siemens Magnetom Aera). LA volumetric and myocardial deformation parameters were obtained from

two- and four-chamber b-SSFP cine images. LA strain (passive strain (ϵ_e), corresponding to atrial conduit phase, active strain (ϵ_a), corresponding to atrial booster pump phase and total strain (ϵ_s), corresponding to atrial reservoir phase) and SR (peak positive strain rate (SRs), corresponding to atrial reservoir phase, peak early negative strain rate (SRe), corresponding to atrial conduit phase and peak late negative strain rate (SRa), corresponding to atrial booster pump phase) were calculated.

Results

All LA strain parameters were significantly increased in mild MR patients, but not in moderate MR or controls (total strain (ε_s): mild MR 34.1% \pm 6.6, moderate MR 25.7% \pm 6.7, controls 25.0% \pm 8.1, p < 0.01; passive strain (ε_e): mild MR 18.1% \pm 3.8, moderate MR 13.8% \pm 5.5, controls 12.6% \pm 5.7, p < 0.05; and active strain (ε_a):

Table 1 Comparison of LA strain (ϵ) and strain rate (SR) parameters MR population and controls

		Controls (n = 10)	Mild MR (n = 10)	Moderate MR (n = 10)	P value
Left atrial function	Left atrial strain (%)				
Reservoir	23	25.0 (8.1)	34.1 (6.6)	25.7 (6.7)	0.009
Conduit	93	12.6 (5.7)	18.1 (3.8)	13.8 (5.5)	0.026
Booster pump	63	12.3 (3.2)	16.0 (4.7)	11.8 (3.7)	0.041
	Left atrial strain rate (s-1)				
Reservoir	SRs	1.1 (0.2)	1.2 (0.1)	1.0 (0.2)	0.093
Conduit	SRe	-0.5 (0.2)	-0.7 (0.1)	-0.6 (0.2)	0.104
Booster pump	SRa	-1.0 (0.2)	-1.1 (0.4)	-0.9 (0.3)	0.738

 $[\]epsilon \text{, strain; SR, strain rate; MR, mitral regurgitation. Bold p values indicate a significance level < 0.05.}$

Full list of author information is available at the end of the article

¹Department of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania

Lapinskas et al. Journal of Cardiovascular Magnetic Resonance 2016, **18**(Suppl 1):P64 http://www.jcmr-online.com/content/18/S1/P64

mild MR 16.0% \pm 4.7, moderate MR 11.8% \pm 3.7, controls 12.3% \pm 3.2, p < 0.05). LA strain rate parameters did not reach statistical significance. Intraclass correlation coefficient analysis revealed strong interobserver agreement for all LA strain and strain rate parameters.

Conclusions

LA longitudinal deformation is enhanced during acute MR in patients with STEMI, but only when MR is mild. CMR feature tracking is highly reproducible, less time consuming and potentially valuable tool for clinical and research applications.

Authors' details

¹Department of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania. ²Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania. ³Department of Radiology, Lithuanian University of Health Sciences, Kaunas, Lithuania.

Published: 27 January 2016

doi:10.1186/1532-429X-18-S1-P64

Cite this article as: Lapinskas *et al.*: Evaluation of left atrial myocardial deformation in patients with acute MR after STEMI using CMR feature tracking. *Journal of Cardiovascular Magnetic Resonance* 2016 18(Suppl 1):

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

