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Abstract 9 

Human cognitive and linguistic generativity depends on the ability to identify 10 
abstract relationships between perceptually dissimilar items. Marcus et al. 11 
(1999) found that human infants can rapidly discover and generalize patterns 12 
of syllable repetition (reduplication) that depend on the abstract property of 13 
identity, but simple recurrent neural networks (SRNs) could not. They 14 
interpreted these results as evidence that purely associative neural network 15 
models provide an inadequate framework for characterizing the fundamental 16 
generativity of human cognition. Here, we present a series of deep long short-17 
term memory (LSTM) models that identify abstract syllable repetition 18 
patterns and words based on training with cochleagrams that represent 19 
auditory stimuli. We demonstrate that models trained to identify individual 20 
syllable trigram words and models trained to identify reduplication patterns 21 
discover representations that support classification of abstract repetition 22 
patterns. Simulations examined the effects of training categories (words vs. 23 
patterns) and pretraining to identify syllables, on the development of hidden 24 
node representations that support repetition pattern discrimination. 25 
Representational similarity analyses (RSA) comparing patterns of regional 26 
brain activity based on MRI-constrained MEG/EEG data to patterns of 27 
hidden node activation elicited by the same stimuli showed a significant 28 
correlation between brain activity localized in primarily posterior temporal 29 
regions and representations discovered by the models. These results suggest 30 
that associative mechanisms operating over discoverable representations that 31 
capture abstract stimulus properties account for a critical example of human 32 
cognitive generativity. 33 

 34 

1 Introduction 35 

Generativity, the capacity to create and comprehend novel forms, is a defining feature of both 36 
language and human cognition. But what are the fundamental principles that underlie this 37 
generative behavior? Linguistic models for language processing rely on abstract linguistic 38 
variables as a means to explain this phenomenon (Chomsky, 1965). In contrast, associative 39 
models developed first in the connectionist literature (Rumelhart & McClelland, 1986) and 40 
subsequently elaborated in the deep learning (LeCun et al., 2015) and later Generative AI 41 
literatures (Kirov & Cotterell, 2018) suggest that generative behavior can emerge through the 42 
discovery of abstract features that mediate productive generalization.  Both accounts propose 43 
fundamentally distinct frameworks for comprehending generativity. They diverge 44 
significantly in their interpretations of findings in linguistic, developmental, and 45 
psycholinguistic research, creating a lack of consensus on the correct paradigm (Seidenberg 46 
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& Plaut, 2014). They also differ in their assertions about the nature of learning (rules or 47 
tokens), the application of this knowledge in online processing, the computations performed 48 
by brain regions (especially the left inferior frontal gyrus or LIFG), and the reliance on 49 
language-specific rules versus domain-general associative mechanisms in language 50 
processing. Both accounts offer reasonable approximations of available behavioral data 51 
because they are inherently underconstrained (Anderson, 1978), lacking decisive empirical 52 
evidence regarding the nature of neural representations and the processes they engage. 53 

Gow et al. (2022) conducted a study to examine whether localized M/EEG data at the ROI 54 
level could be used to distinguish between abstract repetition patterns representing abstract 55 
variables or token-level abstract representations. The underlying hypothesis was that the 56 
abstracted patterns might function as linguistic variables or contribute to the representation of 57 
individual words for analogical generalization. Cluster analyses of decoding accuracy 58 
demonstrated that eight ROIs, all located in posterior temporal cortex, reliably decoded 59 
repeated syllables independently of low-level repetition activation and task demands. Further 60 
analyses indicated that the activation time series supporting decoding in various posterior 61 
MTG subdivisions causally influenced decoding accuracy in other decoder regions of STS and 62 
MTG. Importantly, these decoding processes were linked to regions associated with lexical 63 
and morphological representation (Hickok and Poeppel, 2007). However, Gow et al.’s results 64 
do not differentiate between the two accounts where activity found in the temporal areas could 65 
very well be related to the representation of variables (involved in morphology) or the 66 
representation of words; thus, the localization of decodable and causal neural information does 67 
not resolve the debate. 68 

In this paper, we ask whether the neural abstract representations that support  generativity in 69 
the Gow et al. study align with the representations discovered by a variable -free deep 70 
associative model. We will further investigate whether pretraining and task-specific 71 
performance closely parallel aspects of human neural data to test the role of associative models 72 
in simulating and comprehending cognitive generativity in human learning and representation.  73 
We ask: (i) Do variable-free network models discover the same kinds of representations that 74 
brains discover to produce the generalization of abstract syllable repetition patterns? And (ii) 75 
Is pretraining a necessary precondition for model learning 76 

 77 

2 Generativ ity of  humans and computational  models  78 

The effectiveness of any mechanistic explanation of language acquisition, use, or loss hinges 79 
on its ability to effectively tackle the issue of linguistic generativity. The robust intuitions of 80 
English speakers regarding the grammaticality of innovative, semantically challenging 81 
sentences like "Colorless green ideas sleep furiously" (Chomsky, 1957), the comparative 82 
phonological acceptability of "bnik" versus "bdik" (Chomsky and Halle, 1965), or the past 83 
tense form of the newly coined verb "wug" (Berko, 1958), all support the notion that human 84 
language is generated rather than simply memorized. However, the underlying principles 85 
governing the nature of this generative behavior are not well understood and highly debated. 86 
There are two strikingly different explanations of linguistic generativity. The Rule Account 87 
that developed in the generative linguistics tradition suggests that language users generate or 88 
model novel structures by applying language-specific abstract rules or constraints to abstract 89 
variables that capture natural classes of items (Chomsky, 1965; Jackendoff, 2002; Prince and 90 
Smolensky, 2004). Linguistic variables facilitate generalization by enabling a single 91 
computation or structural constraint to be applied to a potentially boundless range of specific 92 
instances (Jackendoff & Audring, 2020). For instance, the regular English past tense is 93 
generated by combining the variable VERB with the bound morpheme -d. This generative 94 
process does not apply to a specific verb but to the abstract variable  [VERB] which can be 95 
mapped to all verbs including novel ones (Berko, 1958). In contrast, associative models 96 
developed first in the connectionist literature (Rumelhart & McClelland, 1986) and 97 
subsequently elaborated in the deep learning (LeCun et al., 2015) and later Generative AI 98 
literatures (Kirov & Cotterell, 2018) suggest that generativity is product of associative 99 
processes acting on mapping-optimized representations of individual tokens. Within this 100 
framework, the past tense of a novel form like wug is derived from similarity with alternations 101 
such as walk–walked, talk–talked, or balk–balked by characterization of 102 
discoverable/abstracted token features supporting efficient mappings.  103 
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Reduplication (the use of patterned phonological repetition to productively mark semantic and 104 
syntactic properties including intensification, plurality, and emphasis) has emerged as a core 105 
phenomena for exploring the mechanisms that support linguistic generativity (Marcus et al., 106 
1999; Marcus, 2003; Berent et al., 2002; Berent, 2002; Rabagliati et al., 2019). It is a striking 107 
example of productivity that is widely attested in human languages (Rubino, 2013), more 108 
easily learnable than non-repetition-based forms of linguistic patterning (Berent, 2002), and 109 
most importantly, it is readily generalized to new phonological inputs that have no phonetic 110 
similarity with familiar reduplicated forms (Berent et al., 2004). Marcus et al. (1999) exposed 111 
seven-month-old infants to strings of auditory nonce words formed by repeating syllables that 112 
follow some patterns like ABB (e.g., ga-ti-ti) or AAB (e.g., li-li-na). After exposure to strings 113 
that conformed to one pattern (e.g., AAB) they used a preferential head turn paradigm to 114 
compare looking times to novel stimuli that either conformed to the exposure pattern ( e.g., 115 
wo-wo-fe ) or deviated from it (wo-fe-fe). Infants showed consistently longer looking times to 116 
stimuli that violated the exposure pattern, suggesting that they were able to discriminate 117 
between unfamiliar tokens on the basis of reduplication pattern.  They argued that this could 118 
only be explained by rule-based processing because the lack of phonemic overlap between 119 
exposure and test items seemed to rule out similarity-based associative processes that are the 120 
primary theoretical alternative to rule-based explanations for generativity. Following Marcus's 121 
study many studies have examined how humans discover and generalize relationships 122 
involving identity rules using artificial grammar learning paradigms (Gomez, 2002; Pena et 123 
al., 2002; Gerken, 2006; Endress et al., 2007). 124 

To further demonstrate the necessity of rules (operations over variables) , Marcus et al. (1999) 125 
also conducted simulations using a Simple Recurrent Network (SRN) (Elman, 1990) to model 126 
the generalization observed in their experiment. They noted that this variable-free model failed 127 
to replicate the infants' behavior and concluded that this failure reflected the fundamental 128 
inadequacy of variable-free approaches to capture human (variable-dependent) processing. 129 
Subsequent attempts to model Marcus et al.’s (1999) human data using variable-free network 130 
models have met with varying degrees of success. This work has shown that model 131 
performance is influenced by various factors, including pretraining  (whether the model has 132 
any prior knowledge about phonemes, syllables or any abstract relations that will help the 133 
model to figure out the task at hand) (Seidenberg & Elman, 1999a,b; Altmann, 2002), encoding 134 
assumptions (whether the model is trained on input vectors that represent phonetic features, 135 
place of articulation, vowel height, primary/secondary stress or non-featural random vectors) 136 
(Negishi, 1999; Christiansen & Curtin, 1999; Christiansen, Conway, & Curtin, 2000; Dienes, 137 
Altmann, & Gao, 1999; Altmann & Dienes, 1999; Shultz & Bale, 2001; Geiger et al., 2022), 138 
and model type (whether the model is a neural network,  autoencoder trained with cascade-139 
correlation, auto-associater, Bayesian, Echo State Network or Seq2Seq) (Shultz, 1999; Sirois, 140 
Buckingham, & Shultz, 2000; Frank and Tenenbaum, 2011; Alhama and Zuidema, 2018; 141 
Prickett et al., 2022), and task (whether the task is to predict or identify rules, words, syllables, 142 
or patterns, or segment syllable sequences into “words”) (Seidenberg & Elman, 1999a, 1999b; 143 
Christiansen & Curtin, 1999;) (see Alhama and Zuidema (2019) for a detailed review of the 144 
computational models). These factors have made it challenging to draw direct comparisons 145 
with human behavior, further fueling the ongoing discussion.  146 

Among these factors, the role of  pretraining on recurrent model acquisition of repetition-147 
based rules deserves more discussion. Seidenberg and Elman (1999a,b) proposed that infants 148 
might have acquired the capacity to discern phonological similarity between syllables through 149 
prior exposure, and they address this by extensively pre-training an SRN with syllables, 150 
enabling the SRN to recognize identity relationship between syllables. In Altmann's (2002) 151 
study, prior knowledge integration involved pre-training a model with 10,000 sentences from 152 
Elman (1990), wherein the model predicts the subsequent word using localist vectors, without 153 
considering syllables or phonemes. Integrating relevant prior knowledge into the initial state 154 
of the models might facilitate the learning process in converging towards the generalization 155 
that infants appear to acquire more readily. This is a valid assumption because Marcus et al.’s 156 
seven-month-old infants were not tabula rasa. Interpolating from the findings of Hart and 157 
Risley (2003), it appears that children from families on welfare are exposed to approximately 158 
1.9 million words, children from working-class families hear about 3.8 million words, and 159 
children from professional families are exposed to approximately 6.8 million words by the age 160 
of 7 months. It is worth noting that deep learning models, driven by the principle of 161 
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hierarchical feature representation, extract and organize increasingly abstract data features, 162 
similar to human cognition. This approach enhances computational efficiency and forms the 163 
foundation for pretraining, a technique where models are initially trained on a related task to 164 
learn useful features before fine-tuning the target task. However, for the validity of prior 165 
knowledge argument, it is essential to identify the precise components of prior knowledge that 166 
impact the ability to generalize to novel items. For instance, Seidenberg and Elman (1999a) 167 
incorporated pretraining into their SRN, mapping sequences of syllables to discern whether 168 
each syllable matched its predecessor. Marcus (1999) contended that this form of pretraining 169 
lacks naturalness, and Shultz and Bale (2001) emphasized that a model cannot be trained on 170 
identity relations, as it would be an unfair advantage. 171 

It is unclear whether the limitations of existing models demonstrate the fundamental need for 172 
variables to explain this type of generativity (and by extension human performance), or 173 
whether they simply reflect the limitations of current implementations of variable -free 174 
associative models. LeCun, Bengio and Hinton (2015) demonstrated that deep learning 175 
network architectures can discover abstract features that support dramatic generativity through 176 
variable-free associative processes. While useful as a proof of concept for the potential 177 
computational adequacy of associative mechanisms to explain human generativity, questions 178 
remain about how realistic they are as neural models and as psychological models given the 179 
vast training sets, they require to achieve human-like performance. Work relating modeling to 180 
neural data has the potential to show how these computational constraints shape human neural 181 
processing. Furthermore, in the ever-evolving landscape of cognitive research, an intriguing 182 
avenue of inquiry has emerged through neural studies, delving into the intricate neural 183 
underpinnings that underlie the recognition and processing of abstract repetition patterns, 184 
adding another layer of depth to our understanding of human generativity and cognitive 185 
processes (Yang et al., 2019; Kanwisher et al., 2023). 186 

Gow et al. (2022) provides the most direct examination of the interplay between generativity 187 
and neural mechanisms. This study tried to localize M/EEG data at the ROI level to distinguish 188 
between abstract variables vs. token-level features. A support vector machine (SVM) classifier 189 
technique that had been previously applied to MEG data was adapted to probe individual ROIs 190 
identified by Granger Causation Analysis (GCA). The analysis aimed to establish whether 191 
patterns of neural activity that could be decoded had a causal influence on downstream 192 
processes—a crucial but often overlooked criterion for determining functional roles in 193 
processing and representation (Dennett, 1987; Kriegeskorte & Diedrichsen, 2019). Data were 194 
collected during an artificial grammar learning experiment in which participants briefly 195 
encountered CV-CV-CV nonwords following a reduplication pattern (AAB, ABB, or ABA) 196 
and judged whether phonemically orthogonal nonwords followed the same rule or pattern.  197 
Behavioral results showed that participants performed the task with high accuracy. Neural 198 
analyses revealed a broadly distributed bilateral network encompassing 67 ROIs with distinct 199 
activation patterns during the task, SVMs were trained to distinguish between items based on 200 
their reduplication pattern and were subsequently tested on their ability to classify the 201 
reduplication patterns in untrained items created using different syllable sets . Cluster analyses 202 
evaluating decoding accuracy revealed that eight ROIs (see Fig. 1), situated exclusively in the 203 
posterior temporal cortex, consistently decoded repeated syllables, irrespective of low -level 204 
repetition activation and task requirements. Subsequent analyses indicated a causal 205 
relationship, demonstrating that the activation time series supporting decoding in various 206 
subdivisions influenced decoding accuracy in other regions. However, Gow et al.'s findings 207 
fail to distinguish between the two accounts, leaving open the possibility that the observed 208 
activity in the temporal areas may be connected to the representation of variables (involved in 209 
morphology) or the representation of words. Consequently, the localization of latent 210 
information does not bring resolution to the ongoing debate.  211 

 212 
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 213 

Figure 1: Regions of interests (ROIs), used in Gow et al. (2022), visualized over an inflated averaged 214 
cortical surface. Lateral view of the left and right hemisphere is shown. Highlighted ROIs (L_STG-1, 215 
R_STS-1 (most posterior superior), R_STG-2,3 (posterior to anterior), and R_MTG-1,2,3,4 (posterior 216 
to anterior)) showed reliable activation differences, successful decoding, or both, for reduplication.  217 

The goal of the current study is to determine whether the abstract neural representations 218 
discovered by Gow et al. (2022) are consistent with the abstract token representations 219 
discovered by variable-free associative models. We do this by presenting a variable-free deep 220 
LSTM model trained on cochleagrams of the stimuli used by Gow et al. to discriminate stimuli 221 
based on reduplication pattern and comparing patterns of stimulus similarity within the model 222 
to patterns of ROI-level evoked activation similarity by the same stimuli in Gow et al. using 223 
Representational Similarity Analysis (RSA) (Kriesgerkorte et al., 2008; Diedrichsen and 224 
Kriegeskorte, 2017). Additionally, we explore the effects of pretraining and task-specific 225 
mapping on performance on model performance and the relationship between features 226 
discovered by the models and human neural data. To do this we trained a deep LSTM model 227 
with dropout (as explored in Geiger et al., 2022 and Prickett et al., 2022) using two distinct 228 
encoding assumptions. The first assumption involved a pattern learner trained on random 229 
vectors representing three patterns (Geiger et al., 2022). We then employed a word learner 230 
trained on vectors representing individual words based on syllable position. Consequently, we 231 
explored whether any of these variable-free network models reveal comparable representations 232 
to those identified in the brain, leading to the generalization of abstract syllable repetition 233 
patterns. 234 

 235 

3 Computational  Model ing Methods  236 

Within this section, we present a detailed account of the methodological framework employed 237 
in our research, encompassing various aspects such as training data, network architecture, 238 
testing procedures, decoding techniques, representational similarity analysis, considerations 239 
of replicability, and the hardware and software infrastructure utilized for our study.  240 

 241 

3 .1  Tra in ing  da ta  242 

We used the same audio files as in Gow et al. (2022). There was a total of 23 syllables, and 243 
we used sixteen in training (/ba/, /tʃɪ/, /dɪ/, /dʒɪ/, ka/, /nɪ/, /pɪ/, /rɪ/, /ʃa/, /sɪ/, /ta/, /ðɪ/, / θu/, /va/, 244 
/zɪ/, /ʒu/) and seven in test (/fu/, /ga/,  /hɪ/, /la/, /mɪ/, /wa/ and /ji/). Training data included 720 245 
(240 for each pattern) phonemically balanced trisyllabic CV.CV.CV nonwords which were 246 
created by concatenation of sixteen different syllables following the syllable reduplication 247 
patterns: ABA (e.g., as in ba-chih-ba), AAB (e.g., as in ba-ba-chih) and ABB (e.g., as in ba-248 
chih-chih). Testing data included 126 (42 for each pattern) phonemically balanced trisyllabic 249 
nonwords which were created in the same way. The auditory stimuli were recorded at a 250 
sampling rate of 44.1 kHz with 16-bit sound quality and the duration of syllables was equalized 251 
to 250 ms (750 ms for each CVCVCV nonword). The input to the network was jittered 252 
cochleagrams of each auditory file. A cochleagram is a spectrotemporal representation of 253 
auditory signal designed to mimic cochlear frequency decomposition.  To create a 254 
cochleagram, we first removed any surrounding silence from the audio files, and then passed 255 
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each sound clip through a bank of 203 bandpass filters that were zero-phase, with varying 256 
center frequencies. Low-pass and high-pass filters were included to perfectly tile the spectrum, 257 
resulting in a total of 211 filters. The final cochleagram representation was 150 x 211 (time x 258 
frequency) (Kell et al., 2018; Feather et al., 2019). We generated the cochleagrams using 259 
Python with the numpy, scipy, and librosa libraries (Oliphant, 2007; McFee et al., 2015; Harris 260 
et al., 2020). We then created ten jittered cochleagrams for each original cochleagram by 261 
utilizing data augmentation (specifically jittering in the time domain using random sigma 262 
values between (0.03, 0.09) (Um et al., 2017). A schematic representation of the audio -to-263 
cochleagram conversion as well as sample jittered cochleagram can be found in Fig . 2A. 264 

 265 

 266 

Figure 2: Model input and architecture. (A) Sample audio conversion to cochleagram and its jittered 267 
version.  The x-axis represents the time (750 ms) and time samples (150), and the y-axis represents the 268 
amplitude (dB) and frequency (211Hz). (B) The model architecture. The model was a standard recurrent 269 
LSTM network with seven fully recurrent layers. The output layer of the model was a dense layer with 270 
the sigmoid function, either with 69 (word) or 100 (pattern) output vectors and 23 vectors for the pretrain 271 
network. 272 

 273 

3 .2  Tra in ing  ta sks  a nd  pre tra in ing  274 

Two separate LSTM models were created and trained independently on the same training data 275 
(7,200 tokens for 720 words). A “word learner” network was trained to differentiate between 276 
words, and a “pattern learner” network was trained to distinguish patterns. We chose the word 277 
identification task to draw attention to whole word properties with explicitly requiring 278 
sublexical segmentation into syllables. To do this, we created target vectors using a slot -based 279 
system in which there were twenty-three slots for each syllable, a total of 69 nodes (23X3). 280 
For each word, we generated a sparse target vector with 3 of 69 selected elements set to 1 (all 281 
other elements 0), representing which of the three syllables filled the twenty-three possible 282 
slots. With this task, the word learner network used whole-word syllabic properties for 283 
efficient sound to word mapping. The pattern learner network was trained to differentiate 284 
between patterns using random vectors representing the three patterns. For each of the three 285 
patterns, we generated 100-dimensional random input vectors that implicitly represented 286 
property values across dimensions. In addition, since we also checked the influence of 287 
pretraining on network performance, we trained a network on cochleagrams representing 288 
syllables using one-hot-vectors for each of the twenty-three syllables. We used cochleagrams 289 
of each syllable in the shape of 50 x 211 (time x frequency).  290 
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 291 

3 .3  Netwo rk  a rch i t ec ture  a nd  t e s t ing  292 

To model variable representation in the brain, we employed LSTMs to capture the temporal 293 
structure of auditory speech data. LSTMs are a type of recurrent neural network that are 294 
capable of retaining past inputs and outputs for an extended period, making them well -suited 295 
for processing sequential data, such as time series and natural language. Based on the work of 296 
Avcu et al. (2023) and Magnuson et al. (2020), we posit that LSTMs are a superior choice for 297 
capturing long-term dependencies in auditory speech data. The pretraining model consisted of 298 
a single LSTM layer with 512 nodes and a dense layer with 23 nodes and softmax activation 299 
function. We used categorical cross-entropy as the loss function and ADAM (Adaptive 300 
Moment Estimation) (Kingma & Ba, 2014) optimization with a fixed learning rate of 0.00001. 301 
The model was trained for 5000 epochs producing  very high training and validation accuracy 302 
(over 90%). 303 

The non-pretrained word and pattern learner models consisted of seven layers with 128, 256, 304 
512, 1024, 512, 256 and 128 LSTM nodes respectively. On top of the LSTM layers, a dense 305 
layer with vector outputs (69 for the word and 100 for the pattern learner networks). After 306 
every LSTM layer, we used a dropout layer with 0.85 (following Prickett et al. (2022)). 307 
Dropout is a regularization method that helps generalization by forcing the model to make 308 
predictions that do not overly depend on any single feature, thus encouraging robustness and 309 
preventing overfitting. See Fig. 2B for the structure of the main networks. The word and 310 
pattern learner models with pretraining consisted of the same architecture except for an 311 
additional input LSTM layer with 512 nodes with preloaded weights coming from the 312 
pretraining. The cochleagrams of size 150 x 211 were fed into the first LSTM layer. 313 
Subsequently, the output of this layer was passed onto other layers respectively. The final layer 314 
was a dense layer that transformed the input vector X to an output vector Y of length n, where 315 
n represents the number of target classes (69 or 100). We employed the sigmoid activation 316 
function for the output layer, which returns a value between 0 and 1 and is centered around 317 
0.5. Mean squared error loss was employed to calculate the mean of squares of errors between 318 
labels and predictions, with a batch size of 100. For optimization during training, we utilized 319 
ADAM as explained above. Each of the 720 words had ten jittered tokens, and seven of these 320 
tokens were utilized for training, while three were used for validation. For the pretraining, 321 
each syllable had two hundred tokens of which 180 were used for training and 20 were used 322 
for validation. Furthermore, the word and pattern learner networks were trained for 10,000 323 
epochs, which involved complete iterations over the training set. The training parameters, such 324 
as the learning rate, the optimization algorithm, the loss function, etc., were adopted from 325 
Avcu et al. (2023). 326 

We calculated accuracy of the word and pattern learner networks with and without pretraining 327 
by checkpointing every 100 epochs during the training. To evaluate the distance between the 328 
predicted target vector and the true target vector, we used cosine similarity instead of a binary 329 
cross-entropy threshold value as it is more conservative and psychologically relevant 330 
(Magnuson et al., 2020; Geiger et al., 2022). We reported the average cosine similarity for all 331 
words at every 100 epochs and for both training, validation and test data. Cosine similarity 332 
between target observed patterns was calculated for trained tokens (training accuracy), 333 
reserved alternate tokens of trained syllable patterns (validation accuracy) and tokens based 334 
on syllables that were not used during training (test accuracy). 335 

 336 

3 .4  Deco ding  337 

We decoded the original 720 words’ activations from the best performing model iteration to 338 
check whether representations for each word would be useful for SVM to distinguish pairwise 339 
comparisons of the mean activation time courses in the three experimental conditions: ABA 340 
vs. AAB, ABA vs. ABB, and AAB vs. ABB. While the pattern learner was trained to 341 
distinguish these three patterns from each other, the word learner was trained to identify every 342 
single word. Thus, the decoding analysis shows whether the word learner grasped any useful 343 
feature to differentiate patterns while focusing on word specific features. The hidden layer 344 
activations were extracted from each LSTM layer of the models at the final time sample (150) 345 
yielding a 720 X N vectors where N is the number of hidden units in a specific LSTM layer. 346 
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We then divided the data frames into three sub data frames where each sub data frame 347 
contained pairwise comparisons, e.g., ABA vs. AAB (e.g., 480XN). Next, we standardized 348 
activations by removing the mean and scaling to unit variance using sklearn StandardScaler 349 
function. We then trained and tested SVMs using cross-validation (k=10) on each sub data 350 
frame. For the SVM hyperparameters, we used the sklearn GridSearchCV function which 351 
accepts a dictionary of different hyper-parameters. This process selected a kernel parameter 352 
of poly, a gamma parameter of 1, a C parameter of 1e-05, and a  tol parameter of 1e-5. We 353 
reported mean decoding accuracy with standard deviation for each layer of both word and 354 
pattern learner networks with and without pretraining. 355 

 356 

3 .5  Represe nta t io na l  s imi l a r i ty  a na ly s i s  357 

Representational similarity analysis (RSA) involves assessing the correlation between 358 
decoding accuracy, determined by SVMs applied to ROI activation vectors in the brain 359 
(comprising 8 MNE measures per ROI per timepoint), and SVMs applied to activation vectors 360 
derived from each of the 7 model layers. The neural decoding accuracy data was sourced from 361 
Gow et al. (2022), where the study utilized linear SVMs to classify MNE activation timeseries 362 
within 68 distinct ROIs. It was reported that the ROIs were subdivided into eight parts, and 363 
MNE source estimates were averaged for each subdivision, accounting for trial orientation. 364 
This resulted in eight timeseries per ROI per trial, spanning from 200 ms before stimulus onset 365 
to 1000 ms after onset. Vector normalization was applied to minimize overall activation 366 
differences, and trials were down sampled to 100 Hz and bundled into sets of 10 within each 367 
condition, which were then averaged to improve signal-to-noise ratio. This process was 368 
repeated 100 times to reduce potential sampling bias. SVM classifiers were trained for each 369 
ROI and condition pair, and accuracy was assessed using a leave-one-trial-out technique. The 370 
overall accuracy on untrained trials was determined by averaging classifier performance 371 
across subjects at each timepoint yielding 1X1200 (Accuracy x Time) vectors for each of the 372 
three comparisons for each ROI. We performed preprocessing on the neural decoding accuracy 373 
vectors by narrowing our focus to the window between 100 ms and 850 ms after the word 374 
onset. This window accounts for the 100 ms delay associated with the lag between the neural 375 
signal and word onset, making the total duration still 750 ms for words. We then averaged 376 
every ten-time samples which yielded a vector of 1X75. 377 

Model decoding accuracy data reflects the hidden layer activations associated with the 720 378 
words from the best performing model iteration. For each model and layer, we saved hidden 379 
unit activations with size, for example, 720 X 150 X 256, where the first dimension is the 380 
number of words, the second dimension is the number of time samples, and the third dimension 381 
is the number of hidden units. We then followed the above SVM decoding steps and calculated 382 
SVM decoding accuracyat every time step for each pairwise comparison. This process yielded 383 
three vectors of size 1 X 150 (one for each pairwise comparison) for each layer of the model. 384 
We then averaged every two-time samples which yielded a vector of 1X75. SVM accuracy 385 
functions as a measure of dissimilarity, with high accuracy in two pairwise comparisons 386 
signifying a high level of dissimilarity between the compared items. We used Spearman's rank 387 
correlation coefficient (rho), a nonparametric rank correlation measure , to assess the similarity 388 
between the decoding accuracy vector of the model and that of the brain. To enhance the 389 
reliability of our results, we employed the Monte Carlo permutation test. This simulation 390 
technique allowed us to evaluate the likelihood of obtaining the observed correlation by 391 
chance, considering the variability in our data. It offers a valuable means of verifying result 392 
robustness and gaining insight into the uncertainty associated with the correlation coefficient. 393 
The p-values associated with each correlation coefficient are based on 10,000 permutations  394 
(see Fig. 3 for a schematic representation of SVM and RSA steps).  395 

Upon completing this procedure, we generated a matrix of dimensions 68x21 for each model, 396 
which contained correlation coefficients for every pairwise comparison across each layer 397 
(3x7). For visualization purposes, we aggregated decoding accuracy across pairwise 398 
comparisons by calculating the average of the rho values, transforming the 68x21 matrix into 399 
a 68x7 format. Since p-values cannot be averaged, we adopt a criterion where we classify a 400 
layer as "non-significant" if any p-value for a pairwise comparison within that layer exceeds 401 
0.05. For instance, in layer 1, if the p-values are as follows: 1vs2=0.001, 1vs3=0.06, 402 
1vs2=0.0001, we would consider layer 1 as non-significant due to the second comparison 403 
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(1vs3) having a p-value of 0.06. Subsequently, we reconstructed a p-value table, designating 404 
insignificant layers with 0.1 and significant ones with 0.01. This new p-table was used for 405 
masking the insignificant correlations in the RSA plots. Finally, to compare the mean 406 
correlation values of decoding vs. non-decoding ROIs across the seven layers of each model, 407 
we used Welch's t-test (the unequal variances t-test). 408 

 409 

 410 

Figure 3: Schematic representation of SVM and RSA steps. Hidden layer activity from each layer of a 411 
specific model and ROI level neural activity from all of the 68 ROIs were fed into the SVM which 412 
outputs a decoding accuracy by time matrix for each of the pairwise comparisons. These 1X75 vectors 413 
were then correlated between the model and brain to get correlation coefficients and its associated p 414 
values. Final correlation matrix between the models and brain is created by averaging the Spearman’s 415 
rhos across the three pairwise comparisons. 416 
 417 

3 .6  Repl i ca b i l i t y,  ha rdwa re ,  a nd  so f twa re  418 

To confirm replicability, we repeated the entire training process for all models (including 419 
pretrained model) on separate occasions, yielding only negligible variations across iterations. 420 
Our simulations were executed on a Linux workstation equipped with an Intel(R) Xeon(R) 421 
Gold 5218 CPU operating at 2.30 GHz, supported by 98 GB of RAM, and powered by an 422 
NVIDIA Quadro RTX 8000 graphics card with 48 GB of memory. We conducted these 423 
simulations using Python 3.6, TensorFlow 2.2.0, and Keras 2.4.3. Each model required 424 
approximately 72 hours to train on this workstation, with the exception of the pretrained 425 
network, which took 6 hours. 426 

 427 

4 Results  428 

In this section, we present the outcomes of each model's performance with and without 429 
pretraining, along with the results of SVM pattern decoding and similarity analyses in 430 
comparison to brain data. 431 

 432 

4 .1  Pre tra in ing  433 

Our premise was that seven-month-old infants are already acquainted with their language's 434 
syllables. To assess the impact of prior knowledge on the generalization abilities of the 435 
networks, we conducted pretraining on a basic network using the twenty-three syllables 436 
employed in pattern/word learning. The outcomes of this pretraining revealed that a simple 437 
LSTM model successfully recognized all twenty-three syllables, achieving a training accuracy 438 
of 99% and a validation accuracy of 93%. This underscores that the pretrained weights, which 439 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.27.568877doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.27.568877
http://creativecommons.org/licenses/by-nc-nd/4.0/


were subsequently used for word or pattern learning, incorporate representations of these 440 
syllables. 441 

 442 

4 .2  Mo de l  a ccura c ie s  443 

In our experimental setup, both a word learner, exposed to a corpus of 720 distinct words, and 444 
a pattern learner, designed to acquire three specific patterns, underwent training in two 445 
scenarios: one with pretrained weights and the other without. The results, as illustrated in Fig . 446 
4, reveal significant disparities in their learning trajectories. In the absence of pretrained 447 
weights, both learners encountered challenges in achieving satisfactory performance levels 448 
over the 10,000 epochs. The pattern learner consistently maintained an average cosine 449 
similarity of around 0.34 throughout the entire training duration, encompassing training, 450 
validation, and test datasets. The word learner also remained relatively consistent, exhibiting 451 
a mean average cosine similarity of approximately 0.22 for training and validation accuracy 452 
(please note that test accuracy was not assessed for the word learner, given the uniqueness of 453 
each word). The pattern learner's performance remained close to chance, while the word 454 
learner's performance, although better than chance, remained suboptimal for a successful 455 
model. In stark contrast, when pretrained weights were utilized, both learners reached high-456 
performance levels by the conclusion of the 10,000 epochs. The pattern learner, in particular, 457 
demonstrated an average cosine similarity of 0.71 for training, 0.59 for validation, and 0.56 458 
for the test dataset. Notably, the assessment of test data accuracy is pivotal, as it reflects the 459 
model's performance on novel data. The word learner also excelled, achieving average cosine 460 
similarities of 0.72 for training and 0.67 for validation data. These outcomes underscore the 461 
considerable impact of pretrained weights on the learning capabilities of our models.  462 

 463 

 464 

Figure 4: Model performance during the training of four models (word and pattern learners with and 465 
without pretraining). The top row shows the performance of models without pretraining, while the 466 
bottom row shows models with pretraining. Training performance over epochs is represented with solid 467 
lines (training accuracy in blue, validation accuracy in orange, and test accuracy in green, applicable to 468 
pattern learners only). Dashed horizontal lines indicate chance performance (33% for patterns and 469 
0.0014% for words). The average cosine similarity between the predicted vectors and true vectors was 470 
computed for each model at every 100th epoch within the 0 to 10,000 epoch range.  471 

 472 

4 .3  SVM deco d ing  a ccura cy  473 
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In the next phase of our experimental analysis, we employed Support Vector Machines (SVMs) 474 
to decode the hidden unit activations of both the word learner and pattern learner networks 475 
trained with and without pretrained weights. Table 1 presents the SVM mean decoding 476 
accuracy with standard deviations for each layer, focusing on the discrimination between the 477 
AAB, ABB, and ABA patterns. The results shed light on the impact of pretraining and the 478 
specific learning objectives of each model. When considering models without pretraining, we 479 
observed that both the pattern learner and word learner struggled to achieve decoding accuracy 480 
above chance levels for the AAB vs ABB comparison. This result may be attributed to the 481 
inherent repetition in both patterns. For the ABA vs AAB and ABA vs. ABB comparisons, the 482 
word learner displayed marginally better performance than the pattern learner, although both 483 
remained above chance. When considering models without pretraining, we observed that 484 
decoding accuracy varied across the layers. In particular, the pattern learner displayed 485 
increased decoding accuracy from layer 1 to layer 3, with notable improvements between 486 
layers 1 and 2. However, the performance decreased slightly in layer 4 and remained relatively 487 
consistent from layer 4 to layer 7. The word learner, on the other hand, exhibited a similar 488 
trend, with improved accuracy from layer 1 to layer 2, followed by a decrease in performance 489 
in layer 4 and consistent accuracy from layer 4 to layer 7.  490 

In contrast, models with pretrained weights exhibited noteworthy differences. The pattern 491 
learner surpassed the word learner in the ABA vs AAB and ABA vs. ABB comparisons, 492 
displaying high decoding accuracy. In the AAB vs ABB comparison, both models achieved 493 
accuracy levels significantly above chance. Notably, the word learner demonstrated superior 494 
performance in this specific comparison compared to the pattern learner.  As for the progression 495 
of decoding accuracy between layers, both the pattern and word learners demonstrated 496 
consistent high decoding accuracy across all layers, with the highest performance achieved in 497 
layer 4. These findings highlight the distinct learning dynamics of the word learner, which was 498 
primarily trained to identify individual words, and the pattern learner, designed to discriminate 499 
among the three distinct patterns. Pretraining significantly boosted the decoding accuracy of 500 
both models, underscoring the beneficial role of pretrained weights in enhancing learning 501 
capabilities. The results emphasize the importance of considering the specific objectives of 502 
neural network models and the impact of pretraining on their performance.  503 

 504 

Table 1: SVM mean decoding accuracy with standard deviation in parentheses for each layer 505 
of both word and pattern learner networks with and without pretraining.  Red color reflects 506 
decoding accuracy below the chance level of 50%. 507 

 508 

Models Pattern Learner w/o Pretraining Word Learner w/o Pretraining 

Layers ABA-AAB ABA- ABB AAB- ABB ABA-AAB ABA-ABB AAB- ABB 

Layer 1:128 0.64 (0.04) 0.64 (0.07) 0.35 (0.05) 0.79 (0.07) 0.79 (0.04) 0.20 (0.03) 

Layer 2:256 0.68 (0.04) 0.69 (0.09) 0.38 (0.04) 0.73 (0.07) 0.73 (0.06) 0.24 (0.03) 

Layer 3:512 0.65 (0.07) 0.65 (0.09) 0.37 (0.10) 0.77 (0.07) 0.78 (0.06) 0.19 (0.05) 

Layer 4:1024 0.56 (0.09) 0.56 (0.09) 0.45 (0.07) 0.62 (0.10) 0.62 (0.07) 0.46 (0.09) 

Layer 5:512 0.56 (0.08) 0.56 (0.08) 0.44 (0.06) 0.59 (0.10) 0.57 (0.11) 0.42 (0.07) 

Layer 6:256 0.51 (0.04) 0.49 (0.06) 0.40 (0.03) 0.62 (0.07) 0.88 (0.05) 0.40 (0.04) 

Layer 7:128 0.51 (0.03) 0.51 (0.03) 0.42 (0.03) 0.63 (0.05) 0.62 (0.06) 0.38 (0.05) 

Mean 0.587143 0.585714 0.401429 0.678571 0.712857 0.327143 

Models Pattern Learner w Pretraining Word Learner w Pretraining 

Layers ABA-AAB ABA- ABB AAB- ABB ABA-AAB ABA-ABB AAB- ABB 

Layer 1:128 0.88 (0.05) 0.88 (0.06) 0.56 (0.06) 0.79 (0.04) 0.75 (0.08) 0.71 (0.08) 
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Layer 2:256 0.88 (0.03) 0.87 (0.04) 0.55 (0.06) 0.83 (0.05) 0.76 (0.05) 0.72 (0.07) 

Layer 3:512 0.90 (0.04) 0.88 (0.04) 0.52 (0.06) 0.90 (0.03) 0.82 (0.10) 0.68 (0.08) 

Layer 4:1024 0.97 (0.02) 0.95 (0.02) 0.92 (0.03) 0.95 (0.03) 0.95 (0.03) 0.93 (0.05) 

Layer 5:512 0.95 (0.03) 0.91 (0.04) 0.93 (0.04) 0.86 (0.04) 0.92 (0.03) 0.82 (0.04) 

Layer 6:256 0.95 (0.03) 0.92 (0.04) 0.94 (0.04) 0.81 (0.04) 0.88 (0.05) 0.88 (0.03) 

Layer 7:128 0.96 (0.04) 0.92 (0.04) 0.94 (0.02) 0.82 (0.05) 0.86 (0.04) 0.84 (0.03) 

Mean 0.927143 0.904286 0.765714 0.851429 0.848571 0.797143 

 509 

4 .4  Represe nta t io na l  s imi l a r i ty  a na ly s i s  510 

In addition to the decoding analysis described earlier, we conducted a comprehensive 511 
comparison of the decoding accuracy by time vectors extracted from the hidden unit 512 
activations of each layer within our models with neural activity derived from the 68 distinct 513 
ROIs. Our primary objective was to elucidate the close correspondence between human neural 514 
data and model performance in relation to pretraining and task-specific capabilities. The 515 
findings, depicted in Figs. 5 and 6, demonstrated that both the pattern and word learner models 516 
without pretraining exhibited moderate positive correlations with the neural data, particularly 517 
in the third layer of both model architectures. Notably, the regions of interest (ROIs) 518 
displaying these correlations included L-MTG_5, R-ITG_2, and R-STG_4 for the pattern 519 
learner (Fig. 5 left panel), and L-ITG_1, L-MTG_5, L-postCG_1, L-STG_1, R-ITG_2 and 3, 520 
R-MTG_2, R-STG_1, R-STG_4, and R-STS_1 for the word learner (Fig. 5 right panel). While 521 
none of the ROIs demonstrating moderate correlations with the pattern learner were decoder 522 
ROIs reported in Gow et al. (2022), it's noteworthy that three of the ROIs showing moderate 523 
correlation with the word learner functioned as decoders, suggested to store reduplication 524 
patterns. In the case of models with pretraining, the outcomes reveal remarkably distinct 525 
patterns of correlations. Notably, the majority of decoder ROIs (with the exception of R-526 
STG_3) and several others, demonstrated notably high correlations with the pattern learner, 527 
particularly in the later layers, while the first layer did not show any significant correlation. 528 
Conversely, for the word learner, we observed a contrasting trend, wherein all decoder ROIs 529 
and numerous additional regions exhibited substantial correlations primarily with the initial 530 
layers, while the final layer displayed comparatively weaker correlations. In addition, mean 531 
correlations between the seven layers of each model and decoder ROIs vs non-decoder ROIs 532 
(Fig. 7) showed that in all four models across all seven layers, decoder ROIs showed higher 533 
correlation than non-decoder ROIs and these correlations are significantly different from each 534 
other according to the Welch's t-test. 535 

 536 
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 537 

Figure 5: Heatmaps illustrating the correlation between SVM-based decoding accuracy applied to ROI 538 
activation vectors in the brain and SVMs applied to activation vectors across the 7 layers in the pattern 539 
and word learner models without pretraining. Each cell within the heatmap represents the correlation 540 
(Spearman’s rho) between the decoding accuracy time vector of an ROI and that of a layer in the model. 541 
Insignificant correlations are masked by blue shading. Decoder ROIs from Gow et al. (2022) are marked 542 
with red color. 543 

 544 

 545 
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 546 

Figure 6: Heatmaps illustrating the correlation between SVM-based decoding accuracy applied to ROI 547 
activation vectors in the brain and SVMs applied to activation vectors across the 7 layers in the pattern 548 
and word learner models with pretraining. Each cell within the heatmap represents the correlation 549 
(Spearman’s rho) between the decoding accuracy time vector of an ROI and that of a layer in the model. 550 
Insignificant correlations are masked by blue shading. Decoder ROIs from Gow et al. (2022) are marked 551 
with red color. 552 
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 553 

Figure 7: Mean correlations between the seven layers of each model and decoder ROIs vs non-decoder 554 
ROIs. Top row shows the models without pretraining, and bottom row shows the models with 555 
pretraining. Mean correlations (Spearman’s rho) for decoder ROIs are shown with blue color and non-556 
decoder ROIs with red color. Error bars represent the Welch's t-test p-values, which indicate the 557 
statistical significance of the mean differences of correlation between decoder and non-decoder ROIs 558 
for each layer. 559 

 560 

5 Discussion 561 

Generativity, a fundamental aspect of human language and cognition, has been the subject of 562 
an extensive investigation in both linguistic theory and computational modeling. Our study 563 
delved into this intricate aspect by employing deep associative models to investigate whether 564 
the neural abstract representations that support generativity align with the representations 565 
discovered by the variable-free model. To do this, we examined the role of pretraining and 566 
task-specific performance in mimicking cognitive generativity, particularly in the context of 567 
repetition-based rules, and drawing connections to human neural data. Specifically, we 568 
explored how task specificity and pretraining impact the performance of associative models, 569 
drawing connections between these models and human neural data obtained through MR-570 
constrained simultaneous MEG/EEG. 571 

Our investigation initially aimed to understand the role of pretraining in modeling generative 572 
abilities. To do this, we trained deep LSTM models both with and without pretraining, 573 
considering the premise that seven-month-old infants possess some prior knowledge about 574 
their language's syllables. The results of our pretraining analysis underscored the substantial 575 
impact of prior knowledge, as models pretrained on syllables exhibited remarkable 576 
performance improvements, demonstrating that pretraining not only improves training 577 
accuracy but also enables models to excel on novel data. This finding resonates with prior 578 
research highlighting the influence of prior knowledge in the context of generative rule 579 
learning (Seidenberg & Elman, 1999a, b; Altmann, 2002; Geiger et al., 2022; Prickett et al., 580 
2022) and offers valuable insights into the learning dynamics of neural network models. These 581 
insights can potentially be extended to the understanding of early language acquisition in 582 
infants. 583 

The subsequent examination of model performance unveiled intriguing dynamics concerning 584 
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the learning trajectories of word learners and pattern learners. Without pretraining, both word 585 
learners and pattern learners faced challenges in achieving reliable performance. The 586 
consistency of their average cosine similarities throughout training indicates the difficulty 587 
these models had in generalizing repetition patterns from untrained weights. These findings 588 
emphasize the complexities of repetition-based rule learning, even for models, and shed light 589 
on the intricate nature of human generativity. Moreover, the results with pretrained weights 590 
indicated that both categories of models achieved high levels of performance  indicating the 591 
capacity to discern repetition patterns effectively.  592 

Furthermore, the application of SVMs for decoding the hidden unit activations revealed 593 
critical insights into the representations of the repetition patterns within our models. Notably, 594 
models without pretraining displayed moderate positive correlations with neural data, 595 
especially within the third layer. The alignment of neural data and model performance 596 
highlights the potential of these models to capture aspects of human cognitive processing. It 597 
also underscores the importance of considering layer-specific dynamics when interpreting 598 
model representations. However, the difference between the pattern and word learner models, 599 
especially when pretrained, stood out. The pretrained pattern learner exhibited high 600 
correlations with decoder ROIs, especially in later layers, while the pretrained word learner 601 
displayed strong correlations with the initial layers. In addition, the consistent trend of decoder 602 
ROIs showing higher correlations compared to non-decoder ROIs across all layers reinforces 603 
the model's capacity to simulate the cognitive generativity observed in human neural data.  604 

These results lead to an intriguing question: why do pretrained word and pattern learners 605 
exhibit distinct behaviors in decoding ROIs across layers? The divergence between pretrained 606 
word and pattern learners, particularly in terms of correlations between early and later layers, 607 
may be attributed to differences in their learning objectives and strategies. The word learner, 608 
focused on individual word recognition, may prioritize early layers to capture fine-grained 609 
acoustic and phonetic features critical for word identification. In contrast, the pattern learner, 610 
tasked with recognizing abstract repetition patterns, may rely on later layers to capture more 611 
complex, higher-level representations necessary for this task. Deep neural networks often 612 
exhibit hierarchical learning, with early layers capturing low-level features and later layers 613 
capturing abstract ones, leading to varying correlations with neural data. Overfitting during 614 
training and the complex nature of neural data can also contribute to the observed differences. 615 
Further research is needed to explore the specific representations in different layers and their 616 
alignment with neural processes related to word recognition and pattern learning in the human 617 
brain. 618 

In light of our findings, it is essential to recognize the limitations of our study. While we have 619 
drawn parallels between our models and human neural processes, these models remain 620 
simplifications of the complex neural systems of the human brain. Furthermore, our analysis 621 
was centered on a specific task related to repetition patterns. Exploring a broader range of 622 
linguistic and cognitive tasks would offer a more comprehensive understanding of the 623 
capabilities of these models. Future research could explore various aspects of generative rule 624 
learning, including the integration of multiple linguistic cues, the role of hierarchical feature 625 
representation in pretraining, and the extent to which generative models can replicate aspects 626 
of cognitive generativity. By embracing these challenges, we can continue to bridge the gap 627 
between computational models, human behavior, and the neural processes that underlie 628 
generativity in language and cognition. 629 

In conclusion, our results suggest that associative mechanisms operating over discoverable 630 
representations capturing abstract stimulus properties account for a critical example of human 631 
cognitive generativity highlighting the crucial significance of generative AI models in 632 
simulating and understanding cognitive generativity within the realms of human learning and 633 
representation.634 
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