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Abstract

Introduction: This article was undertaken to explore the potential of AI in enhancing the diagnostic accuracy and efficiency in
identifying hip fractures using X-ray radiographs. In the study, we trained three distinct deep learning models, and we uti-
lized majority voting to evaluate their outcomes, aiming to yield the most reliable and precise diagnoses of hip fractures
from X-ray radiographs.

Methods: An initial study was conducted of 10,849 AP pelvis X-rays obtained from five hospitals affiliated with Başkent
University. Two expert orthopedic surgeons initially labeled 2,291 radiographs as fractures and 8,558 as non-fractures.
The algorithm was trained on 6,943 (64%) radiographs, validated on 1,736 (16%) radiographs, and tested on 2,170
(20%) radiographs, ensuring an even distribution of fracture presence, age, and gender. We employed three advanced
deep learning architectures, Xception (Model A), EfficientNet (Model B), and NfNet (Model C), with a final decision aggre-
gated through a majority voting technique (Model D).

Results: For each model, we achieved the following metrics:
For Model A: F1 Score 0.895, Accuracy 0.956, Specificity 0.973, Sensitivity 0.893.
For Model B: F1 Score 0.900, Accuracy 0.960, Specificity 0.991, Sensitivity 0.845.
For Model C: F1 Score 0.919, Accuracy 0.966, Specificity 0.984, Sensitivity 0.899.
For Model D: F1 Score 0.929, Accuracy 0.971, Specificity 0.991, Sensitivity 0.897.
We concluded that Model D (majority voting) achieved the best results in terms of the F1 score, accuracy, and specificity

values.

Conclusions: Our study demonstrates that the results obtained by aggregating the decisions of multiple models through vot-
ing, rather than relying solely on the decision of a single algorithm, are more consistent. The practical application of these
algorithms will be difficult due to ethical, legal, and confidentiality issues, despite the theoretical success achieved.
Developing successful algorithms and methodologies should not be viewed as the ultimate goal; it is important to under-
stand how these algorithms will be used in real-life situations. In order to achieve more consistent results, feedback from
clinical practice will be helpful.
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Introduction
The prevalence of osteoporosis is increasing rapidly due to
an aging world population.1 In parallel, risk factors for frac-
tures are gradually increasing each year.1,2 According to
2019 data, the number of people treated for osteoporosis-
related hip fractures in the USA was 300,000. Moreover,
the cost of these treatments to US taxpayers was approxi-
mately 5.96 billion USD.3 Among high-cost and compli-
cated osteoporosis-related fractures, hip fractures account
for 14% of all osteoporotic fractures.4 However, such frac-
tures account for approximately 72% of the total cost.5 In
addition, osteoporotic hip fractures represent 37% of mod-
erate trauma costs, while the first-year mortality rate is
approximately 27%.5 This mortality rate is almost twice
as high as in the general population.6

The recommended radiographs include an anteroposter-
ior pelvis, cross-table lateral, and full-length femur radio-
graphs of the affected side.7 Missed fractures or delayed
diagnosis of fractures are the most common failures that
are seen, and the percentage of these has been recorded as
2–10% in the literature.8 The determination of fractures is
proportionally related to personal experience. The difficul-
ties in detection and diagnosis make the average time prior
to operation almost 5 days, resulting in higher mortality and
morbidity rates.9,10

In recent decades, advancements in artificial intelligence
(AI) have significantly enhanced the capability to interpret
medical images, providing substantial aid in diagnosing
conditions such as osteoporosis-related fractures.11–13 The
development of innovative algorithms and techniques has
been central to achieving remarkable progress in the
domain of medical image analysis. Despite the successful
results obtained in theory, ethical and legal issues are a
matter of serious debate.14

The incorporation of such advanced algorithms, or the
amalgamation of diverse technical support systems, can
markedly augment diagnostic precision and dependability
in clinical settings. Among the array of available algo-
rithms, deep convolutional neural networks (DCNN) are
particularly noteworthy. They excel in delineating patterns
in images and videos, with their methodologies being
inspired by the intricate neural configurations observed in
the animal cortex.15

Furthermore, artificial neural networks (ANNs) show-
case extensive adaptability and versatility. They are instru-
mental in executing tasks related to natural language
processing (NLP), anomaly detection, drug development
research, and video analysis, thereby demonstrating their
substantial relevance and utility across various scientific
and technological domains.16,17 From radiologic modality
in anatomical fields to disease detection, DCNN has been
adapted and used successfully in various medical fields.
In fracture determination, DCNN has a proven ability to
detect fractures with expert-level accuracy.18

Ensemble learning is a general approach to learning that
aims to make better assumptions by evaluating predictions
from multiple models.19 The most commonly used ensem-
ble learning methods are bagging, stacking, voting, and
boosting. Voting is the simplest and the easiest of all
these methods. In majority voting, the final tagging is
chosen by voting from among the results predicted by
each model. The majority voting technique has been used
in many medical studies. A study by Chandra et al. used
this method to combine predictions from five classifiers to
detect COVID-19 in chest X-rays.20 Naji et al. conducted
another study of ensemble learning AI-based methods.21

In their study, three different classifiers for breast cancer
detection were used, and the majority voting technique
then combined these three different classifiers’ assumptions
to achieve the highest accuracy.21 Another study by Assiri
et al. evaluated the performances of hard and soft voting
algorithms.22 It aimed to classify breast tumors by combin-
ing three different classifiers. In addition, the study demon-
strated the success of majority voting among all the
methods applied in terms of predicting the correct results.22

Our study aims to enhance performance of the model
through the use of multi-centered extensive datasets, stand-
ing in contrast to the majority of literature which generally
relies on limited data from a single center. Furthermore, by
training proven DCNN architectures on this data and
observing potential improvements in performance improve-
ments as a result of the use of the majority voting technique,
we hope to provide a novel contribution to the field.

This study is primarily motivated by the prospect of miti-
gating the inaccuracies of individual classifiers through the
implementation of majority voting, leveraging advance-
ments in deep learning methodologies to enhance the reli-
ability and precision in diagnosing hip fractures. To
achieve the research objective, three different CNN/
DCNN architectures were selected and adapted for the
study: EfficientNet,23 Xception,24 and NfNet.25 These
architectures have proved their success and have been dis-
cussed in the literature. The performance analysis of these
architectures in terms of hip fracture classification was
designed using different parameters and data augmentation
techniques that trained the DCNN models.

In the current research, the fundamental aim was to dem-
onstrate the efficacy of the majority voting in making the
final decision by employing multiple algorithms instead
of using them individually. Our study represents a pioneer-
ing effort in the field of AI-based hip fracture diagnosis
within the existing literature. The key components of our
investigation include:

1. Detailed explanation of the inclusion and exclusion cri-
teria for graphs during the construction of the original
dataset.

2. Rationale behind the selection of the algorithms utilized
in the study.
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3. Elucidation of the statistical methods employed in the
research.

4. Comparative analysis between the algorithms and the
majority voting in the obtained results.

5. In the discussion, we explain the difference of our study
from similar studies. We also state its limitations.

6. In the concluding section, we discuss the integration of
AI studies into daily clinical practice.

The subsequent sections of the paper are structured as
follows: section 2. covers the materials and methods,
section 3. presents the results, section 4. discusses these,
and section 5. provides some concluding remarks.

Methods and materials
Our methodology fundamentally consists of two main
components: dataset preparation and model training.
During the data collection process, anonymized radio-
graphs and demographic information of patients from

various hospitals were gathered. The radiographs of the
selected patients were meticulously reviewed and chosen
to represent a variety of hip fractures. In the model train-
ing phase, several convolutional neural network (CNN)
models were developed and trained to accurately classify
hip fractures. Subsequently, the outputs of these models
were evaluated by the majority voting method to
produce the final result (Figure 1). In the final subsection
of our method section, the statistical methods we used to
assess and compare model performances and accuracies
are discussed.

The study started by collecting data from hospitals, and
the data to be included in the study were selected. These
data were labeled by an expert orthopedist, and the data
were divided into training, validation, and test sets. Three
different CNN architectures were trained. The final AI algo-
rithm included the majority voting ensemble method, which
made decisions by considering these three models and their
evaluations. This flow passed images to the algorithm,
which produced a predicted result.

Figure 1. General design of the study.
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Patient selection

Five hospitals located in different cities were screened to
obtain related datasets from 2010 to 2020 years. Datasets
were created in these hospitals to increase the generalizabil-
ity of the final model. Using multiple centers and a large
number of images increased their scope and diversity.
The purpose of training the model with diverse data from
different centers was to enable it to more accurately inter-
pret the different types of data it might encounter in real
life. This approach enhanced the robustness of the model,
encouraging it to produce more consistent results in
various environments and conditions. A total of 19,583 AP
pelvic X-rays were obtained from the picture archiving and
communication system (PACS). Differences in the quality
of images taken by different technicians were ignored in
the overall study. The original images were saved in the
DICOM (Digital Imaging and Communications in
Medicine) format and converted into JPEGs before the label-
ing procedure. All patient information, including name,
surname, patient ID, and date of birth, were anonymized.

In order to identify images to exclude, other labels, such
as the scanning position of the X-ray (‘anteroposterior’ or
‘lateral’) and the presence of implants (‘presence’ or
‘absence’), were also employed. A total of 1,088 radio-
graphs of patients under 16 years of age, 5,352 X-rays
with implants in the X-ray area, and 2,664 X-rays that
were taken from the side were excluded from the study
using these labels. The remaining 10,849 radiographs
from the five different centers were used in the study.
Table 1 shows the demographic information of the patients
whose X-rays were included.

Considering the information received from the anamneses
and the International Classification of Disease Version 11

(ICD-11) codes of these patients (s72.0, s72.1, s72.3, and
s72.4), 2291 radiographs with proximal femur fracture
were labeled as a fracture (+), while the remaining 8558
radiographs were labeled as a fracture (–). Patients diagnosed
with proximal femur fracture from the ICD-11 and from their
patient files (s72.0, s72.1, s72.3, and s72.4), and patients who
had received surgical intervention are assigned as fracture
(+). Two expert orthopedic surgeons with access to the
patient files checked and re-labeled all the radiographs. The
presence of fracture was tagged as fracture (+), and the
absence of fracture was tagged as fracture (–).

The X-ray images were split into three different groups:
the training group (randomized 64%), the validation group
(16%), and the test group (20%). In splitting our dataset into
three parts, we carefully utilized the stratification method to
ensure an equal percentage of fracture radiographs in each
segment. This stratification ensured a consistent distribution
of fracture graphs in the training, validation, and testing
sets. This consistency helped ensure that the information
the model learned about fractures during training remained
valid in the other sets. Preventing leakage and overlap
between the training, validation, and test datasets was
accomplished by giving a unique ID to each patient and
not placing the same patient’s radiographs in different data-
sets. Figure 2 shows the steps taken to create the datasets.

Model selection

ImageNet is an image dataset with over 15 million labeled
samples and approximately 22,000 categories. The
ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) uses a subset of ImageNet of approximately
1,000 images in each of 1,000 categories. There are

Table 1. Demographic distribution of patients from five different hospitals used as data centers.

Hospital 1 Hospital 2 Hospital 3 Hospital 4 Hospital 5 Total

Number of images included 6,696 3,624 216 205 108 10,849

Male (%) 0.39 0.35 0.37 0.29 0.22 0.38

Median age of males 63.40 60.48 77.17 80.13 84.71 63.14

Fracture + in males (%) 0.18 0.17 0.949 0.86 0.96 0.21

Fracture – in males (%) 0.82 0.83 0.051 0.14 0.04 0.79

Female (%) 0.61 0.65 0.63 0.71 0.78 0.62

Median age of females 66.05 68.41 79.58 83.96 85.08 67.75

Fracture + in females (%) 0.16 0.21 0.802 0.90 0.92 0.21

Fracture – in females (%) 0.84 0.79 0.198 0.10 0.08 0.79
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roughly 1.3 million training images, 50,000 validation
images, and 100,000 test images. We selected the
Xception, EfficientNet, and NfNet models as transfer learn-
ing approaches due to their outstanding performance on the
ILSVRC and their different architectural features.25

The Xception Network is a convolutional neuronal
network (CNN) involving depth-wise separable convolu-
tions. Xception is an effective architecture that relies on
two basic points: depth-wise separable convolution and
shortcuts between convolution blocks. EfficientNet
enables the scaling method to determine all scales with
depth/width/resolution dimensions with a fixed set of
scaling coefficients. Instead of the Rectified Linear Unit
(ReLU) activation function, EfficientNet uses a new activa-
tion function called Swish. EfficientNet-B7 achieves 97.1%
top 5 accuracy on ILSVRC while being smaller and faster.
NfNet has an architecture without a normalization layer,

considering the disadvantages of batch normalization due
to its dependency on batch size and interaction between
samples. It proposes an adaptive gradient clipping tech-
nique for successfully training CNNs that do not contain
a normalization layer. Smaller models of NfNet match the
test accuracy of EfficientNet-B7 on the ILSRVC.

This study used Xception, EfficientNet, and NfNet archi-
tectures due to their success on the ILSRCV in a proposed
ensemble learning-based hip fracture classifier method.
Other important points in choosing these three architectures
were:

• Xception includes depth-wise separable convolution
layers.

• EfficientNet’s use of a swish activation function is
unlike any others.

• NfNet is a sample of a normalizer-free architecture.

Figure 2. Overall methodology applied in the proximal femur fracture data selection for the model trainings.
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Using ensemble learning, a class of machine learning based on
three CNN architectures, this study identified image patterns
using neural networks. Xception, EfficientNet, and NfNet
were used as the selected models in the majority voting
method. Figure 3 demonstrates the final decision or predicted
result processing using the concept of majority voting.

Statistical analysis

In evaluating our models’ performance, the primary metrics
considered were accuracy, sensitivity, specificity, and
F1 score. These metrics provided the initial insights into
how each model performed on the test dataset.

Given the importance of understanding the differences in
the models’ predictions, we first employed the McNemar
test. This statistical test was designed in order to compare
the paired predictions of models, and we conducted a
total of six distinct pairwise comparisons: Model A–B,
Model A–C, Model A–D, Model B–C, Model B–D, and
Model C–D. Recognizing the multiplicity challenges
arising from these pairwise comparisons, it was deemed
essential to use Bonferroni correction. By adjusting the
standard significance level of 0.05 based on the number
of tests (six in this instance), the revised significance thresh-
old was calculated as 0.0083.

To further clarify the underlying differences in perform-
ance among the models, the Friedman test was employed.
This test served to determine if there were any statistically sig-
nificant discrepancies in the models’ performances. Following
the Friedman test, the Nemenyi post-hoc test was carried out
to pinpoint which models demonstrated significant disparities
in their performances relative to each other.

Results
The experimental approach of our study was bifurcated into
two main stages. In the first stage, we used three well-
established CNN image classification architectures
(Xception, EfficientNet-B7, and NfNet-F3 networks) for
the purpose of detecting hip fractures. Following this, the
second stage incorporated an ensemble learning strategy,
the majority voting, that drew upon the probability values
derived from the trained CNN models to ascertain the

final fracture outcomes. This two-stage methodology
formed the basis of our decision-making process in identi-
fying fractures.

Development of the models

In our study, we used the transfer learning technique for
training all the image classification models. Xception,
EfficientNet-B7, and NfNet-F3 were named Model A,
Model B, and Model C, respectively. The initial weights
of these models were adopted from their training on the
ImageNet dataset. For the training and validation phases,
we utilized 6,943 and 1,736 images, respectively, while
2170 images from the test dataset were used for evaluation.
Notably, an imbalance was observed in the distribution of
images labeled as fracture and non-fracture during the prep-
aration of the dataset. To maintain balance during training, a
weighted loss strategy was implemented.

The input image sizes for each model were maintained as
per the pre-trained models: 500× 500, 600× 600, and 320×
320 pixels for Models A, B, and C, respectively. For Model
A, only the layers beyond the initial 150 were trained, while
for Models B and C, all layers were subjected to training
without being frozen. Cross-entropy loss was utilized in
the training of all the models. Table 2 outlines the augmen-
tations applied for each model trained, complemented by
the corresponding data augmentation strategies and respect-
ive data augmentation parameters (DAP). The implications
of the augmentation techniques in terms of a representative
radiograph image are shown in Figure 4.

Table 3 presents the detailed training parameters for each
model. Model A, employing the Xception architecture, was
trained using the TensorFlow framework. Over 150 epochs,
it employed the Nadam optimizer with a learning rate of
0.0001, utilizing the cross-entropy (CE) loss function.
Conversely, Model B, based on the EfficientNet architec-
ture, was trained within the PyTorch framework and under-
went an identical 150 epochs. Notably, this model
employed the Adam optimizer with a learning rate of
0.001 yet maintained cross-entropy (CE) as its loss
metric. Model C, built upon the NfNet architecture, was
similarly trained using the PyTorch framework for 150

Figure 3. Diagram of majority voting for the final prediction.
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epochs. It was distinctive in utilizing the Stochastic
Gradient Descent (SGD) optimizer with a learning rate of
0.0001 and continued the trend of employing cross-entropy
(CE) as the loss function.

To compensate for potential misjudgments or errors
from individual models, Model D was designed by integrat-
ing the outputs of Models A, B, and C using the majority
voting. This approach ensured that any decision made by
Model D was backed by a consensus of at least two of
the three contributing models. In essence, if a proximal
femur fracture was detected by Model D, it required the
confirmation from at least two of the three models, A, B,
and C.

Performance analysis of the models

In evaluating the average image prediction times for
Models A, B, and C, it was observed that the respective
times on the CPU were approximately 1.65, 6.14, and
2.01 s. On the GPU device utilized during the model train-
ing phase, they predicted in 0.26, 0.11, and 0.16 s,
respectively.

The models, once trained, were evaluated on a test
dataset, with performance metrics including sensitivity,
specificity, accuracy, and F1 score computed for each.

Models A, B, C, and D attained F1 scores of 0.895,
0.900, 0.919, and 0.929, respectively. When benchmarked
against the other models, Model D outperformed them,
securing the highest position for the F1 score, specificity,
and accuracy metrics. Detailed metrics for each model
can be found in Table 4, and a visual representation of
these is given in Figure 5. Additionally, Figure 5 displays
the confusion matrices for each model, providing insight
into their performance. These matrices in Figure 5 clearly
differentiate between ‘non-fractured’ and ‘fractured’ pre-
dictions, crucial for understanding the nuances of each
model’s accuracy and reliability.

Figure 4. Radiographs reproduced by augmentation techniques applied during model training.

Table 3. Training parameters for model A, model B, and model C. (SGD: Stochastic Gradient Descent, CE: Cross-Entropy Loss).

Training parameters

Model Framework Epoch Optimizer Learning rate Loss

Model A (Xception) TensorFlow 150 Nadam 0.0001 CE

Model B (EfficientNet) PyTorch 150 Adam 0.001 CE

Model C (NfNet) PyTorch 150 SGD 0.0001 CE

Table 4. Trained models (Models A, B, and C) and the latest
ensemble model (Model D) test dataset results.

Models Sensitivity Specificity Accuracy F1 score

Model A 0.893 0.973 0.956 0.895

Model B 0.845 0.991 0.960 0.900

Model C 0.899 0.984 0.966 0.919

Model D 0.897 0.991 0.971 0.929
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In our enhanced analysis, Figure 6(a) provides a detailed
visualization of the ROC curves for all three models, illus-
trating the trade-off between their true-positive and false-
positive rates. Similarly, Figure 6(b) presents a thorough
depiction of the precision-recall curves, emphasizing the
interplay between the models’ precision and recall
strengths.

We sought to understand the decision-making processes
of the models in more detail through the Grad-CAM tech-
nique. Grad-CAM results of Model A vividly demonstrated
how the network locates fractures in proximal femur radio-
graphs (Figure 7).

Advanced statistical comparison of models

Having assessed the performance metrics based on the F1
score, sensitivity, specificity, and accuracy rankings, it
was essential to utilize statistical tests to further validate
these observed differences. To evaluate our models, we

used the McNemar test, ideal for paired nominal data,
allowing us to more clearly discern variations in perform-
ance. Table 5 encapsulates these findings by presenting
the comparative p-values and unveiling the distinctions
between the models. According to the test results:

• There was no statistically significant difference in per-
formance between Model A and Model B (p = 0.8545).

• Statistically significant differences in performance were
identified between Model A and Model C (p = 0.0225)
and between Model B and Model C (p = 0.0152).

• Pronounced differences were found between Model D
and both Model A (p < 0.0001) and Model B (p <
0.0001). However, there was no statistically significant
difference between Model C and Model D (p = 0.1547).

After conducting the McNemar test to initially gauge dif-
ferences between pairs of models, we sought to determine if
there were overall performance disparities when considering

Figure 5. Confusion matrices for Model A, Model B, Model C, and Model D. Each subplot represents correct and incorrect model
predictions, distinguishing between ‘non-fractured’ and ‘fractured’. The numbers of samples falling into each category are shown in the
squares. These matrices are crucial for evaluating the accuracy and performance of the model.
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all models collectively. Hence, we employed the Friedman
test. The result of the Friedman test (p= 0.0000355736) con-
firmed that there were generally statistically significant

performance differences among the models. To further eluci-
date which models significantly differed from each other in
their performances and to perform pairwise comparisons,
the Nemenyi post-hoc test was conducted. According to
the results of the Nemenyi post-hoc test:

• Model A’s performance was 90% similar to Model B’s,
90% similar to Model C’s, and 84.96% similar to Model
D’s.

• Model B’s performance was 90% similar to Model C’s
and 80.9965% similar to Model D’s.

• Model C’s performance was 90% similar to Model D’s.

After identifying statistically significant differences among the
models using the Friedman test and further clarifying these

Figure 6. (a) ROC curves of each model. (b) Precision-recall curves of each model.

Figure 7. X-rays with proximal femur fractures detected and determined by Grad-CAM technique, showing targeted areas in the fracture
regions in a reddish color through specified imaging.

Table 5. Comparative p-values between Models A, B, C, and D
obtained from the McNemar test.

Models Model A Model B Model C

Model A – 0.8545 0.0225

Model B 0.8545 – 0.0152

Model C 0.0225 0.0152 –

Model D <0.0001 <0.0001 0.1547
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differences with the Nemenyi post-hoc test, we observed that
Model D was significantly different from Models A and
B. However, its difference from Model C was less pro-
nounced. Given these outcomes, it was then paramount to
further explore the comparative performances of Models C
and D. This would help in understanding their relative
merits and how they might function in practical scenarios.
With regard to the performance metrics of Models C and D:

• Their sensitivity values were very close to each other,
indicating that both models were almost equally adept
at identifying true cases of the condition they were
trained to detect.

• The specificity value was higher in Model D.
• The accuracy rate was higher in Model D.
• The F1 score was higher in Model D, suggesting that

Model D provided a more balanced performance
across sensitivity, specificity, accuracy, and F1 score,
excelling consistently in all metrics evaluated.

In the comparative analysis of the models, Model D,
employing the majority voting, displayed evident superior-
ity in performance metrics over Model A andModel B, with
statistically significant differences. This superiority illus-
trates that leveraging the collective intelligence of multiple
models can overcome the errors or biases inherent in indi-
vidual models, contributing to enhanced accuracy in
decision-making processes. When compared to Model C,
Model D exhibited a slight, yet noteworthy, improvement
in performance. Although the differences were not statistic-
ally significant, Model D demonstrated a more balanced
and comprehensive performance, indicating the effective-
ness of the ensemble approach in transcending the limita-
tions encountered by the individual models.

Discussion
In the present study, we used a unique dataset that we
obtained and labeled from five different hospitals. We
trained three different models using this dataset, using the
three most well-known architectures in the field of medical
image processing. We used the majority voting for the
outcome decision. We compared our final model with each
model in terms of F1 score, sensitivity, specificity, and accur-
acy. We found that the majority voting achieved the highest
F1 score value of 0.929. This study is the first in the literature
in which the majority voting was used in the diagnosis of hip
fracture. This study suggests that majority voting is a useful
and reliable method for diagnosing hip fracture. Further
research is needed to confirm these findings.

Goa et al.,18 using 40,203 radiographs obtained from a
single center achieved a 94.2% susceptibility content and
a specification of 96.3% with block fracture identification
algorithms trained using the DenseNet-121 architecture. It
was observed that racial differences did not affect the

algorithm’s success. However, radiographs were used that
had been obtained from two different radiography machines
made by a single efficient radiological device manufacturer.
When the dataset used in AI-based medical image process-
ing studies has a different scope and is obtained from a
number of different hospitals, this means that the results
are more applicable in daily life scenarios. This was the jus-
tification for using records obtained from different hospitals
and different devices in the present study.

Liu et al.26 developed a model using the faster RCNN
algorithm with 700 (459 fractures (+) and 241 fractures (–)
pelvic X-rays obtained from five different centers. With
this model, they only aimed to describe intertrochanteric
hip fractures. They found that the algorithm had an accur-
acy of 0.88, a specificity of 0.87, and a sensitivity of 0.89.
They compared the algorithm developed with the judg-
ments of orthopedists and found that it consistently pro-
vided results that were at least as good as an orthopedic
specialist, in a statistically significant (p < 0.001) shorter
time. In daily practice, the most common diagnosis of
neck fractures is that they are femoral neck fractures
rather than intertrochanteric femur fractures, which are
caused by larger problems. For this reason, we included
all proximal femur fractures in our study.

Twinpari et al.27 categorized 450 out of 900 AP pelvis
radiographs, obtained from a single center, as positive for
fractures, and further subdivided them into three groups:
femoral neck, intertrochanteric hip, and subtrochanteric
hip fractures, aiming to refine both diagnosis and treatment
procedures. They employed the You-Only-Look-Once
(YOLO-v4) architecture, a form of DCNN, and achieved
a sensitivity of 96.2%, specificity of 94.6%, and accuracy
of 95% during their assessment of 100 test radiographs,
50 of which were fracture-positive. Their findings led
them to conclude that the model they had developed signifi-
cantly enhanced the average diagnostic sensitivity for hip
fractures among physicians of various specializations,
raising it from 69.2% to 96.2%.

The success of the majority voting in our study echoes
broader trends in machine learning, where ensemble
methods often outperform individual models, especially in
tasks with high stakes and narrow error margins, such as
medical diagnoses. As medical imaging becomes more
reliant on AI, methods like these will be invaluable in
ensuring the highest level of accuracy and patient safety.

Compared to studies conducted for similar purposes, the
biggest differences of the present study are that the dataset
was created with a high number of images from multiple
centers and that the final decision was made by voting on
the decisions made by three different models. In the
current literature, most studies on the diagnosis of hip frac-
tures and prediction of postoperative outcomes have gener-
ally focused on a specific algorithm or a limited dataset.
Similar studies and their results are given in Table 6.
Nevertheless, our approach aimed to fill the existing gaps
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in the literature in this area. In line with this goal, our study
makes two main contributions:

• Multi-center large dataset: Different from studies con-
ducted with limited radiographs or patient information,
which are frequently encountered in the literature, we
performed our analyses on a much larger dataset col-
lected from multiple centers.

• Multiple AI model: Instead of focusing on just one algo-
rithm, we aimed to achieve a more comprehensive and
effective classification performance by combining the
outputs of more than one model through Model D,
which applied majority voting.

In our study, we did not compare our algorithm with the
work of doctors. Our rationale for not doing so was that we
have divided our study into two parts: the technical and the
clinical. In this article, our aim was to provide all the technical
details of the development of the algorithm and discuss them
thoroughly. The clinical study focuses on the practical applic-
ability of the algorithm in daily practice rather than technical
details. Assessing the success of a model through real-world
tests is a pivotal aspect of AI research. It is imperative that
additional radiographic and clinical evaluations be carried
out to bolster the validity and reliability of our models.
These evaluations are necessary to gain a deeper insight
into our models’ adaptability and effectiveness across
various clinical scenarios. In line with this, a clinical valid-
ation study is planned, comparing the performance of our
algorithm with those of 15 doctors from different specialties.
This study will employ a dataset comprised of 724 X-rays.

Limitations
The present study, despite its significant results, has several
limitations:

1. We did not include hip lateral radiographs in our study.
The reason for this was that a significant portion of hip
fractures can only be identified in the anteroposterior
(AP) view. The focus of the study was on data obtained
from a single imaging plane.

2. We did not proceed with subgrouping (femur neck,
intertrochanteric, subtrochanteric) for the radiographs
with hip fractures because our primary objective was
the detection of hip fractures. Subgrouping is significant
for treatment planning, but our primary focus was on the
identification of hip fractures.

3. We excluded radiographs with implants in the proximal
femur. This decision was based on the consideration
that radiographs containing implants due to prior
surgery in the proximal femur could adversely affect
the accuracy of our results. However, we acknowledge
that this exclusion may have had a negative impact on
the comprehensiveness of the study.

4. Given the ‘black box’ nature of CNNs, our model only
classified an image without providing specific feature
definitions or fracture localization. Segmentation-
oriented AI models could offer this localization.

5. We trained our model with the entire radiographic image,
rather than using images cropped around the proximal
femur, which prevented us from differentiating between
the left and right sides in our interpretations.

6. Due to the limited number of non-displaced radio-
graphs, they were not incorporated into our dataset.
Since the fracture lines in these images are not as pro-
nounced as those in displaced fractures, a model
trained with a dataset enriched with such radiographs
would be able interpret these radiographs.

Conclusion
This research illustrates the profound impact of the majority
vote ensemble method in improving diagnostic accuracy in
hip fracture detection, by synergizing the capabilities of
state-of-the-art CNN-based models, Xception,
EfficientNet, and NfNet, all trained on an expert-labeled,
multi-center dataset. This multifaceted approach not only
aligns pioneering AI models with medical diagnostics,
achieving a notable F1 score of 0.93, but also introduces
innovative methodologies to refine precision and minimize
inaccuracies in medical imaging.

Despite promising advancements, the wider adoption of
AI-based decision support systems in clinical settings
remains a subject of extensive discussion due to prevailing
concerns related to data imbalance, security vulnerabilities,
ethical constraints, and legal frameworks. Recognizing
these challenges, our subsequent research endeavors will
contrast the performance of our algorithm with evaluations
from medical professionals to gain broader and more
comprehensive insights into the practical, ethical, and
societal implications. This approach will ensure a holistic
examination of both the technical and ethical dimensions
of integrating AI into healthcare.

The realization of AI’s potential to support clinicians
necessitates the development of user-friendly interfaces
and strong data transmission protocols. Addressing these
prerequisites is crucial for the seamless, secure, and effi-
cient integration of AI innovations into existing clinical
workflows. The transformation of such advanced systems
from academic advancements to tangible clinical applica-
tions is pivotal for the progression of medical diagnostics,
necessitating a thorough exploration of both technological
and ethical considerations.

The results of our study suggest that the implementation
of majority voting can significantly enhance model per-
formance, offering notable improvements over relying
solely on the outputs of individual models. It is our hope
that integrating these insights will enrich the existing
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body of knowledge in the field and catalyze further
advancements in patient care and medical interventions.
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