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ABSTRACT
Metastatic colorectal cancer (mCRC) is a leading cause of cancer-related mortality with a 5-year overall
survival rate of 13%. Despite recent advances in cancer immunotherapy, only the minority of CRC patients
(<15%) with microsatellite instability can potentially benefit from immune checkpoint inhibitors, the only
immunotherapy currently approved for mCRC. In that context, there is an unmet need to improve survival
in mCRC. Our ever-increasing understanding of the immune system and its interactions with cancer has
allowed development of multiple strategies to potentially improve outcomes in the majority of mCRC
patients. Various approaches to manipulate patient immunity to recognize and kill colorectal cancer cells
are being explored simultaneously, with combination therapies likely being the most effective. Ideally,
therapies would target tumor-restricted antigens selectively found in tumors, but shielded from immune
attack in normal tissues, to mount an effective cytotoxic T-cell response, while also overcoming cellular
and molecular inhibitory pathways, self-tolerance, and T-cell exhaustion. Here, we provide a brief overview
of the most promising immunotherapy candidates in mCRC and their strategies to produce a lasting
immune response and clinical benefit in patients with mCRC.
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Colorectal cancer (CRC) is the 2nd leading cause of cancer
related death in the United States.1 At diagnosis, 20% of CRC
patients have distant metastasis (mCRC) and half of all recur-
rences are in the form of metastatic disease.1 The overall sur-
vival in mCRC is 13% at 5 years.1 Excluding oligometastatic
disease, the first-line treatment in mCRC consists of fluoropyri-
midines and oxaliplatin or irinotecan chemotherapeutic
agents.2,3 Adding targeted agents like cetuximab, bevacizumab,
or panitumumab offers a modest increase in overall survival.4–7

The accelerated development of cancer immunotherapy over
the last decade has revolutionized the current landscape for
many cancer types. Here, we discuss some of the most promis-
ing developments in immune checkpoint inhibitor therapies
and tumor vaccines for mCRC.

As with viral antigens, tumor-associated antigens (TAAs) are
degraded into small peptides which are ultimately packaged in
the groove of newly synthesized major histocompatibility com-
plex (MHC) class I and II molecules and delivered as peptide-
MHC complexes to the cell membrane of antigen presenting
cells (APCs). T cell receptors (TCRs) on CD8C and CD4C T
cells recognize these peptide-MHC complexes, and in the pres-
ence of the appropriate costimulatory signals from APCs, such as
CD80, CD86, CD40, CD137, OX40L, and others, this in turn leads
to activation of the T cells to proliferate, acquire effector functions
such as cytokine production and cytolysis, and to produce long-
lasting memory responses. In this context, development of cancer
vaccines is often limited by the discovery of TAAs which are
ubiquitously expressed by the cancer cells and absent from normal

cells or immunologically compartmentalized to prevent damage to
normal tissues from cytotoxic T cells (CTLs).

The efficacy of checkpoint inhibitors such as nivolumab and
pembrolizumab has recently been established in microsatellite
instability (MSI) CRC,8,9 likely reflecting the immunological ben-
efit derived from abundancy of mutation-associated neoantigens
that serve as targets of effector T cells.10-12 This hypothesis is fur-
ther supported by the poor efficacy of checkpoint inhibitors in
microsatellite stable (MSS) CRC. Moreover, distinct cancer
immune phenotypes are increasingly being recognized, with
tumors characterized by an “immune desert,” lacking CTLs due
to an absence of T-cell priming, tolerance, and/or immunologic
ignorance due to a paucity of neoantigens or presentation by
APCs, as the most difficult to treat.13 Approximately 85% of
CRC patients have MSS disease,14 and often produce an abun-
dance of transforming growth factor (TFG)-b contributing to
immunologic tolerance by activation of Foxp3C regulatory T
cells (Tregs)15 as well as activation of stromal elements in the
tumor microenvironment that inhibit CTL penetration, such as
myeloid-derived suppressor cells (MDSCs).16 Nevertheless, novel
therapeutic combinations are being explored to increase the pre-
sentation of neoantigens in MSS CRC, such as dual immune
checkpoint blockade with Durvalumab and Tremelimumab fol-
lowing targeted exposure to stereotactic body radiation therapy
[ClinicalTrials.gov NCT03007407].17

Among the earliest modern attempts to harness the power
of the immune system to fight cancer cells was the development
of autologous cancer cell vaccines. These are comprised of
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autologous whole tumor cell lysates combined with immune
adjuvants such as bacillus Calmette-Gu�erin (BCG), bacterial
cell wall products, or virus-infected and irradiated tumor cells
that are administered back to the patient to elicit adaptive anti-
tumor immunity to multiple TAAs. OncoVAX (Vaccinogen,
Inc.) utilizes irradiated, non-tumorigenic autologous tumor
cells with BCG and had success in early phase clinical trials
with improvement in disease-free and overall survival.18 The
pivotal Phase IIIb trial of OncoVAX [NCT02448173]19 started
in 2015 under an FDA Special Protocol Assessment classifica-
tion and is expected to complete enrollment by July, 2020. This
approach may result in effective antitumor immunity but the
personalized nature of this vaccine generation may pose a sig-
nificant hurdle to its widespread adoption. Unfortunately, a
similar approach using Newcastle disease virus-infected autolo-
gous tumors did not improve overall and disease-free survival
in a randomized study.20

In addition to autologous tumor vaccines, immune
responses can also be elicited with peptide, dendritic cell, DNA,
or live attenuated viral vector-based immunotherapy. In the
simplest form, tumor-associated peptides are isolated and
administered to the patient with immunologic adjuvants. The
peptide vaccine OCV-C02, containing epitopes derived from
ring finger protein 43 (RNF43) and translocase of outer mito-
chondrial membrane 34 (TOMM34) was safe and tolerable,
and produced CTL and delayed type hypersensitivity (DTH)
responses in a Phase I study.21 Hazama et al. tested the efficacy
of a cocktail of five HLA-A�2402-restricted peptides combined
with standard chemotherapy regimens such as FOLFOX or
XELOX C/- bevacizumab in Japanese patients. This peptide
cocktail included RNF43, TOMM34, KOC1, vascular endothe-
lial growth factor receptor 1 (VEGFR1) and VEGFR2. The
patients were categorized into HLA-A�2402 matched and
unmatched groups. The expectation was that chemotherapy
would produce an adjuvant effect by reducing the number of
Tregs, but there was no significant difference in progression-
free survival (PFS) and overall survival (OS) between the
groups.22 In the IMA910 study, peptides from 13 TAAs were
injected into mCRC patients following 12 weeks of oxaliplatin-
based therapy. The vaccine was administered following immu-
nomodulation with low-dose cyclophosphamide (to deplete
Tregs), either in combination with granulocyte monocyte col-
ony stimulating factor (GM-CSF) or with GM-CSF and topi-
cally-applied imiquimod (a toll-like receptor [TLR] 7 agonist).
Responders developed CTL responses against multiple peptides
and had better disease control rate (18% vs. 2% at 6 months; p
D 0.012) and PFS (HR 0.652; p D 0.039).23 The efficacy of this
approach in a large, randomized clinical trial with prospectively
defined endpoints has not yet been completed.

Dendritic cells (DC) play an important role in antigen pre-
sentation and activation of CTLs. The development of an
immunologic response with peptide vaccines is dependent
upon uptake and presentation by DCs or other APCs. Others
have employed an alternative approach in which a patient’s
DCs are collected and pulsed with antigens ex vivo, and follow-
ing maturation, engineered DCs are administered to the patient
as a cancer vaccine to elicit immune responses against tumors.
This approach is similar to the only FDA-approved cancer vac-
cine, Sipuleucel-T for castration-resistant prostate cancer.24

Carcinoembryonic antigen (CEA), a common CRC tumor
marker, has been used with a DC-based vaccine approach to
elicit antitumor immune responses, however, in a Phase II trial
of the vaccine, the PFS and OS were not superior to best sup-
portive care in mCRC.25 On the other hand, DNA-based vac-
cines can be delivered to APCs as naked DNA plasmids, often
combined with immunologic adjuvants such as IL-12, IL-15,
and/or GM-CSF. Upon delivery to mammalian cells, DNA
plasmids induce expression of specific antigens that are
designed to activate the immune system directly by delivery
into DCs or indirectly into parenchymal cells leading to antigen
expression and subsequent uptake by APCs. CEA, nuclear
oncoprotein MYB, heat shock protein 105, guanylyl cyclase C
(GUCY2C), and human telomerase reverse transcriptase
(hTERT) -based DNA vaccines have successfully induced anti-
tumor immunity in preclinical models of CRC, alone or in
combination with other vaccines.26–30 CEA alone in its glycosy-
lated and secreted form (tetwtCEA) or non-glycosylated form
(CEA66), as well as in combination with immunogenic foreign
antigens, has been tested in Phase I clinical trials with accept-
able safety profiles.31-33 hTERT elongates telomeric DNA ends
and its expression is upregulated in 85–90% of human cancers,
whereas it is absent in most normal somatic cells.34,35 A Phase I
trial [NCT02960594] is underway using either hTERT DNA
vaccine alone or in combination with IL-12 DNA to stimulate
immune responses. The clinical efficacy of a DNA vaccine
using the same DNA vaccine platform to target human papillo-
mavirus (HPV) antigens in cervical intraepithelial neoplasia
(CIN),36 suggests that the hTERT DNA vaccine may also prove
to be effective in hTERT-expressing malignancies. DNA vac-
cines are generally safe, tolerable, easy to manufacture, and able
to induce both humoral and cytotoxic immunity but their
intracellular delivery requires electroporation to temporarily
increase the permeability of the cell membranes.37 Moreover,
the immunogenicity and efficacy of DNA-based vaccines used
as single agents appears to be low, while combinations with
other vaccines may be significantly more effective than either
single agent alone.30

It has long been recognized that vaccine delivery using live
attenuated viral or bacterial vectors is likely the most robust way
to induce immune response to TAAs and produce effective anti-
tumor immunity. The potential drawbacks include the presence
of host immunity against the vector, cost of production, and a
potential for pathogenesis as well as insertional mutagenesis.
Among viral vectors, adenovirus and poxviruses (vaccinia, fowl-
pox, canarypox, etc) are the most commonly explored, while
Listeria monocytogenes has been examined as a bacterial vector
for cancer vaccines. CEA is by far the most commonly targeted
antigen in mCRC and is under development with several differ-
ent vectors. In a Phase I study, CEA was used in a prime-boost
approach with replication defective fowlpox and vaccinia vectors,
all of which also expressed the genes for three T-cell costimula-
tory molecules (B7.1, ICAM-1, LFA-3 collectively called
TRICOM).38 The study tested fowlpox-CEA-TRICOM and vac-
cinia-CEA-TRICOM alone, together, or in combination with
GM-CSF in 58 CEA-expressing cancer patients.38 The vaccines
were safe, tolerable, and generated T-cell responses to CEA in
most patients. Importantly, 40% of patients had stable disease at
4 months and one patient achieved pathological complete
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response.38 A Phase II study evaluated safety, tolerability, CEA-
specific immunity, and objective clinical responses following
administration of a non-replicating canarypox virus expressing
CEA and B7.1 (ALVAC-CEA/B7.1) administered concurrently
or sequentially with systemic chemotherapy (IFL/FOLIRI) and/
or tetanus toxoid (TT) in 118 patients with mCRC. Gastrointes-
tinal and hematologic serious adverse events (SAEs) were seen in
30 and 24 patients, respectively. The majority of patients across
all groups developed a CEA-specific T-cell response which was
not attenuated by chemotherapy. The total objective response
was observed in 44.7% of subjects in the chemotherapy C
ALVAC group (n D 38), 31.3% of subjects in the ALVAC C TT
C chemotherapy group (n D 32), and 44.1% of subjects in the
ALVAC C chemotherapy group (n D 34).39 Overall, the study
demonstrated the feasibility of combination chemoimmunother-
apy and provides rationale to develop combinations intended to
achieve clinical remission in mCRC.39 Another study is currently
evaluating a combination of adenovirus-CEA vaccine with avelu-
mab (a checkpoint inhibitor) with or without chemotherapy in
previously untreated mCRC (NCT03050814).40

Beyond CEA, mucin (MUC1), epithelial cell adhesion mole-
cule (EpCAM), the oncofetal antigen 5T4, and guanylyl cyclase
C (GUCY2C) have also been in clinical development. MUC1 is
normally expressed on the lining of human colon and is
expressed in a modified form on advanced polyps and CRC.
MUC1 with poly-ICLC adjuvant was tested in a Phase I/II set-
ting in patients with a history of adenomatous polyps and
found to be highly immunogenic in 43.6% of patients, whereas
a high frequency of pre-vaccination MDSCs were found to be
associated with immune non-responders.41 EpCAM is highly
expressed in many epithelial cancers including CRC.42 EpCAM
protein produced in a baculovirus expression system and con-
jugated to alum, was administered to 7 CRC patients with
GM-CSF, inducing a Th1-biased humoral and cellular immune
response.43 Future studies are needed to demonstrate objective
clinical responses in patients. 5T4 is a trophoblast glycoprotein
with high-level expression in human adenocarcinomas, includ-
ing CRC where it is found in more than 90% of tumors.44 A
poxvirus-based 5T4 vaccine (TroVax) was recently tested in
mCRC patients with stable disease at completion of standard
chemotherapy.45 Of the 52 patients in the study, 9 were ran-
domized to surveillance alone, 9 to cyclophosphamide alone,
19 to TroVax only, and 18 to a combination of TroVax
and cyclophosphamide. TroVax was safe, well tolerated, and
resulted in significantly improved PFS (5.6 vs 2.4 months) and
OS (20 vs 10.3 months). Interestingly, the combination of Tro-
Vax and cyclophosphamide was not superior to TroVax alone.
These data look promising but a larger sample size is required
to demonstrate efficacy of TroVax without the need for
cyclophosphamide.

GUCY2C, a cyclic GMP (cGMP) synthesizing protein is
universally expressed in apical brush border membranes of
intestinal cells and GUCY2C protein is found in nearly all pri-
mary and metastatic CRCs, with uniform expression by tumor
cells, regardless of location or grade.46–48 An adenovirus vector
(Ad5)-based vaccine expressing GUCY2C conjugated to the
Pan DR epitope PADRE (Ad5-GUCY2C-PADRE) was evalu-
ated in humans in an open-label, single-dose feasibility study in
early-stage colorectal cancer patients [NCT01972737].49,50 The

vaccine was safe and immunogenic, producing GUCY2C-spe-
cific CD8C CTL responses in 40% of patients. A larger Phase II
study is planned to begin in 2018 to explore the vaccine’s effi-
cacy for GUCY2C-expressing gastrointestinal malignancies.

Interest in cancer immunotherapy development began in
1893 with William Coley,51 but little progress was made over
the following century. Now, our understanding of the molecu-
lar and cellular mechanisms and complexities of the immune
system has advanced significantly and the prospects of success-
ful cancer immunotherapy development grow brighter with the
pace of scientific discovery. The effectiveness of checkpoint
inhibition in MSI tumors, including CRC, provides evidence
that characterizing molecular and immunological subtypes
may be important in determining patients most capable of
inducing effective tumor immunity or selecting the immuno-
therapeutic approach most favorable for a given patient. Unfor-
tunately, more than 95% of mCRC patients have MSS disease
and cannot be treated with current immunotherapy options.52

A growing body of evidence suggests that effective antitumor
immunity in mCRC may be achieved using experimental can-
cer vaccines in combination regimens that promote depletion
of Tregs and MDSCs, and block checkpoints, that prevent the
induction or intratumoral activity of T-cell responses.
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