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Abstract: Understanding the function and control of channel transport is of paramount importance
for cell physiology and nanotechnology. In particular, if several species are involved, the mechanisms
of selectivity, competition, cooperation, pumping, and its modulation need to be understood. What
lacks is a rigorous mathematical approach within the framework of stochastic thermodynamics,
which explains the impact of interparticle in-channel interactions on the transport properties of
the respective species. To achieve this, stochastic channel transport of two species is considered in
a model, which different from mean field approaches, explicitly conserves the spatial correlation
of the species within the channel by analysis of the stochastic dynamics within a state space, the
elements of which are the channel’s spatial occupation states. The interparticle interactions determine
the stochastic transitions between these states. Local flow and entropy production in this state
space reveal the respective particle flows through the channel and the intensity of the Brownian
ratchet like rectifying forces, which these species exert mutually on each other, together with its
thermodynamic effectiveness and costs. Perfect coupling of transport of the two species is realized by
an attractive empty channel and strong repulsive forces between particles of the same species. This
confines the state space to a subspace with circular topology, in which the concentration gradients as
thermodynamic driving forces act in series, and channel flow of both species becomes equivalent.
For opposing concentration gradients, this makes the species with the stronger gradient the driving,
positive entropy producing one; the other is driven and produces negative entropy. Gradients
equal in magnitude make all flows vanish, and thermodynamic equilibrium occurs. A differential
interparticle interaction with less repulsive forces within particles of one species but maintenance
of this interaction for the other species adds a bypass path to this circular subspace. On this path,
which is not involved in coupling of the two species, a leak flow of the species with less repulsive
interparticle interaction emerges, which is directed parallel to its concentration gradient and, hence,
produces positive entropy here. Different from the situation with perfect coupling, appropriate strong
opposing concentration gradients may simultaneously parallelize the flow of their respective species,
which makes each species produce positive entropy. The rectifying potential of the species with the
bypass option is diminished. This implies the existence of a gradient of the other species, above
which its flow and gradient are parallel for any gradient of the less coupled species. The opposite
holds for the less coupled species. Its flow may always be rectified and turned anti-parallel to its
gradient by a sufficiently strong opposing gradient of the other one.
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1. Introduction

Channel transport of particles connecting otherwise separated environments is of paramount
importance for regulation of cellular, sub-cellular, and molecular processes but also an emerging field
of research in nanotechnology. According to this importance, there exists an abundance of work
addressing how the effectiveness and selectivity of this channel transport may be modulated and
increased. Much this work focuses on models that exploit very detailed information about channel
structure and channel particle interaction to answer questions about real channels. Others, as we, have
more fundamental aspects in mind to understand the basic thermodynamic properties of the channel.

Of the latter, many manuscripts addressed the impact of the particle channel interaction on the
effectiveness and selectivity of transport. Focus laid on static [1–5] but also on temporally modulated
interactions with the channel, e.g., if stochastic gating plays a role [6–9]. In contrast, the role of
the interparticle interactions on channel transport, especially for the case that several species are
involved, leaves many open questions. Simulations [10,11] demonstrated a potential cooperation
of two species within the channel, but the mechanism behind was not revealed. One-dimensional
exclusion models of two species channel transport showed that with increasing channel length, osmosis
and related processes that rely on interparticle interactions become more effective [12–16]. Mean field
approximations addressed how jamming of a single species inside the channel affects the transport
parameters; however, though qualitatively correct, results differed from simulations for narrow
channels [17,18]. The clear drawback of mean field theories is that they derive a mean interparticle
interaction from a mean occupation probability of particles, i.e., spatial correlations between particles
are neglected. However, an interparticle interaction definitely implies a strong correlation between
occupation states within its spatial range, which makes mean field theories only applicable for very
short range interactions.

What is still left is a rigorous, mathematical approach that is exactly solvable and addresses the
effect of interparticle interaction on transport without the method inherent constraint of mean field
theories in terms of stochastic thermodynamics. A model within this framework is a prerequisite for
understanding the channel transport of two species and their mutual effect on each other beyond
just a phenomenological descriptive approach, as provided by simulations. This is the aim of this
manuscript. As the interparticle interaction is addressed, spatial correlations between particles in the
channel must be conserved. This is achieved by mapping the dynamics of particle transport on the
transition dynamics of occupation states in the channel, which form the state space. The probability of
these states then directly reflects how particles are spatially correlated. Analysis of transition dynamics
in this state space will allow in a unique way seeing how the effects of the driving forces of channel
transport, namely the particle concentrations in the baths adjacent to the channel ends, are distributed
within this space. This will elucidate the mechanisms by which the driving force of one species affects
the transport of the other and vice versa. Furthermore, the thermodynamic sources of this complex
channel transport, i.e., regions of positive entropy production, may be allocated in state space. It
becomes obvious how transitions in state space and the respective probability flows are related to
these sources of entropy production and how interparticle interactions direct these sources to achieve
mutual rectifying forces, which in the case of opposing concentration gradients, makes entropy sinks,
i.e., regions of negative entropy production, emerge.

In this sense, the manuscript is organized as follows. In Section 2, we present the mathematical
framework. A brief presentation of the channel model and state space is followed by the description of
the ratchet mechanism by which particles mutually exert rectifying forces on each other and how this
translates into stochastic thermodynamics. It is analyzed how the thermodynamic forces drive the
system within the network of state space and how the local parameters of state space as flow between
states and associated entropy sources are related to particle flow and global entropy production.
With these tools, we analyze in Section 3 how modulation of intra-species interparticle interactions
confines state space by optimal coupling of transport, which achieves a maximum rectification.
In Section 4, the constraint of strict coupling is lowered for one species, which expands the confined
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state space. The consequences for the rectification capability become evident in phase diagrams,
in which for each species, the parallel and anti-parallel direction of concentration gradients and particle
flows define different phases, whose transitions depend on the concentration gradients of both species.

2. The Model and Stochastic Thermodynamics in State Space

2.1. State Space and Transition Rates Within

A channel connects two baths, labeled 1 on the right and 2 on the left site (Figure 1). Each of them
contains particles of species A and B with respective concentrations c(A/B)

1/2 . The baths are supposed to
be on the same energy level, i.e., the only thermodynamic driving forces the particles are subjected
to are the concentration gradients. The system is perfectly thermostat controlled at a temperature T,
which allows normalizing all energetic quantities to kT and leaves them dimensionless. The channel
is narrow in the sense that only one particle can stay at a particular position along the channel axis.
There exist only discrete channel positions along the channel axis, which are numbered N, . . . 2, 1.
The occupation state of a channel is then described by a state variable σ = (σN , · · · , σ2, σ1), where
σi may take the values σi = A, B, 0 depending on whether position i is occupied by species A, B,
or non-occupied (= 0), respectively. These states form the state space Σ = {σ}. This implies for a
channel with a length of N positions a state space with 3N elements. In this manuscript, we restrict
the channel lengths to N = 2 or 3 positions, i.e., the state space has either 9 (N = 2) or 27 elements
(N = 3), as shown in Figure 1. Transitions dynamics results from a superposition of interaction forces
(interparticle and particle-channel) and stochastic forces. The latter determine the random access
of particles from the baths to free channel ends or random jumps within the channel to nearest free
neighbor positions. This dynamics is described by a stationary Markov process, i.e., the evolution of
the probability Pσ(t) to find the channel in the state σ at time t obeys the master equation [19],

Ṗσ(t) = ∑
ς∈Σ

λσ,ςPς , (1)

with transition rates λσ,ς = λσ←ς from state ς to state σ, which comprise the above-mentioned forces.
Conservation of probability, ∑σ Pσ = 1, yields the diagonal matrix elements as λς,ς = −∑σ 6=ς λσ,ς.
This enables one to rewrite the master equation in the form or a continuity equation:

Ṗσ = ∑
ς

Jσ,ς , (2)

with:
Jσ,ς = λσ,ςPς − λς,σ Pσ (3)

as flows of probability in state space from state ς to state σ. Note that by taking the occupation
states σ of the channel as the state variable, spatial correlations related to interparticle interaction
become explicit in the probability Pσ . This is in contrast to mean field theories, which consider a
mean occupation probability of a species at some position in the channel as the base to define a mean
interaction force.

To obtain the transition rates λ, we have to differentiate between particle-channel and interparticle
interactions. We assume no differential particle-channel interaction forces inside the channel, or in
other words, the corresponding energy profile is flat. Hence, a single particle inside an otherwise empty
channel may hop with the same rate τ−1

0 to its nearest neighbor positions, with τ0 as the corresponding
time constant. In this manuscript, all dynamical processes will be normalized to this baseline dynamics,
i.e., all rates λσ,ς are given as dimensionless multiples of τ−1

0 . Access of particles of some species
being in some bath with concentration c to a free channel end position shall be given by a baseline
rate k+c and conversely hopping away from the channel end into the bath by the rate k−. These rates
are identical for both species and baths. As we are mainly interested in interparticle interactions,
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we assume that the probability to find an empty channel is very low. In other words, in addition to
the baseline in and out hopping rates, the empty channel has a very strong affinity to particles of
either species. Formally, this is achieved by assigning absorption of particles by the empty channel,
i.e., transitions from σ = (00) for the two site or σ = (000) for the three site channel, an energy gain
−E0 < 0. Repulsive interparticle interactions result from the constraint that an occupied position
may not be occupied further, neither from the baths, nor from inside the channel. However, as we
are interested also in more subtle interparticle interactions, we further introduce repulsive forces
between particles of the same species inside the channel. These repulsive forces hamper the access
of particles from the baths to the channel if the channel is already occupied by the same species.
Oppositely, these forces make it easier for a particle to leave the channel, if the channel is already
occupied by particles of the same species. For the two site channel model, this is simply achieved
by assigning channel states σ = (XX), which are occupied by two particles of the same species X,
a higher energy level EX > 0. For the longer three site channel, we differentiate between a short- (sr)
and a long-range (lr) repulsive interaction. The long-range interaction is similar to the situation of the
two site channel, i.e., once a particle is inside the channel, it, independently of its position, rejects access
of particles of the same species. In contrast, the short-range interaction reveals a spatial dependence. It
rejects the access of particles of the same species, which potentially could become its nearest neighbor,
e.g., (0X0) → (XX0), but there is no repulsive force when there is a vacant position in between,
e.g., (00X)→ (X0X). It is obvious that these interparticle interactions facilitate the occupation of the
channel by particles of different species and, by this favor, the option of cooperation or competition
between them.

a) b)

Figure 1. Sketch of a two site (a) and three site channel (b) with example state σ and the state space
below. The two site space has nine and the three site space 27 elements (see text). States between which
exist stochastic transitions are linked by a gray line. The respective rates are given in the text.
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Formally, these interactions modulate the jump in rate into the empty channel and the
corresponding jump out rate by [20]:

k+c → eE0/2 k+c
k− → e−E0/2 k− , (4)

and similarly, a particle’s access to and departure from a channel already occupied by the same species by:

k+c(X) → e−EX/2 k+c(X)

k− → eEx/2 k− , (5)

if the interaction is present. In the case of the three site channel, this always holds for the long-range
and potentially (see above) for the short-range interaction. Note that these modulations of rates
fulfill the detailed balance condition, i.e., for the ratio of jump in and out rates, ∼ e−δE holds, with
δE = EX or − E0 as the energy difference between the two channel states.

2.2. The Ratchet Mechanism of Interspecies Interaction and Stochastic Trajectories in State Space

As a position inside the channel may only be occupied by one particle, states with neighboring
particles of different species may only undergo transition towards states in which a particle has
moved oppositely to the position of its neighbor. In the case of vanishing concentration gradients,
i.e., in thermodynamic equilibrium, the stochastic dynamics is symmetrical along the channel axis.
In particular, this holds for the occupation of the channel with neighboring particles of different
species. Hence, the above constraint of particle motion is balanced, i.e., as expected for thermodynamic
equilibrium, these constraints do not induce the flow of particles. However, the situation changes
in the presence of a concentration gradient of one species while maintaining a vanishing gradient
for the other one. The probability to find a particle of the species with a non-vanishing gradient
inside the channel declines in the direction of this gradient. This symmetry break implies that due
to interparticle interactions, the species with the vanishing gradient has more options to move in the
direction of this concentration gradient, i.e., a net flow occurs (Figure 2). This is the key feature of
the Brownian ratchet paradigm [21], in which a driving/fluctuating asymmetric potential rectifies the
motion of a particle. The fluctuating asymmetric potential corresponds to the concentration gradient
related asymmetric stochastic access from the baths, which rectifies the motion of the species with
the vanishing concentration gradient. If both species have a concentration gradient, each species is at
the same time ratchet for the other and also rectified by subjection to the ratchet function of the other.
This naive explanation of the ratchet mechanisms, however, blanks out the fact that the ratchet itself is
subject to thermodynamics. The ratchet mechanism does not work for free, but takes its toll based on
the second law of thermodynamics, which requires a positive net entropy production. This interwoven
network of mutual ratchet function and subjection to rectification, and its degree of effectiveness, is
best resolved within the framework of state space and its stochastic transitions within. Transitions
between two states σ 
 ς in state space are driven by the free energy difference between both, which
is obtained from the transitions rates by [19]:

∆εσ,ς = − ln(λσ,ς/λς,σ) . (6)

Depending on whether the states refer to different energetic levels or particle uptake/release,
the transition implies a change of the entropy of the baths [22], which is related to its heat or particle
exchange with the channel:

∆sbaths σ,ς = −∆εσ,ς . (7)

Note that we normalized all energetic quantities to temperature, so that the temperature does not
appear in the entropy. Some transitions comprise both, heat and particle exchange, e.g., if an occupied
channel hampers access of particles of the same species from the bath by a repulsive interparticle
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interaction. Therefore, the free energy comprises both, as well, as shown by insertion of the rates of
Equations (5) into Equation (6). For this transition, the entropy change takes the form:

∆sbaths = −EX︸︷︷︸
heat exchange

+ ln

(
k+c(X)

k−

)
︸ ︷︷ ︸
particle exchange

(8)

For an ensemble of channels, the entropy production rate related to the transition σ 
 ς is then
determined by the probability flow between the corresponding states (Equation (3)) as [23]:

Ṡbaths σ,ς = −Jσ,ς∆εσ,ς . (9)

This relationship first postulated by Schnackenberg relies on a perfectly working bath, i.e., heat and
particle concentrations are instantaneously equilibrated, which we also assume here. Otherwise, it
provides a lower bound of entropy production [24].

The free energy differences ∆εσ,ς may be considered as a field of drift forces, superimposed on
random forces, which affect the stochastic path through the state space. The free energy difference
along such a path γ = (σN , σN−1, . . . σi+1, σi . . . σ1) at ordered time points ti is then the sum:

∆Eγ =
N−1

∑
i=1

∆εσi+1,σi , (10)

with an according change of the entropy in the baths.
We will first analyze this force field under equilibrium conditions, ε

(eq)
σ,ς , i.e., if particle

concentrations of each species are equal in the connected baths. Equilibrium implies that detailed
balance makes the probability flow between two states in Equation (3) vanish:

J(eq)
σ,ς = λσ,ςP(eq)

ς − λς,σ P(eq)
σ = 0 , (11)

with P(eq) as the equilibrium occupation probability distribution. Defining the potential:

φσ = − ln(P(eq)
σ ) (12)

yields with Equation (6):
∆ε

(eq)
σ,ς = φσ − φς . (13)

This implies that the free energy difference along a stochastic path is simply given by the difference
of the potentials between its ends ∆E (eq)

γ = φN − φ1, i.e., in particular, the free energy difference for

closed paths vanishes. This makes ∆ε
(eq)
σ,ς a conservative field and defines the free energy landscape

above state space Σ by the function φ : Σ 3 σ → φσ .
The situation is different in the presence of concentration gradients and particle transport through

the channel. A non-vanishing net transport of particles through the channel requires that the system
visits repetitively states involved in particle exchange with the bath. Therefore, the stochastic path
in this finite state space may be built from closed paths, which contain state transitions with the
baths. The second law of thermodynamic implies that the free energy declines on most of these
paths, as otherwise, on average, there would be no positive entropy production and, hence, no net
particle flow. In contrast to the equilibrium situation, the free energy differences ∆εσ,ς now form
a non-conservative field, which successively drives the stochastic path towards lower free energy
levels, and by this produces positive entropy in the baths. Thus, the free energy landscape cannot be
described anymore by a potential function; instead, it is similar to a Riemann surface with logarithmic
branching points (Figure 2). Note that “successive” for the free energy decline is not meant in the
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sense of monotonous. Of course, on the single trajectory level, there is the option of transient negative
entropy production, i.e., increase of free energy. However, eventually, the free energy of the trajectory
declines at arbitrary low values, limt→∞ ∆Eγ(t) → −∞. Furthermore, on the ensemble level, negative
local entropy production for transitions in state space as given by Equation (9) is naturally feasible,
but overall entropy production of the ensemble average in state space must be positive.

Statespace

Free energy landscape

a) b)
Asymmetric fluctuating 
constraint from A on B A B B

A

B A

B

BA

B

A
B

A
A

B

B

B

B

B

A

A

A

AB
Bath 1Bath 2

A
A

A

AA

Figure 2. The ratchet mechanism of state transitions (a) and its integration into the free energy
landscape on state space (b). Left site (a) from above to below: A two site channel connecting two baths
is shown with a concentration gradient of species A directing from Bath 1 to Bath 2. The random access
of species A to the channel ends imposes fluctuating constraints on the mobility of species B. These
are biased by the concentration gradient of A, which is evident from the ratio of state probabilities
P(BA)/P(AB) > 1. Its dependence on the gradient of A is shown in the graphic insert (probabilities
were obtained from Equation (1) for stationary conditions, Ṗσ = 0, and rates from Equations (4) and (5),

with E0 = EA = EB = 0, k+c(B)
1 = k+c(B)

2 = 0.1, k+c(A)
2 = 0.1, and k+c1(A) varied). This bias favors

movement of species B in the direction of the gradient (longer arrow to the left). This biased fluctuating
constraint of A on B translates into different free energy differences ∆ε = − ln(k+ c/k−) of the states
involved. Together with the affinity of the empty channel in Equation (4) and the interaction energies
of Equations (5), they form the free energy landscape above the state space as shown in Sketch (b).
For non-vanishing concentration gradients, this landscape cannot be obtained from a potential function
as under equilibrium conditions from Equations (12) and (13). Instead it is similar to a Riemann surface
with logarithmic branching points. This topology of the free energy landscape drives successively the
stochastic trajectories (white) towards lower free energy levels E .

2.3. Local Probability Flows in State Space and Particle Flows through the Channel

In an ensemble of channels, the dynamics of stochastic trajectories translates on average into
probabilities of states and probability flows between these states (Equation (3)). In this manuscript,
channel transport is studied in the steady (stationary) state, i.e.,

Ṗσ(t) = 0 (14)
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holds. The corresponding probability distribution is then determined from Equation (1) as:

ΛP(s) = 0 , (15)

where we summarized the transition rates in the matrix Λ = (λσ,ς) and the steady state probability in

the vector P(s) = (P(s)
σ ). Equation (3) then determines the flow of probability between states.

To obtain the particle flow through the channel from the probability flows in state space, one has
to keep in mind that the steady state condition of Equation (14) and the continuity Equation (2) imply
the conservation of probability flows in state space:

∑
ς

J(s)σ,ς = 0 . (16)

This feature is well known from electrical circuits as Kirchhoff’s law. To obtain the particle flow
J(X) of species X through the channel from flows in state space, it is in the steady state sufficient to
consider state transitions, which are involved in particle exchange with the bath at some channel
end. For example, for Bath 2 at the left site, these transitions are σ = (0, . . .) 
 ς = (X, . . .). Flow
then becomes:

J(X) = ∑
σ,ς|exchange X with Bath 2

J(s)σ,ς . (17)

For the two site channels, an even simpler expression is obtained. States involved in the exchange of
species X with Bath 2 at the left site are (X0), (XX), (XY), i.e., J(X) = J(s)

(00),(X0)+ J(s)
(0X),(XX)

+ J(s)
(0Y),(XY).

A channel state with two sites occupied has only two options for transition, i.e., (0X) ← (XX) →
(X0), and (0Y) ← (XY) → (X0). Therefore, application of Kirchhoff’s law implies J(s)

(0X),(XX)
=

−J(s)
(X0),(XX)

= J(s)
(XX),(X0), and J(s)

(0Y),(XY) = −J(s)
(X0),(XY) = J(s)

(XY),(X0), where we exploited that the
sign of flow changes concordant with the view of the direction of state transition, Jσ,ς = −Jς,σ .

Hence, J(X) = J(s)
(00),(X0) + J(s)

(XX),(X0) + J(s)
(XY),(X0). Again, application of Kirchhoff’s law, J(s)

(00),(X0) +

J(s)
(XX),(X0) + J(s)

(XY),(X0) + J(0X),(X0) = 0, and respecting the change of sign when changing the transition
direction yield:

J(X) = J(s)
(X0),(0X)

. (18)

Equations (17) and (18) allow now the determination of particle flows through the channel.

2.4. Sources of Entropy Production in State Space and Entropy Production by Channel Transport

The fact that the driving forces, namely the concentration gradients, may not affect directly the
associated particle flow, but instead are due to interparticle interactions interwoven within the complex
transition dynamics of state space, allows making the driving forces of one species mutually act on
the other, as suggested by the ratchet mechanism. Therefore, the effects like cooperation in the case of
parallel gradients or, for anti-parallel gradients, pumping a species against its concentration gradient
should become feasible. In the latter case, there would be a negative entropy production for the driven
species. The whole entropy production, i.e., that related to the driving and driven species, must of
course be positive in accordance with the second law of thermodynamics. The question is: How is
this global entropy production by particle flows through the channel related to entropy productions
within state space, or in other words, how do sources and sinks of entropy production emerge within
the state space, and how do they translate into the entropy production related to particle flows? We
consider an ensemble of channels. The ensemble averaged whole entropy production consists of that
of the channel ensemble and that of the baths the channels are connected with, i.e.,

Ṡ = Ṡchannel + Ṡbaths . (19)
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That of the channel ensemble is expressed by the dynamics of the Shannon entropy:

Ṡchannel =
d
dt

(
−∑

σ

Pσ(t) ln(Pσ(t))

)
. (20)

As we consider the system in the steady state, this component of entropy vanishes,

Ṡchannel = 0 . (21)

As shown above, entropy production in the baths is related to its particle and heat exchange with the
system (Equation (9)), i.e.:

Ṡbaths =
1
2 ∑

σ,ς
Ṡσ,ς

=
1
2 ∑

σ,ς
−∆εσ,ς Jσ,ς . (22)

Note that flow and free energy difference concordantly change sign, if state indices are interchanged,
which summing up over all demands the factor 1/2. From now on in the manuscript, we omit the index
“baths” and superscript (s) as entropy production is always related to that of the baths and dynamics
is studied in the steady state. It should be remarked that Equation (22) may be written in a more
general form, which makes it applicable also to non-steady states. Then, the free energy difference as a
driving force is supplemented by the potential difference related to occupation probabilities, which
straightforwardly yields in addition to the bath-entropy production the Shannon-entropy production
of the system.

To relate the entropy productions within state space to the entropy production by particle flow
through the channel, we consider the states that are in the exchange of particles of species X with Bath
2 at the left site of the channel, σ = (0, . . .) 
 ς = (X, . . .). Jump in rates λς←σ = λς,σ all have the

factor k+ c(X)
2 in common. The corresponding free energy differences may then be rewritten as:

∆εσ,ς = − ln(λσ,ς/λς,σ)

= ∆ε
(eq)
σ,ς − ln(c(X)

1 /c(X)
2 ) , (23)

with ∆ε
(eq)
σ,ς as the free energy difference that would be given under equilibrium conditions, i.e.,

the concentrations in both baths would be c(X)
1 . All other free energy differences, i.e., those not

related to particle exchange with Bath 2, show values equivalent to those under equilibrium conditions.
Insertion of the free energy differences from Equation (23) into Equation (22) and applying Equation (13)
then give:

Ṡ =
1
2 ∑

σ,ς
−∆ε

(eq)
σ,ς Jσ,ς + ∑

X
ln(c(X)

1 /c(X)
2 ) ∑

σ,ς|exchange X with Bath 2

Jσ,ς︸ ︷︷ ︸
=J(X)

(24)

=
1
2 ∑

σ,ς
−(φσ − φς) Jσ,ς︸ ︷︷ ︸

=0

+∑
X

ln(c(X)
1 /c(X)

2 )J(X) (25)

= ln(c(A)
1 /c(A)

2 ) J(A) + ln(c(B)
1 /c(B)

2 ) J(B) (26)

= ∆µ(A) J(A) + ∆µ(B) J(B) (27)

= Ṡ(A) + Ṡ(B) (28)
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For evaluation of the sum in Equation (24), we used the relation between particle flow and flow in the
state space (Equation (17)). The vanishing sum of entropy productions in Equation (25) for steady state
flows in conservative fields (see Equation (13)) follows from Kirchhoff’s law (Equation (16)). Note that
Jσ,ς = −Jς,σ .

Equations (24) and (26) demonstrate that the global entropy production in state space is equivalent
to the sum of entropy produced by flows of particles through the channel, Ṡ(X) = ln(c(X)

1 /c(X)
2 ) J(X) =

∆µ(X) J(X), where we introduced the difference of chemical potentials ∆µ(X) = ln(c(X)
1 /c(X)

2 ). Reading
it in the other direction, the above equations show that global entropy production by particle flows
emerges from entropy production sources in state space.

3. Confinement of State Space by Energetic Constraints and their Effect on Two Species
Interparticle Interaction

In the absence of interparticle interactions, the concentration gradients as driving forces could
directly affect their associated particle flow, without influence on the other species. In its presence
however, these driving forces become integrated into the network of state space transitions. This
implies that the driving force of one species may also cross affect transitions of the other species, which
is the base of the ratchet mechanism shown in Figure 2. However, the ratchet mechanism in our model
is restricted to states in which the two species are positioned in a direct neighborhood. This implies for
example for the two site channel that only two of nine states are of relevance, (AB) and BA). An option
to make the ratchet mechanism work more efficiently is to increase the channel length, as this allows
more states with neighboring particles of the two species. Another is to facilitate transitions towards
these states by superimposing appropriate energetic constraints on state space. This is achieved by
an attractive empty channel (−E0 < 0) and the avoidance of states in which more particles of one
species are present in the channel (EX > 0). Note that in case of the three site channel, the latter
are differentiated into a long- or short-range interaction. These effects are investigated in Figure 3,
in which the coupling of the two species is quantified by the coupling strength ∆E = E0 = EA = EB,
i.e., all energetic constraints are here raised simultaneously. Species B is assigned no concentration
gradient, whereas species A has a gradient pointing from Bath 1 to 2. With the increasing gradient of
A, the flow of B as obtained from Equations (17) and (18) increases and reaches a maximum, before it
decreases. For a vanishing ∆E, a three site channel reveals a moderately higher driving capability of
species A, when compared to the two site channel, as evident from the flow of B. By increasing slightly
the coupling strength ∆E = E0 = EA = EB = 0.5, the driving capacity of A enhances for both channel
lengths. In this still low coupling range, there is only a moderate superiority of the long- (lr) over the
short-range (sr) interaction for the three site channel.

At a low coupling strength ∆E, flow of the driving species A exceeds by far that of the driven
one B (Figure 4). With increasing coupling strengths ∆E = 0→ 4→ 15, the flow of the driven species
B increases at the cost of that of the driving one A. For the two site channel, both flows converge
against each other in the strong coupling limit ∆E = 15. This also holds for the three site channel and
a long-range interaction,

lim
∆E→∞

J(A) = lim
∆E→∞

J(B) (29)
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Figure 3. Flow of the driven species B, J(B), with vanishing concentration gradient (k+c(B)
2 = k+c(B)

1 =

0.1, k− = 1) as a function of the driving concentration gradient of species A, c(A)
1 /c(A)

2 , with k+c(A)
2 =

0.1 held constant. The channel length is =2 positions (left) and =3 positions (right). Two coupling
strengths ∆E = E0 = EA = EB = 0, 0.5 of the two species are shown. Inside the three site channel,
a short- (sr) and long-range interparticle interaction (lr) between particles of the same species are
differentiated (see text).

2 positions 3 positions

a) b)

c) d)

Figure 4. Flows of driven (J(B), solid line) and driving species (J(A), dashed line) as a function of the

latter’s concentration gradient c(A)
1 /c(A)

2 and exemplary coupling strengths ∆E = E0 = EA = EB for
a two site (a) and a three site channel (b). Other parameters are as in Figure (3). The flows of the
short-range interactions for the three position channel are in bright, those of the long-range interaction
in dark colors. Below: flows (logarithmic scale) are shown as a function of the coupling strength ∆E
for a fixed concentration gradient of the driving species c(A)

1 /c(A)
2 = 10 (c,d). Dashed curves stand

for the driving (A), solid for the driven species (B); for the three site channel, black lines stand for the
long-range interaction (lr), gray lines for the short one. Note the convergence of driving and driven flow
with increasing coupling strength for the two site channel and the three site channel with long-range
interparticle interaction.

This convergence of flow of the driving and driven species with increasing coupling strength
becomes clear in Figure 5. In the absence of coupling (∆E = 0), flow is mainly present between states
involved in the sole transport of species A (Figure 5a,c). For example, for the two site channel, these
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are the transitions

(A0) (AA)

(00) (0A)

. Transitions in which species B is involved are negligible.

An increasing coupling strength elevates the energetic levels of the empty channel state and states
occupied by particles of the same species. For large coupling strengths, this hampers visits to these
states, which restricts the accessible state space to a subspace with a circular topology (Figure 5b,d).
In the case of a two site channel, which we will now consider first, a cyclic subspace (CS) emerges
(Figure 5b). In the steady state, the flow on a cyclic space is constant throughout ≡ JCS. In particular,
one gets JCS = J(A0),(0A) = J(B0),(0B) and with Equation (18) the equivalence of particle flows :

J(A) = J(B) |on CS . (30)

As described above, the free energy difference ∆εσ,ς of a state transition σ ← ς (Equation (6)) may be
considered as the drift force of this process. On the cyclic subspace, these free energy differences derive
from the potentials µ

(X)
i = ln(k+c(X)

i /k−) related to particle exchange by ∆ε(Y,X),(Y0) = −µ
(X)
1 and

∆ε(XY),(0Y) = −µ
(X)
2 for the access of X from Bath 1 or 2 to the respective channel end, and with

opposite sign, if it leaves. Note that the free energy difference of pure translocations vanishes,
∆ε(0X),(X0) = 0. The confinement of state space to the CS makes now the potentials µ

(X)
i , and hence,

the drift forces act in series

(AB) (A0)

(0B) (0A)

(B0) (BA)

−µ
(A)
2

µ
(B)
1

µ
(A)
1

−µ
(B)
2

. Hence, flow on the CS is driven by

the free energy difference obtained from the sum of the potentials:

− ECS = µ
(B)
1 + (−µ

(A)
2 ) + µ

(A)
1 + (−µ

(B)
2 ) = ∆µ(B) + ∆µ(A) (31)

This and the equivalence of particle flows in Equation (30) in the case of strong coupling implies that
each species is driven by the same force, namely the sum of the chemical potential difference. Hence,
the concentration gradient of each species drives to the same amount its own and the other species.

For a three site channel, the situation is, though a bit more complex, similar as shown in Figure 5d.
A strong long-range coupling strength ∆E allows only relevant stochastic transitions between states in
which a channel is occupied by a single particle of one or two particles of different species. These states
become the elements of the confined state space. Figure 5d shows that states of the form (0Y0) and
(Y0X) are vertexes of flows, which define a circular graph and, hence, circular topology. Kirchoff’s
law (Equation (16)) implies that flow between these vertexes must be constant in the steady state.
Particle flow of, e.g., species X from Bath 1 into the channel, and hence, particle flow through the
channel, is equivalent to flow in state space between the vertexes (0Y0) 99K (Y0X). The dashed
arrow indicates that this flow is the sum of two flows on alternative paths between these vertexes,
(0Y0)− (0YX)− (Y0X) or (0Y0− (Y00)− (Y0X). Both paths differ just by the onset of translocation
of Y. An interchange of X and Y in the vertexes directly reveals that particle flow of Y from Bath 1 into
the channel must be equivalent to that of X. Again, we reveal the equivalence of the particle flow of
the two species in the limit of strong coupling as in Equation (30).
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a) b)

c) d)

Figure 5. Flows in state space for a two site channel (a,b) and a three site channel (c,d). A vanishing
∆E = 0 (a,c) and a strong, for the three site channel long-range coupling strength, ∆E = 15 (b,d)
are considered. Flow is normalized to the maximum magnitude of flow |Jmax| in state space Jσ,ς →
Jσ,ς/|Jmax|. The magnitude of this normalized flow is coded in colors and in the thickness/size
of arrowheads. Flows below 10−3 are represented by grey lines. For the case of strong coupling,

the potentials µ
(X)
i = ln(k+c(X)

i /k−) are shown next to the transition, which they affect. Concentrations

are k+c(A)
1 = 1, k+c(A)

2 = 0.1, k+c(B)
1 = k+c(B)

2 = 0.1, and the jump off rate is k− = 1.
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The free energy difference between the vertexes, which derives from the potentials µ
(X)
i =

ln(k+c(X)
i /k−), is independent from the the paths between them. Hence, within the circular topology

of state space, the potentials act in series

(0A0)

(A0B) (B0A)

(0B0)

µ
(B)
1

−µ
(A)
2

−µ
(B)
2

µ
(A)
1

. Again, the dashed

arrows linking these states indicate the two optional paths in between. Hence, as for the two state
channel, a strong coupling with a long-range interaction implies that each species is driven by the sum
of the chemical potential differences (Equation (31)).

However, for the short-range interaction, there is much less driving capacity of A and there is no
convergence of particle flows of respective species to each other with increasing coupling strength,
as shown in Figure 4. This becomes also evident in state space in Figure 6. The short-range interaction
leaves the option that the potentials of species A act solely cyclically on its species, which becomes
evident on the dominant path in state space (00A)− (0A0)− (A00)− (A0A) . . .). The last transition
would have been impeded in the presence of a long-range interaction. Therefore, only a minor portion
of the driving force of A is available for transport of species B.

Figure 6. Flows in state space for a strong (∆E = 15) coupling, but only short-range interparticle
interaction. Coding of flow, concentrations, and rates are identical to those for the three site channel
with long-range interaction in Figure 5.
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4. Differential Coupling of the Species and Its Effect on Transport

In the previous section, a strong coupling of two species implied a strong mutual effect of the
driving forces of one species on flow of the other. This was realized by confinement of state space to a
subspace with circular topology, in which potentials, and hence driving forces, of the two species are
arranged in such a way that they must act in series. For the two site channel, this confined state space

is a one-dimensional cyclic space (CS)

(AB) (A0)

(0B) (0A)

(B0) (BA)

. To investigate systematically

what happens, if transport is less coupled, we will consider an asymmetric situation, leaving transport
of species B strongly dependent on that of species A, whereas the latter is allowed to bypass the CS.
This is realized by a less repulsive interaction of A, making visits to the state (AA) more probable. This
expands the cyclic state space of strong mutual coupling by a bypass path−(AA)−, as seen in Figure 7.
This additional path permits species A a leak current on the path −(AA)−, which is solely driven by
its concentration gradient, with respective free energy reduction −∆µ(A). From the topological point
of view, there exist now two entangled cycles: the CS with ∆µ(A) + ∆µ(B) as the driving force and the

cycle

(A0) (AA)

(0A)

which makes use of the bypass and on which the system is driven by ∆µ(A).

Both cycles have the segment (0A)− (A0) in common, the flow on which is identical with particle
flow of species A (see Equation (18)). In other words: the segment (0A)− (A0) joins two cycles with
unequal free energy differences, which determine the flow on this segment.

Figure 7. Extension of the cyclic state space (CS), to which system transitions are confined in the case
of strong coupling (∆E = EA = EB = E0 → ∞) by the state (AA) (dark gray). This extension is
achieved by lowering EA, which enables the occupation of the channel by two particles of species A
and by this a leak flow of A on the bypass path −(AA)− in the direction of its concentration gradient.
By maintaining a high energy level of the empty channel (E0 → ∞) and strong repulsive interaction
between particle of species B (EB → ∞), flow of B is still confined to the CS. Transitions with negligible
flow due to these remaining energetic constraints are shown in light gray.

To see how this differential coupling evolves, we first start with a very strong coupling,
EA = EB = E0 = 25 (Figure 8) in the presence of antiparallel directed concentration gradients,
∆µ(A) > 0, ∆µ(B) < 0. As shown in the previous section, state space is then almost confined to
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the CS on which flows of the two species become almost identical J(A) = J(B). The driving forces act in
series, i.e., both flows are driven by the sum of chemical potentials ∆µ(A) + ∆µ(B). This implies that
in the case of identical magnitude, i.e., ∆µ(A) + ∆µ(B) = 0, flow would cease. Otherwise, the flow of
both species points in the direction of that with the stronger concentration gradient. This becomes the
driving species, which produces positive entropy (Equations (26)–(28)) by flow through the channel.
For the other species, the driven one, the concentration gradient and flow direction are anti-parallel,
and hence, entropy production is negative. This dependence of the parallel or anti-parallel orientation
of concentration gradient and flow direction, and hence, the sign of entropy production, on the
concentration gradient of each species may be best visualized in a phase diagram. For a strong
coupling, the phase diagram in Figure 8 shows, besides the curve of vanishing flow at the line of
identical magnitude of the gradients, only two phases: the turquoise phase with J(A) parallel and J(B)

anti-parallel to its concentration gradient, and for the blue phase, the reverse situation. For each phase,
an example with its implications for flow Jσ,ς and related local entropy production Ṡσ,ς = −∆εσ,ς Jσ,ς

in state space (see Equation (22)) is studied: either the gradient of species B (∗ : ∆µ(B) + ∆µ(A) < 0)
or that of A dominates (+ : ∆µ(B) + ∆µ(A) > 0). In Figure 8, we consider, besides this local entropy
production, also that local entropy production solely related to particle exchange with the baths (see
Equation (8)), i.e., it leaves out potential heat production or absorption related to transitions to and
from states at high energy levels, i.e., EA, EB, E0. For transitions not including these states, both local
entropy productions are identical. Note that there is no entropy production for state transitions related
to pure spatial translocations (X0)� (0X), as there is no free energy difference. Confinement of state
space to the cyclic CS implies that flow here is constant throughout, i.e., JCS ≡ |Jσ,ς|σ,ς∈CS|, and in
particular, it is equivalent to particle flows (Equation (30)). Hence, flow in state space related to
bath-channel transitions of the dominating species implies here a local positive entropy production.
In the case of species B (∗), this refers to transitions (0A)→ (BA) and (AB)→ (A0). Negative local
entropy production is related to bath-channel transitions of the driven species A, i.e., (0B) → (AB)
and (BA)→ (B0). The local entropy productions reverse sign if species A becomes the driving one
(+). Of note is that despite the fact that the high energy barriers confine flow in state space almost to
the cyclic state space, there is still some residual flow to and from states of high energy, which explains
the small amounts of entropy production for state transitions outside the CS.

When we reduce the energy barrier of the state occupied by two particles of species A, state
space expands from the cyclic state space to the reduced state space in Figure 7. This gives rise to
a third phase in which a parallel flow and concentration gradient coexist for both species (magenta
in Figure 9), i.e., in this phase, both species produce positive entropy (Equations (26)–(28)). At the
dashed lines in the phase diagram in Figure 9, there is a phase transition between this phase and a
phase in which one species is driven against its concentration gradient. Hence, the flow of this latter
species ceases here, and phase transition lines are obtained from the equations J(B)(∆µ(A), ∆µ(B)) = 0
and J(A)(∆µ(A), ∆µ(B)) = 0, which may be solved analytically as shown in Appendix A. There is an
important difference between the lines on which the flow of species B vanishes compared to that of
A. As can be seen from Equations (A10) and (A12)) and Figure 9 there is an asymptotic gradient of
B making its flow cease at high concentration gradients of A. The corresponding difference of the
chemical potential is:

∆µ
(B)
∞ = lim

∆µ(A)→∞
∆µ(B)|phase transition

= − ln

(
1 + 2 e+EA/2 1

k+c(A)
2

)
, (32)

which takes for our example (EA = 0, k+c(A)
2 = 0.1 the value ∆µ

(B)
∞ ≈ −3 or in terms of decimal

logarithm − log10(c
(B)
1 /c(B)

2 )∞ = 1.3, as shown in Figure 9. Above this gradient |∆µ
(B)
∞ |, the flow of B

cannot be compensated by any gradient of A. This is due to the fact that the option of a leak current
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on the bypass path −(AA)− weakens the driving effect of species A, which, in the case of strong
coupling, it could otherwise exert on B on the cyclic state space.

*

+

AB

A

A

A

A

A

A

A

A

A

AB

B

B
B

B

B

B

B

B

Bath 1Bath 2
a) b)

c)

Figure 8. Flow dynamics and entropy production in state space under the influence of two opposing
concentration gradients. Sketch of gradients and channel in (a). The lower concentration of each species

is held constant, k+c(A)
2 = 0.1, k+c(B)

1 = 0.1, k− = 1, and the higher concentration k+c(A)
1 , k+c(B)

2 is
varied. A strong coupling (∆E = EA = EB = E0 = 25) is studied. The phase diagram (b) is turquoise if
the flow of A is parallel to its gradient and that of B anti-parallel. The opposite holds for the color blue.
Magenta stands for gradients in which flows of each species are parallel to its gradient, a phase that
is almost absent due to the strong coupling. Two gradient pairs (∗: B dominating, +: A dominating)
from this phase diagram are studied in respective rows below (c). The left column here shows the solar
color coded flow Jσ,ς and also occupation probability Pσ (filled circles) in state space. Note the opposite
flow direction on the cyclic space (CS) for the examples ∗ and +. The column in the middle shows
color coded the local entropy production Ṡσ,ς = −∆εσ,ς Jσ,ς (Equation (9)) related to heat and particle

exchange, the right column that solely related to particle exchange Ṡparticle exchange
σ,ς , i.e., the energy

levels EX , E0 for respective transitions are omitted in the free energy difference ∆εσ,ς (Equation (8)).
All flows, occupation probabilities, and entropy productions are normalized to its respective maximum
magnitude in state space. Values below 10−3 are shown in gray.

In contrast, the flow of A may at any gradient be ceased by an opposing gradient of B as becomes
also evident from Equation ( A11). The reason is that due to strong coupling flow of species B always
implies a parallel directed component of flow of species A. Hence, a sufficient strong gradient of B will
cease flow of A.

In the example (∗), shown in Figure 9, species B still maintains its driving capabilities; however,
the effect on the flow of A through the channel is reduced, when compared to the situation of strong
coupling in Figure 8. This becomes evident for flow in state space on segment (A0)→ (0A), which is
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equivalent to the particle flow of A through the channel (Equation (18)). This diminished driving effect
of B is explained by the option of a leak current J(A)

leak of species A in the direction of its concentration

gradient on the bypass path

(A0) (AA)

(0A)

J(A)
leak

J(A)
leak

J(A)
leak

. This leak current is directed oppositely to the flow

component of A, which is driven by species B, which results in a diminished magnitude of the net
flow of A through the channel.

The sources of entropy production in state space behave accordingly. There is a strong positive
entropy production on the bypass path −(AA)− and on transitions in which B moves in the direction
of its gradient (0A)→ (BA) and (AB)→ (A0). Negative entropy production appears for transitions
of A in state space against its gradient (0B) → (AB) and (BA) → (B0). Note: as in the previous
example, the high gradient of B allows some residual flow also to and from state (BB) in the direction
of the gradient. This generates a positive entropy related to particle exchange and a negative due to
heat absorption for the transition (0B)→ (BB).

In the example (+) in Figure 9, both species produce positive entropy (magenta colored phase).
Hence, species A has lost its driving capabilities, which were present for strong coupling in Figure 8.
Its main flow fraction in state space runs on the bypass path−(AA)−, and by this, A loses its impact to
drive B against its gradient on the CS. Instead, the flow of B runs parallel to its concentration gradient
(B0) → (0B). The leak flow of A on the bypass path produces a large amount of positive entropy.
On the cyclic state space, B generates positive entropy on transitions parallel to its gradient and a small
amount of negative entropy on transitions driving A against its gradient.

In the above examples, it is interesting to see how the flow of B, which is equivalent to flow in
state space on the remaining CS, is distributed with regard to the leak flow. Kirchhoff’s law implies the
equivalence of:

J(A0),(AB)︸ ︷︷ ︸
=J(0B),(B0)=−J(B)

= J(AA),(A0)︸ ︷︷ ︸
=J(A)

leak

+ J(0A),(A0)︸ ︷︷ ︸
=−J(A)

, (33)

i.e.,
−J(B)︸ ︷︷ ︸
>0

= J(A)
leak︸︷︷︸
>0

−J(A) . (34)

Hence, the flow of B, being translated into flow in state space, is comprised in the leak flow, either
partially in example (∗) as J(A) < 0 or completely in example (+) as J(A) > 0. In between, if phase
transition occurs, J(A) = 0, the magnitude of the flow of B is equivalent to that of the leak flow.
Therefore, the bypass offers for B the option that a considerable amount of its transport depends on

transitions on the subspace

(AB) (A0) (AA)

(0B) (0A)

(B0) (BA)

. Summing up the free energy differences

of this subspace in the direction of the path shows that after one cycle, the driving free energy difference
is ∆E = ∆µ(B) < 0. Hence, the bypass path enables species B to be solely driven by its gradient on
this above subspace. This also explains why species A cannot drive species B against its gradient, if it
is above the threshold in Equation (32), which holds for our example (+). Even for high opposing
gradients of A, the net driving force for species B remains its gradient, i.e., the direction of the flow
and gradient remain parallel.
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*

+

a)

b)

Figure 9. Continuation of Figure 8. Transport of species A is less coupled to that of B by setting EA = 0,
whereas the other constraints are maintained, EB = E0 = 25. In the phase diagram (a) a third phase
(magenta) emerges in which flow and concentration gradient are parallel for both species. On its
boundaries (dashed lines), flow of the species undergoing a change of its flow direction vanishes.
For the two examples (∗) and (+) local flow and entropy production in state space are shown in (b).

The sum of entropy produced by the sources in state space (Figures 8 and 9) is equivalent to
entropy production by particle flows (Equations (26)–(28)). In Figure 10, this entropy production is
analyzed as a function of EA, i.e., the parameter quantifying the coupling of species A to transport
of species B, or in geometrical terms: the relation of the leak flow on the bypass path and flow
on the remaining CS, which is identical with flow of B. Concentration gradients are that of the
example (+) in Figures 8 and 9, c(A)

1 /c(A)
2 = 10/0.1, c(B)

2 /c(B)
1 = 100.8/0.1. As already pointed

out above, a strong coupling (EA = 25) implies (almost) identical particle flows, J(A) = J(B) =

JCS. The slightly higher magnitude of the gradient of species A makes flow run in its direction,
i.e., entropy production related to flow of A (Ṡ(A)) is positive, that of B (Ṡ(B)) negative. Overall entropy
production Ṡ = Ṡ(A) + Ṡ(B) = (∆µ(A) + ∆µ(B))JCS must be positive in accordance with the second
law of thermodynamics. A decreasing EA enables a leak flow of A bypassing the CS on the path
−(AA)− in the direction of its gradient and by this a dramatic increase of the respective positive
entropy production. However, this leak option attenuates the driving force of A. A sufficiently low EA
eventually makes the sign of flow of B change in the direction of its gradient, with a phase transition
from negative to positive entropy production Ṡ(B).
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Phase transition

Figure 10. Entropy production related to particle flows Ṡ(A), Ṡ(B) and global entropy production
Ṡ = Ṡ(A) + Ṡ(B) (see Equations (26)–(28)) as a function of the option of A to bypass the perfect coupling
on the CS. This option is quantified by energy level EA of the state (AA). The attractive empty channel
and the strong repulsive interaction of B are maintained (E0 = EB = 25), which leaves transitions in
which B is involved confined to the CS. Concentration gradients are that of the example (+) in Figures 8

and 9, i.e., c(A)
1 /c(A)

2 = 10/0.1, c(B)
2 /c(B)

1 = 100.8/0.1. Entropy production by particle flow is positive,
if gradient and flow are parallel, otherwise negative. The higher magnitude of the concentration
gradient of A makes it the driving species, with an always positive entropy production. In agreement
with the color coding in Figures 8 and 9, turquoise stands for the phase of positive entropy production
of A and negative entropy production of species B. Magenta is the phase in which both species
produce positive entropy. The grey line marks the phase transition, J(B) = 0, Ṡ(B) = 0. Global entropy
production is always positive according the the second law of thermodynamics.

5. Discussion

Research on the mechanisms of channel transport has the beauty that it covers a broad range of
aspects, ranging from very practical descriptive to sophisticated theoretical ones. Whereas the focus
of the first is often to provide a detailed model of a real channel, e.g., by simulations, the aim of the
latter is to seek for a fundamental understanding of the mechanisms underlying channel transport.
Of course, this should not be understood as a dichotomy, as mutual inspiration of both creates a broad
spectrum of research in between.

Coming from the more theoretical view, important factors determining channel transport are
particle-channel and inter-particle interactions. There is a huge body of knowledge about how
particle-channel interactions affect transport, e.g., by increasing the translocation probability in the
case of an attractive force [3,4,25–27]. Flow of non-self-interacting particles is proportional to this
translocation probability, which reveals a permutation symmetry for the location of particle-channel
interactions. Hence, flow increases monotonically with binding strength, independent of its localization
of the binding site. However, for self-interacting particles, an increasing binding strength leads to
blocking of a narrow channel. Therefore, the maximum of flow is reached at a binding strength at which
there is a trade-off between both counteracting effects [1,2,4,5,28]. In the presence of a concentration
gradient, blocking depends on the localization of the binding site within the channel, which breaks the
symmetry of flow dependence on the location of the binding site. Flow is higher the more the binding
shifts in the direction of the gradient [4,28,29].

This symmetry breaking effect of the concentration gradient is not only of relevance for blocking,
but even more interesting if the self-interaction of particles within the channel becomes feasible.
Whereas blocking is just the effect of particle-particle interaction on the access of particles to the
channel ends from the baths, the particle-particle interaction within the channel is more subtle. This
becomes in particular evident if different species take part in channel transport. For parallel directed
concentration gradients, we could recently demonstrate [15,16] that depending on the magnitude of
these gradients, different species may cooperate, i.e., mutually, their flows are higher in the presence of
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the other one’s gradient when compared to flow in its absence. This phase of cooperation is adjacent to
phases in which one species promotes the flow of the other at the cost of its own flow, and to a phase at
higher gradients, in which mutually, one species hampers the other. We could show in this manuscript
that if the gradient of one species vanishes or is even opposing the non-vanishing gradient of the
second species, the first experiences a rectifying influence, i.e., it is either driven in the direction of the
second or at least its flow is diminished. The mechanism responsible for these mutual rectifying effects
is that of a Brownian ratchet. In its original sense [30,31], the thought experiment Brownian ratchet
should demonstrate the apparent breakdown of the second law of thermodynamics by rectification of
motion from the random motion of molecules in a bath. The link between bath and rectified system,
the ratchet, is assumed to transform the random motion into a net driving force by an asymmetric
potential. The solution of this paradox is that the ratchet itself is subject to thermal motion, which
foils the assumed rectification, unless there is a temperature difference between ratchet and bath. In
our model of channel transport, the asymmetric potential that the rectified species X experiences,
for which for simplicity, we assume a vanishing concentration gradient in this discussion here, arises
from the concentration gradient of the other species Y. The probability to find a particle Y at a position
within the channel decreases in the direction of its concentration gradient. As all particles share the
type of interparticle interaction that a spatial position is occupied only by one particle, Y, if adjacent
to X, leaves for the latter only the option to move in the opposing direction. For example, for a two
site channel with a concentration gradient of Y pointing from the right to the left bath, the probability
to find the channel in state (XY) is higher, and by this, the transition (XY)→ (0Y) than that of state
(YX) with the associated transition (YX) → (Y0). Therefore, one is inclined to say that on average,
there is an entropic force on X in the direction of the gradient of Y, i.e., to the left. However, this
naive description blanks out the fact that states (..Y) and (Y...) also hamper access of particles X from
the right or left bath, respectively. Therefore, in summary, the effect of Y on X should be balanced,
and there should be no net driving force. This is exactly what happens, if one impedes Y to pass the
channel and, by this, to produce entropy. Otherwise, the second law of thermodynamics would be
violated, and we would have exactly the paradox that the Brownian ratchet at a first glance suggests:
rectification of flow without production of entropy. However, how can this formal argument based on
the second law of thermodynamics, namely that entropy production by a flow of Y in the direction of
its concentration gradient is a prerequisite for the creation of a rectification force on X, be understood
in terms of the ratchet mechanism? For simplicity, we assume a vanishing concentration of Y in the left
bath. An optional sequence of transitions, associated with the flow of X from the right to the left bath
and involvement of Y, is (0X) → (X0) → (XY) → (0Y) → (Y0) → (YX) → (0X). The asymmetric
potential emerges from the above-mentioned gradient related different probabilities of (..Y) and (Y..).
However, only the transition (YX) → (0X), which in this case is irreversible due to the vanishing
concentration of Y in the left bath and which finalizes flow of Y towards the left bath, makes this
ratchet potential work and enables the system to start again with the initial state, so that we have the
option of a cyclic process driven by flow of Y related entropy production.

In the above example, the species with the vanishing concentration gradient was the rectified
one; the other had the ratchet function. In general, for non-vanishing concentration gradients of
both species, mutually, each of them experiences a rectifying force of and acts as a ratchet for the
other. We described this complex interaction network by a common state variable of both species
and transitions within the framework of a state space. This approach allows correlations between
particles of the same and other species, and hence, the respective interparticle interactions become
explicit. In mean field approaches, these correlations are neglected, by taking average interparticle
interactions, which impedes a closer analysis of stochastic paths and sources of entropy production.
The transition dynamics between states depends on their free energy difference. Those stochastic
paths in state space are favored, in which free energy is reduced, i.e., those with a positive entropy
production. This free energy driven course of the paths becomes clear after being projected on the
free energy landscape above state space. This energy landscape is similar to the Riemann surface



Entropy 2020, 22, 376 22 of 27

with infinite sheets (Figure 2), in which the system is driven successively towards lower free energy
levels. The average of these stochastic paths translates into the flow of probability in state space. In this
manuscript, we demonstrated that in the steady state, the global entropy production, arising from the
concentration gradient driven particle flow through the channel, has its sources in the local entropy
productions, determined by the flow of probability between states in state space and the respective
free energy difference. In general, the free energy landscape leaves many options for stochastic paths
to reduce its free energy. Without any special coupling of the species, paths in state space are favored
in which single species transport occurs (Figure 5a,c). The reason is that these paths are shorter,
e.g., (0A)− (A0)− (00)− . . . or (0A)− (A0)− (AA)− . . . for the two site channel. Therefore, their
stochastic flow conductance is higher compared to paths involving the interaction of particles of
different species. With respect to the above mutual ratchet mechanism, the question arises how to
optimize the free energy difference to have the rectifying forces work most effectively. Intuitively, this
is achieved by an optimized coupling of both species and by avoidance of pure single species transport.
This was realized by increasing the free energy level of the empty channel and that of channels occupied
by several particles of the same species, or in terms of interaction forces an attractive empty channel
and repulsive forces between similar neighboring particles. For the longer, three site channel, the latter
was differentiated into repulsive forces ranging solely to the nearest neighbor position (short-range)
and long-range repulsive forces affecting the whole channel. For the two site channel and the three
site channel with long-range interaction, this procedure dramatically confined state space to circular
spaces in which the potentials related to the bath concentrations µ

(X)
i = ln(k+ c(X)

i /k−) are arranged

in series, with the effect that the concentration gradient related driving forces ∆µ(X) = µ
(X)
1 − µ

(X)
2

also act in series (Figure 5b,d). This optimum coupling implies that mutually, the driving force of
one species also drives the other, i.e., the net driving force for both species is ∆µ(A) + ∆µ(B). Another
consequence is that flows of both species become equivalent. For opposing gradients, which are equal
in magnitude, this implies that the flow of both species vanishes. Note that this optimum coupling
does not hold for the short-range repulsive interaction in the three site channel. Here, alternative paths
of single species transport that bypass the optimum paths of coupling are feasible (Figure 6).

The fact that in the case of perfect coupling, the flows of both species become identical implies
that for opposing gradients, there is always a driving and a driven species, with a parallel flow and
gradient direction, and hence positive entropy production for the first and anti-parallel orientation with
negative entropy production for the latter. Therefore, there are two phases in the concentration gradient
phase diagram, which are separated by a line on which opposing gradients of equal magnitude make
flow vanish (Figure 8). To study systematically the effect of alternative paths besides those on the
cyclic space, to which state space is reduced by perfect coupling, the repulsive interaction between
neighboring particles of one species was switched off, whereas that for the other species was maintained.
Therefore, the transport of the latter species was still bound to perfect coupling with the first. In contrast,
the first had the option to bypass the cyclic space, and entropy could also be produced by a leak current,
as shown in Figure 9. The option of bypassing this cyclic state space of perfect coupling allows as a third
scenario. For sufficiently strong gradients, both species may flow in the direction of their concentration
gradient, which makes a third, magenta phase emerge in the gradient phase diagram (Figure 9). On its
phase boundaries, the flow of the species undergoing a change in flow direction vanishes. However,
there is a decisive difference in the two species. Flow of that species that may bypass the cyclic space
may always be ceased by a sufficiently high concentration gradient of the other species. Oppositely,
there exist sufficient high gradients of the species perfectly coupled to the CS, for which its flow cannot
be ceased by any gradient of the other one. The reason is that the leak flow on the bypass diminishes
the rectifying force of this species, which it could otherwise exert on the cyclic space.

Though our model allowed fundamental insights into the channel transport of two species, many
questions remain unsolved. We studied short channels with only two or three sites on which particles
may reside. The number of states increases exponentially with the length of the channel, which
hampers even numerical treatment. Nevertheless, the basic mechanisms by which mutual rectifying
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of particle transport is increased become already clear in the two site channel model. The three site
channel model even allows introducing a spatial dependent interparticle interaction, with significant
consequences, as it was shown that only the long-range repulsive interaction between similar particles
allowed an optimal coupling of transport of the two species (Figures 5 and 6). However, our repulsive
forces had a very simply spatial dependence. For the three site channel, the short-range interaction
abruptly stopped beyond the nearest neighbor, and for the long-range interaction, the force impeded
further access of similar particles to an occupied channel independent of the interparticle distance and
the number of similar particles, which already resided in the channel. It would be interesting to study
more realistic repelling forces especially in longer channels, to answer the question about whether
almost perfect coupling is solely dependent on forces that affect the whole channel length, as in our
example, or whether there are more sophisticated interactions conceivable. Another open field is
related to the phase diagrams of gradient and flow direction, and hence the sign of entropy production
of the species. These phases in the concentration gradient diagram are separated by lines on which
the flow of the species undergoing a change in flow direction vanishes. During phase transition at
these lines, flow of this species increased monotonically with its concentration gradient. The question
arises about whether for longer channels and more complex interparticle interactions, one might
get a scenario in which an increasing gradient reduces flow again after phase transition. This is the
characteristics of a Brownian donkey, i.e., a system far from equilibrium in which flow is held at zero
and that reacts under the influence of an increasing force (concentration gradient) with a movement
(flow) in the opposite direction of the force.

6. Conclusions

In this manuscript, we presented a rigorous mathematical treatment of the transport of particles
of two species through a narrow channel in terms of stochastic thermodynamics. The model conserved
explicitly the spatial correlations of the particles by construction of a state space from the occupation
states of the channel and considering the stochastic transitions within. The latter determined the free
energy profile from which drift forces derived, which in addition to stochastic forces evolved the
system in state space. Within this framework, sources and sinks of local entropy production emerged
in state space, and we evaluated their relation to particle flows through the channel and its related
entropy productions. In particular, we showed how interparticle interactions affected this scenario by
constraining state space with consequently differential effects on transport of the species.

Under non-equilibrium conditions, the interparticle interaction of the two species acted like a
Brownian ratchet, i.e., in the direction of its concentration gradient, each species mutually exerted a
rectifying force on the other. This mechanism became most efficient by an attractive empty channel and
interparticle interactions, which favored a channel occupied by particles of different species, which was
realized by a repulsive interaction between particles of the same species. This energetic intraspecies
constraints result in an interspecies coupling of the transport of the two species. The mapping of the
channel’s transport dynamics onto state space allows the geometric/topological, or more precisely,
as we have a discrete space, the graph derived interpretation of this coupling. In the limiting case
of very strong coupling, the accessible state space was confined to a subspace with circular topology.
On this subspace, the free energy differences between successive states derive from the potentials
∆ε = ∓µ

(X)
i = ∓ ln(k+c(X)

i /k−), which now are arranged in series and induce here a circular steady
state flow. The sign depends on whether the flow direction between states implies a particle uptake (−)
or quitting (+ ) of the channel. The free energy decline after one cycle in this subspace is equivalent to
the sum of the sign weighted chemical potentials ∆E = −(∆µ(A) + ∆µ(B)). Therefore, each species is
driven by its own concentration gradient and by that of the other. In the steady state, flow is constant
throughout on this subspace, and in particular, particle flows of the two species become equivalent.
Hence, for opposing concentration gradients, the species with the stronger gradient becomes the
driving one, which produces positive entropy; the other species is driven against its concentration
gradient and produces negative entropy. If the strong interspecies coupling of transport, i.e., the
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repulsive intraspecies in-channel interaction, is maintained only for one species (B) and loosened
for the other (A), this enables the latter to flow in the direction of its concentration gradient without
being coupled to the transport of the first species, i.e., a leak flow emerges. In geometric/topological
terms, the path of this leak flow extends the circular subspace of strong coupling by an additional loop,
on which the less coupled species is driven by the the free energy difference −∆µ(A). State space then
consists of two joined cycles, which have the segment (A0)− (0A) in common, the flow on which is
identical to particle flow J(A) of this species through the channel. Kirchoff’s law for steady state flow
on this segment J(A0),(0A) implies that this flow is the difference of flows on the two residual cycles,
i.e., the difference of leak flow and flow on the remaining original circular subspace, which is identical
to the particle flow of the still strongly coupled species B, J(B). The option of the leak flow on this
bypass path implies a range of concentration gradients, in which both species flow in the direction
of its concentration gradient and produce positive entropy. However, the interdependence of leak
flow and the flow of the species with the strong coupling B implies that a sufficient high concentration
gradient of the latter may eventually always cease the flow of the other one. Conversely, the less
coupled species does not have this option.
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Abbreviations

The following abbreviations are used in this manuscript:
CS cyclic state space
rCS reduced cyclic state space
bp bypass path

Appendix A. Derivation of Phase Transitions Lines

To derive the lines of transition from the drive/driven - to the phase in which flow and respective
gradients are parallel, we decompose the reduced state space in Figure 7, which consists of the cyclic
state space, CS: (0A)− (A0)− (AB)− (0B)− (B0)− (BA) and the path of the leak flow (0A)− (A0)−
(AA) into 3 segments. First, the common segment (0A)− (A0), second that of the residual cyclic
state space, rCS : (AB)− (0B)− (B0)− (BA) on which flow of B and partially that of A are present,
and third the bypass segment, bp: −(AA)− on which the leak flow of A occurs. The strategy is to
obtain for each linear segment individually its steady state flow and then to combine them according
Kirchoff’s law. This derives the lines of vanishing particle flows, where state transition happens.

We first study the general case of a linear path with N positions on which stochastic transition
dynamics between neighboring positions i + 1 
 i are given by rates ri+1,i, ri,i+1. This path is
supposed to connect two baths each of them serving as source and absorber of particles. Note that
for didactic reasons we use the example of particle transitions on the path, which implies that the
spatial positions are occupied by a number of particles pi. However the derivation holds in general
for probabilities which is the relevant quantity in our state space. The bath connected to position 1
will be labeled as 0 and that to positions N as N + 1, and in accordance the respective transitions
rates, and particle concentrations p0, pN+1. The transition rates define a free energy difference
∆εi+1,i = − ln(ri+1,i/ri,i+1). On a linear path one may assign each position a potential

ϕi = ϕ0 +
i

∑
ν=1

∆εν,ν−1 , (A1)

in which ϕ0 may be set arbitrarily, e.g., zero. Flow between neighboring states is obtained from
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Ji+1,i = ri+1,i pi − ri,i+1 pi+1. In the steady state flow is constant Ji+1,i ≡ J. This allows recursively
determination of pi which determines steady state flow as

J = (eϕ0 p0 − eϕN+1 pN+1)︸ ︷︷ ︸
difference of activities

(
N

∑
ν=0

eϕN−ν
1

rN+1−ν,N−ν

)−1

︸ ︷︷ ︸
conductivity

, (A2)

which as Ohm’s law for diffuse processes implies that flow is proportional to the activity difference
and a respective conductivity.

This is applied to paths in state space. The bypass path, bp, and the residual cyclic state space,
rCS, are both adjacent to the positions (A0) and (0A). The probability is stationary in the steady state,
i.e., from a formal point of view, these probabilities may be treated like constant concentrations of
virtual baths. Note that these “baths” have nothing to do with the real baths adjacent to the channel
ends but are just introduced as a formal mathematical ancillary construct. We set p0 = PA0 and
pN+1 = P0A, with N = 1 for the bypass path and N = 4 for the residual positions of the cyclic state
space. The respective potentials are obtained from Equation (A1), e.g., ϕ

(bp)
1+1 = −∆µ(A) for the bypass

path and ϕ
(rCS)
4+1 = −∆µ(A) − ∆µ(B) for the residual cyclic state space. Note that for identical start -

(A0) and end point position (0A) the free energy difference of the system depends on the path it has
passed. Respective conductivities are derived from Equation (A2) by insertion of respective transition
rates between states in state space as

C(bp) =
1
2

k+c(A)
1 e−EA/2

C(rCS) =
k−k+c(A)

1 c(B)
1

2k− (c(A)
1 + c(A)

2 ) + k−k+c(A)
1 c(A)

2

(A3)

From Equation (A2) follow the flows in state space

J(bp) =

(
P(s)
(A0) − P(s)

(0A)
e−∆µ(A)

)
C(bp) (A4)

J(rCS) =

(
P(s)
(A0) − P(s)

(0A)
e−∆µ(A)−∆µ(B)

)
C(rCS) (A5)

The flow on the residual CS is equivalent with particle flow of species B, i.e.,

J(B) = J(rCS) (A6)

For the flow J(0A),(A0) on the common segment (0A)− (A0) which is the particle flow of species A
(see Equation (18)) one obtains

J(A) = P(s)
(0A)
− P(s)

(A0) . (A7)

Note that the transition rates (0X) 
 (X0), τ−1
0 , are normalized to 1. Application of Kirchoff’s law

states that flow of species A is the sum of the leak flow on the bypass plus flow on the residual CS
(which is that of species B), i.e.,

J(A) = J(bp) + J(B) (A8)

Combining Equations (A4), (A5), (A7), and (A8) determines flows up to a normalization factor fn,

J(A) = fn

(
C(bp)(1− e−∆µ(A)

) + C(rCS)(1− e−∆µ(A)−∆µ(B)
)

)
J(B) = fn C(rCS)

(
(1− e−∆µ(A)−∆µ(B)

) + C(bp)(e−∆µ(A) − e−∆µ(A)−∆µ(B)
)

)
(A9)
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Note that the factor fn may be obtained from the additional constraint that probability must be
conserved in the reduced state space of Figure 7, ∑σ∈reduced state space Pσ = 1, however the tedious
derivation is not the scope of this manuscript.

So we obtain for the phase transition lines for a vanishing flow B

e−∆µ(B)
= e∆µ(A) 1 + 1

2 eµ
(A)
2 e−EA/2k−

1 + 1
2 eµ

(A)
1 e−EA/2k−

= e∆µ(A) 1 + 1
2 eµ

(A)
2 e−EA/2k−

1 + 1
2 e∆µ(A) eµ

(A)
2 e−EA/2k−

, (A10)

and for vanishing flow A

e−∆µ(B)
= e∆µ(A)

(
1 +

1
2

e−EA/2 eµ
(A)
2 −µ

(B)
1 F(∆µ(A))

)
with

F(∆µ(A)) = 4 sinh(∆µ(A)) + k− eµ
(A)
2 (e∆µ(A) − 1) (A11)

with µ
(X)
i = ln(k+ c(X)

i /k−), as the potentials from which the driving forces ∆µ(X) derive. Some
simple consequences of the above phase transition lines are: with EA → ∞ which confines state space
to the CS, we obtain for both phase transitions lines −∆µ(B) = ∆µ(A), i.e., as expected a cessation of
flow for opposing gradients which are equivalent in magnitude.

The maximum gradient of species B which species A can afford to cease is

∆µ
(B)
∞ = − ln

 lim
∆µ(A)→∞

e∆µ(A) 1 + 1
2 eµ

(A)
2 e−EA/2k−

1 + 1
2 e∆µ(A) eµ

(A)
2 e−EA/2k−


= − ln

(
1 + 2 e+EA/2 1

k−
e−µ

(A)
2

)
= − ln

(
1 + 2 e+EA/2 1

k+c(A)
2

)
(A12)

In contrast there is always an opposing gradient of species B which may cease flow of A, as the function
F(∆µ(A)) in Equation (A11) is monotonous and unbounded with F(0) = 0, which makes the term in
brackets in Equation (A11) also monotonously and unbounded increase from 1. The more physical
reasons are given in the main text.
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