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Anterior CruCiAte LigAment injury

Noncontact anterior cruciate ligament (ACL) injuries continue to 
be a primary prevention priority for the sports medicine 
community. Numerous systematic reviews and meta-analyses 
published in recent years have established several factors that 
may contribute to ACL injury risk and the effectiveness of injury 
prevention programs.34,35 The current evidence-based 
prevention programs target neuromuscular control, strength, 
movement feedback, and balance to reduce the risk of ACL 
injury in sport.34 However, despite a significant relative risk 
reduction (73.4%) when these known risk factors are targeted in 
training programs, noncontact injuries still occur.35 The 

remaining injury risk may be due to the failure to consider other 
aspects of neuromuscular control and function that play a role 
in injury risk susceptibility.34 The relative risk reduction with the 
current programs may be improved by addressing additional 
neurological factors implicated in the noncontact ACL injury 
mechanism.

The noncontact ACL injury scenario itself exemplifies key 
components of function that are not addressed in traditional 
neuromuscular training.22,34 The video analysis of noncontact 
ACL injury incidents demonstrates external factors such as 
contact with a ball, another player, and/or distracted attention 
are involved in the majority of ACL noncontact events.6,19,28 This 
environmental interaction, combined with the rapid nature of 
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the injury (<50 ms after ground contact),19 may indicate that the 
error in motor control resulting in noncontact ACL injury is 
beyond the reactive capability of the central nervous system32,42 
and may be at least partially dependent on feedforward 
mechanisms involving motor planning and cognition.23,37 
Neurocognitive factors, specifically reaction time, processing 
speed, dual tasking, focus of attention, visual-motor control, and 
complex environmental interaction, all combine with 
biomechanical factors to directly contribute to feedback motor 
control and influence injury risk.7,28 These attentional and 
environmental components of neuromuscular function are 
largely not addressed in training programs that target 
strengthening, proximal control, balance, and plyometric 
ability.34

the “neuro” in neuromusCuLAr 
ControL

The standard neuromuscular ACL injury prevention training 
program typically does not incorporate the neurocognitive 
components associated with maintaining joint-to-joint alignment 
while engaging in the complex athletic environment.19,41 The 
ability to sustain motor control in the variable sport 
environment demands complex central nervous system (CNS) 
integration of a constantly changing profile of sensory inputs, 
including visual feedback, proprioception, and vestibular 
equilibrium. Biomechanical studies confirm that the 
incorporation of a layer of neurocognitive elements ranging 
from dual tasks, responding to stimuli,24 anticipation,5 decision 
making,20 and programming motion relative to external targets10 
may degrade neuromuscular control relative to movement 
without such factors. Recently, examination of injury risk during 
ball-handling and offensive action (considered anticipatory and 
feedforward in nature) versus defending (considered 
unanticipatory and responsive in nature) demonstrated a 
disparity with basketball players at greater risk during defensive 
action.27 These large-scale epidemiological data further support 
the possibility of increased injury risk when responding to 
unanticipated events or rapid visual-motor decision making is 
required.

Prospective evidence of depressed aspects of neurocognitive 
function increasing the risk of noncontact ACL injury further 
highlights the implications of visual-motor integration on 
noncontact ACL injury risk.36 Specifically, reaction time, visual 
processing, and memory measured via a computerized 
concussion baseline assessment (IMPACT) were significantly 
lower in those that went on to experience a noncontact ACL 
injury than matched controls.36 Visual processing speed is 
imperative to successful sport function whereby complex 
sensory and visual feedback must be handled with minimal 
preparation time.15,19 The ability to keep the constantly changing 
environment (player or ball positions) in short-term visual 
memory also plays a vital role in feedforward motor planning 
during activity.33 Thus, visual-motor function and reaction time 
may influence musculoskeletal injury risk in the ability to 
anticipate and prepare for high-risk situations.15,25 Faster 

reaction time or processing speed may improve preparation for 
incoming perturbations while maintaining neuromuscular 
integrity and avoiding compromising knee positions (eg, 
excessive valgus). If visual-motor processing is suboptimal, this 
will decrease the ability to compensate for external stimuli and/
or attenuate the rapid maneuvers that depend on quick 
visual-motor interaction.8,17,24

sex DifferenCes in neuroCognition-
neurophysioLogy

Neurological factors may also contribute to the greater relative 
noncontact ACL injury rate in female athletes.1,3 The greater 
female ACL risk profile has been attributed to factors ranging 
from hormonal, skeletal alignment, muscular strength, 
neuromuscular, and biomechanical differences.16 Aspects of 
physiology that have not been attributed to the sex disparity in 
injury risk, are neurocognitive and neurophysiological sex 
differences,26 which influence motor control and visual 
processing interaction in the spatially complex sport environment.

Altered neuromuscular control during visual-motor 
environmental interaction increases injury risk and is supported 
by extensive biomechanical evidence.7,8,10,24,29 The addition of 
an external target or stimulus that must be visually attended to 
during landing or change of direction maneuvers has a more 
pronounced effect on knee control related to injury risk in 
women compared with men.10,16,24 Women also experience 
greater alterations in knee neuromuscular control during 
movement that requires responding to an anticipatory 
component that integrates visual processing and reaction time.8 
Incorporating short-term memory and online decision making 
also demonstrate sex-specific adaptations in the maintenance of 
joint-to-joint alignment during complex athletic maneuvers such 
as cutting or sidestepping.7,29 This evidence may represent a sex 
disparity in visual-motor–related neurocognition contributing to 
knee neuromuscular control.

The sex-related disparity in neuromuscular control when 
spatial attention is challenged may have a neurophysiologic 
mechanism. Investigations into brain function and anatomy have 
demonstrated sex differences in nervous system function and 
structure13,14 that may influence noncontact ACL injury risk. 
Diffusion tensor imaging has demonstrated that the male brain 
is structured to facilitate perception and coordinated action 
(intrahemispheric connectivity), whereas the female brain is 
structured to facilitate analytical and intuitive processing 
(interhemeispheric connectivity).18 Men also tend to have a 
larger angular gyrus and visual cortices relative to overall brain 
mass.11,12 The functional role of these areas are spatial and 
visual processing, and visuospatial performance tends to favor 
men.4,40 This visuospatial processing functionality in men may 
assist in navigation through a chaotic athletic field while 
maintaining knee alignment and avoiding high injury–risk 
positions.28

The sex differences in cognition, visual-motor function, and 
movement control are likely due to a complex and not entirely 
understood combination of biological, psychological, 
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physiological, societal, and cultural factors.9,26,30,43 The sex-
specific visuospatial ability and brain anatomy may be due to 
evolutionary history for selecting men for hunting-related skills, 
creating a biological advantage for increased development of 
visuospatial abilities.31 Male sex hormones, specifically 
testosterone, influence brain function to shift cognition away 
from the left hemisphere and toward the right, increasing a 
task- and/or spatial-oriented distribution that may improve 
visuospatial ability.9,39 Experiential factors also play a role, for 
example, London taxi drivers have greater hippocampal gray 
matter volume consistent with their constant exposure to the 
complex visual-spatial problems of navigating a complex city.21 
Along similar lines, exposure to specific toys (construction, 
blocks, etc) and/or action video games has been shown to 
improve visuospatial skills, and men tend to engage in these 
activities to a much greater degree.2,38 In light of the typical high 
spatial demands during sport and the noncontact ACL injury 
event, the male predisposition to improved spatial cognition40 
may play a role in the relatively higher rate of female 
noncontact ACL injury.

ConCLusion

The tools of neuroscience will continue to help uncover how 
the nervous system generates motor control and the mechanistic 
errors in motor control resulting in noncontact ACL injury. 
Adding neurocognitive elements to injury prevention programs 
may reduce motor control errors during sport when visual-
spatial responsibilities are in high demand. Adding dual tasks 
such as memory recall, environmental stimulus (ball or partner 
perturbations), or direct visual perturbations can supplement 
interventions. Recognition of the neurological implications for 
maintaining neuromuscular control and injury avoidance may 
help to mitigate injury risk and improve intervention 
effectiveness.
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