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Abstract The phylogenetic placement of the morphologically simple placozoans is crucial to

understanding the evolution of complex animal traits. Here, we examine the influence of adding

new genomes from placozoans to a large dataset designed to study the deepest splits in the

animal phylogeny. Using site-heterogeneous substitution models, we show that it is possible to

obtain strong support, in both amino acid and reduced-alphabet matrices, for either a sister-group

relationship between Cnidaria and Placozoa, or for Cnidaria and Bilateria as seen in most published

work to date, depending on the orthologues selected to construct the matrix. We demonstrate

that a majority of genes show evidence of compositional heterogeneity, and that support for the

Cnidaria + Bilateria clade can be assigned to this source of systematic error. In interpreting these

results, we caution against a peremptory reading of placozoans as secondarily reduced forms of

little relevance to broader discussions of early animal evolution.

DOI: https://doi.org/10.7554/eLife.36278.001

Introduction
The discovery (Schulze, 1883) and mid-20th century rediscovery (Grell and Benwitz, 1971) of the

enigmatic, amoeba-like placozoan Trichoplax adhaerens did much to ignite the imagination of zoolo-

gists interested in early animal evolution (Bütschli, 1884). As microscopic animals adapted to extra-

cellular grazing on the biofilms over which they creep (Wenderoth, 1986), placozoans have a simple

anatomy suited to exploit passive diffusion for many physiological needs, with only six morphological

cell types discernible even to intensive microscopical scrutiny (Grell and Ruthmann, 1991;

Smith et al., 2014), albeit a greater diversity of cell types is apparent through single-cell RNA-seq

(Sebé-Pedrós, 2018a). They have no conventional muscular, digestive, or nervous systems, yet show

tightly-coordinated behaviour regulated by peptidergic signaling (Smith et al., 2015;

Senatore et al., 2017; Varoqueaux, 2018; Armon et al., 2018). In laboratory conditions, they pro-

liferate through fission and somatic growth. Evidence for sexual reproduction remains elusive,

despite genetic evidence of recombination (Srivastava et al., 2008) and descriptions of early
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abortive embryogenesis (Eitel et al., 2011; Grell, 1972), with the possibility that sexual phases of

the life cycle may occur only under poorly understood field conditions (Pearse and Voigt, 2007;

McFall-Ngai et al., 2013)

Given their simple, puzzling morphology and dearth of embryological clues, molecular data are

crucial in placing placozoans phylogenetically. The position of Placozoa in the animal tree proved

recalcitrant to early standard-marker analyses (Kim et al., 1999; Silva et al., 2007; Wallberg et al.,

2004), although this paradigm did reveal a large degree of molecular diversity in placozoan isolates

from around the globe, clearly indicating the existence of many cryptic species (Pearse and Voigt,

2007; Eitel et al., 2013; Signorovitch et al., 2007) with up to 27% genetic distance in 16S rRNA

alignments (Eitel and Schierwater, 2010). An apparent answer to the question of placozoan affini-

ties was provided by analysis of a nuclear genome assembly (Srivastava et al., 2008), which strongly

supported a position as the sister group of a clade of Cnidaria + Bilateria (sometimes called Planulo-

zoa). However, this effort also revealed a surprisingly bilaterian-like (Dunn et al., 2015) developmen-

tal gene toolkit in placozoans, a paradox for such a simple animal.

As metazoan phylogenetics has pressed onward into the genomic era, perhaps the largest con-

troversy has been the debate over the identity of the sister group to the remaining metazoans, tradi-

tionally thought to be Porifera, but considered to be Ctenophora by Dunn et al (Dunn et al., 2008).

and subsequently by additional studies (Hejnol et al., 2009; Moroz et al., 2014;

NISC Comparative Sequencing Program et al., 2013; Whelan et al., 2015; Whelan et al., 2017).

Others have suggested that this result arises from artifacts with potentially additive effects, such as

inadequate taxon sampling, flawed matrix husbandry (undetected paralogy or contamination), and

use of poorly fitting substitution models (Philippe et al., 2009; Pick et al., 2010; Pisani et al., 2015;

Simion et al., 2017; Feuda et al., 2017). A third view has emphasized that using different sets of

eLife digest Filter-feeding sponges and tiny gliding, pancake-like animals called placozoans are

the only two major groups of animals that lack muscles, nerves and an internal gut. Sponges have

historically been seen as the first to have branched off in animal phylogeny – the family tree of living

organisms that shows how species are related. This is because it is assumed that they split from the

other animals before features including muscles, nerves and internal guts evolved.

Sequences of their genetic material (the genome) support this view, although some argue that

jellyfish-like animals called ctenophores branched first. One explanation for this disagreement is that

ctenophores use different proportions of amino acids in their proteins, known as compositional

heterogeneity. Computer algorithms that assume amino acid usage is the same universally

throughout evolution may therefore place ctenophores incorrectly. In contrast, so far the only

genome from a placozoan shows that they are equally closely related to jellyfish and corals

(cnidarians) and bilaterians, which includes worms, insects and vertebrates.

To test whether this view of the first branches of the animal tree of life is correct, Laumer et al.

included the genomes from several undescribed species of placozoans in a phylogenetic analysis.

These analyses showed a relationship that had not previously been seen. The placozoans were the

closest living relative to cnidarians. However, when looking at the level of genes rather than whole

genomes, the more usual relationship of placozoans being equally related to cnidarians and

bilaterians re-emerged. To resolve this conflict, Laumer et al. focused on the genes that had the

least compositional heterogeneity. When doing this, the relationship appeared to be the newly

identified one of placozoans being most closely related to cnidarians.

Researchers studying cnidarians often hope to find some clues as to how the complex features

they seem to share with bilaterians originated. The findings of Laumer et al. may suggest that the

ancestors of the placozoans did in fact have muscles, nerves and guts, but they lost these traits in

favor of a simpler lifestyle. An alternative, but controversial possibility is that the ancestor of

cnidarians and bilaterians was a simple organism like a placozoan, and the two evolved their

complex traits independently. The findings show a complex picture of early animal evolution. Further

study of placozoans may well clarify this picture.

DOI: https://doi.org/10.7554/eLife.36278.002
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genes can lead to different conclusions, with only a small number sometimes sufficient to drive one

result or another (Nosenko et al., 2013; Shen et al., 2017). This controversy, regardless of its even-

tual resolution, has spurred serious contemplation of possibly independent origins of several hall-

mark traits such as striated muscles, digestive systems, and nervous systems (Moroz et al., 2014;

Dayraud et al., 2012; Hejnol and Martı́n-Durán, 2015; Liebeskind et al., 2017; Moroz and Kohn,

2016; Presnell et al., 2016; Steinmetz et al., 2012).

Driven by this controversy, new genomic and transcriptomic data from sponges, ctenophores,

and metazoan outgroups have accrued, while new sequences and analyses focusing on the position

of Placozoa have been slow to emerge. Here, we provide a novel test of the phylogenetic position

of placozoans, adding draft genomes from three putative species that span the root of this clade’s

known diversity (Eitel et al., 2013) (Table 1), and critically assessing the role of systematic error in

placing of these enigmatic organisms (Laumer, 2018).

Results and discussion
Orthology assignment on sets of predicted proteomes derived from 59 genome and transcriptome

assemblies yielded 4294 gene trees with at least 20 sequences each, sampling all five major meta-

zoan clades and outgroups, from which we obtained 1388 well-aligned orthologues. Within this set,

individual maximum-likelihood (ML) gene trees were constructed, and a set of 430 most-informative

orthologues were selected on the basis of tree-likeness scores (Misof et al., 2013). This yielded an

amino-acid matrix of 73,547 residues with 37.55% gaps or missing data, with an average of 371.92

and 332.75 orthologues represented for Cnidaria and Placozoa, respectively (with a maximum of 383

orthologues present for the newly sequenced placozoan H4 clade representative; Figure 1).

Our Bayesian analyses of this matrix place Cnidaria and Placozoa as sister groups with full poste-

rior probability under the general site-heterogeneous CAT + GTR + Г4 model (Figure 1). Under ML

inference with the C60 +LG + FO + R4 profile mixture model (Wang et al., 2018) (Figure 1—figure

supplement 1), we again recover Cnidaria + Placozoa, albeit with more marginal resampling sup-

port. Both Bayesian and ML analyses show little internal branch diversity within Placozoa. Accord-

ingly, deleting all newly-added placozoan genomes from our analysis has no effect on topology and

only a marginal effect on support in ML analysis (Figure 1—figure supplement 2). Quartet-based

concordance analyses (Zhou, 2017) show no evidence of strong phylogenetic conflicts among ML

gene trees in this 430-gene set (Figure 1), although internode certainty metrics are close to 0 for

many key clades including Cnidaria + Placozoa, indicating that support for some ancient relation-

ships may be masked by gene-tree estimation errors, emerging only in combined analysis

(Gatesy and Baker, 2005).

Compositional heterogeneity of amino-acid frequencies along the tree is a source of phylogenetic

error not modelled by even complex site-heterogeneous substitution models such as CAT+GTR

Table 1. Summary statistics describing the contiguity and completeness of the draft host

metagenome bins from the three clade A placozoan isolates utilized in this paper, presented in

comparison to the reference H1 strain.

H11 H4 H6 H1

assembly span (Mbp) 56.63 83.39 76.7 98.06

scaffold number 5813 5337 8310 1415

scaffold N50 (kbp) 12.738 25.97 12.84 5790

GC% 30.76 30.84 29.9 29.37

BUSCO2 Eukaryota
complete (of 303)

220 276 239 294

BUSCO2 Eukaryota
complete + partial (of 303)

246 282 265 298

Average # of hits per BUSCO 1.00 1.04 1.00 1.00

% of BUSCOs with more
than one match

0.45 3.99 0.42 0.34

DOI: https://doi.org/10.7554/eLife.36278.003
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(Blanquart and Lartillot, 2008; Foster, 2004; Lartillot and Philippe, 2004; Lartillot et al., 2013).

Furthermore, previous analyses (Nosenko et al., 2013) have shown that placozoans and choanofla-

gellates in particular, both of which taxa our matrix samples intensively, deviate strongly from the

mean amino-acid composition of Metazoa, perhaps as a result of genomic GC content discrepancies.

As a measure to at least partially ameliorate such nonstationary substitution, we recoded the amino-

acid matrix into the 6 ‘Dayhoff’ categories, a common strategy previously shown to reduce the effect

of compositional variation among taxa, albeit the Dayhoff-6 groups represent only one of many plau-

sible recoding strategies, all of which sacrifice information (Feuda et al., 2017; Nesnidal et al.,

2010; Rota-Stabelli et al., 2013; Susko and Roger, 2007). Analysis of this recoded matrix under

Figure 1. Consensus phylogram showing deep metazoan interrelationships under Bayesian phylogenetic inference of the 430-orthologue amino acid

matrix, using the CAT + GTR + Г4 mixture model. All nodes received full posterior probability. Numerical annotations of given nodes represent

Extended Quadripartition Internode Certainty (EQP-IC) scores, describing among-gene-tree agreement for both the monophyly of the five major

metazoan clades and the given relationships between them in this reference tree. A bar chart on the right depicts the proportion of the total

orthologue set each terminal taxon is represented by in the concatenated matrix. ‘Placozoa H1’ in this and all other figures refers to the GRELL isolate

sequenced in Srivastava et al., 2008, which has there and elsewhere been referred to as Trichoplax adhaerens, despite the absence of type material

linking this name to any modern isolate. Line drawings of clade representatives are taken from the BIODIDAC database (http://biodidac.bio.uottawa.

ca/).

DOI: https://doi.org/10.7554/eLife.36278.004

The following figure supplements are available for figure 1:

Figure supplement 1. Maximum likelihood tree under the C60 +LG + FO + R4 profile mixture model, inferred from the 430-orthologue matrix with full

taxon sampling.

DOI: https://doi.org/10.7554/eLife.36278.005

Figure supplement 2. Maximum likelihood tree under a profile mixture model inferred from the 430-orthologue matrix, with only Placozoa H1 used to

represent this clade.

DOI: https://doi.org/10.7554/eLife.36278.006
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the CAT + GTR model again recovered full support (pp = 1) for Cnidaria + Placozoa (Figure 2).

Indeed, under Dayhoff-6 recoding, the only major change is in the relative positions of Ctenophora

and Porifera, with the latter here constituting the sister group to all other animals with full support.

Similar recoding-driven effects on relative positions of Porifera and Ctenophora have also been seen

in other recent work (Feuda et al., 2017), and have been interpreted to indicate a role for composi-

tional bias in misplacing Ctenophora as sister group to all other animals

Many research groups, using good taxon sampling and genome-scale datasets, and even recently

including data from a new divergent placozoan species (Whelan et al., 2017; Feuda et al., 2017;

Eitel, 2017), have consistently reported strong support for Planulozoa under the CAT + GTR model.

Indeed, when we construct a supermatrix from our predicted peptide catalogues using a different

strategy, relying on complete sequences of 303 pan-eukaryote ‘Benchmarking Universal Single-Copy

Orthologs’ (BUSCOs) (Simão et al., 2015), we also see full support in a CAT + GTR + Г analysis for

Planulozoa, in both amino-acid (Figure 3a) and Dayhoff-6 recoded alphabets (Figure 3b). Which

Figure 2. Consensus phylogram under Bayesian phylogenetic inference under the CAT + GTR + Г4 mixture model, on the 430-orthologue

concatenated amino acid matrix, recoded into 6 Dayhoff groups. Nodes annotated with posterior probability; unannotated nodes received full

support.

DOI: https://doi.org/10.7554/eLife.36278.007
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phylogeny is correct, and what process drives support for the incorrect topology? Posterior predic-

tive tests, which compare the observed among-taxon usage of amino-acid frequencies to expected

distributions simulated using the sampled posterior distribution and a single composition vector,

may provide insight (Feuda et al., 2017; Lartillot and Philippe, 2004). Both the initial 430-gene

matrix and the 303-gene BUSCO matrix fail these tests, but the BUSCO matrix fails it more pro-

foundly, with z-scores (measuring mean-squared across-taxon heterogeneity) scoring in the range of

330–340, in contrast to the range of 176–187 seen in the 430-gene matrix (Table 2). Furthermore,

inspecting z-scores for individual taxa in representative chains from both matrices shows that a large

Figure 3. Posterior consensus trees from CAT + GTR + Г4 mixture model analysis of a 94,444 amino acid supermatrix derived from the 303 single-copy

conserved eukaryotic BUSCO orthologs, analysed in A. amino acid space or (B) the Dayhoff-6 reduced alphabet space. Nodal support values comprise

posterior probabilities; nodes with full support not annotated. Taxon colourings as in previous Figures. (C) Plot of z-scores (summed absolute distance

between taxon-specific and global empirical frequencies) from representative posterior predictive tests of amino acid compositional bias, from both the

BUSCO 303-orthologue matrix (red) and the initial 430-orthologue matrix (blue). Placozoan taxon abbreviations are shown in blue font.

DOI: https://doi.org/10.7554/eLife.36278.008
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amount of this global difference in z-scores can be attributed to placozoans, with additional contri-

butions from choanoflagellates and select isolated representatives of other clades (Figure 3C).

As a final measure to describe the influence of compositional heterogeneity in this dataset, we

applied a null-simulation test for compositional bias to each alignment in our set of 1388 ortho-

logues. This test, which compares the real data to a null distribution of amino-acid frequencies simu-

lated along assumed gene trees with a substitution model using a single composition vector, is less

prone to Type II errors than the more conventional X (Grell and Benwitz, 1971) test (Foster, 2004).

Remarkably, at a conservative significance threshold of a = 0.10, the majority (764 genes or ~55%)

of this gene set is identified as compositionally biased by this test, highlighting the importance of

using appropriate statistical tests to control this source of systematic error, rather than applying arbi-

trary heuristic cutoffs (Kück and Struck, 2014). Building informative matrices from gene sets on

either side of this significance threshold, and again applying both CAT + GTR mixture models and

ML profile mixtures, we see strong support for Cnidaria + Placozoa in the test-passing supermatrix,

and conversely, strong support for Cnidaria + Bilateria in the test-failing supermatrix (Figure 4, Fig-

ure 4—figure supplement 1, Figure 4—figure supplement 2). Interestingly, in trees built through

CAT + GTR + Г4 analysis of the test-failing supermatrix (Figure 4A,C), in both amino-acid and Dayh-

off-6 alphabets, we also observe full support for Porifera as sister to all other animals. In contrast,

analysis of this amino acid matrix under a profile mixture model recovers support for Ctenophora in

this position (Figure 4—figure supplement 1), indicating that, at least for this alignment, composi-

tional heterogeneity need not be invoked to explain why outcomes differ among analyses, as some

have argued (Feuda et al., 2017): both CAT + GTR and the C60 +LG + FO + R4 profile mixture

model assume a single composition vector over time, but the CAT + GTR model is better able to

accommodate site-heterogeneous substitution patterns (Lartillot et al., 2013; Quang et al., 2008).

In the context of this experiment, Dayhoff-6 recoding appears impactful only for the test-passing

supermatrix (Figure 4B,D), where it obviates support for Ctenophora-sister (Figure 4B, Figure 4—

figure supplement 2) in favour of (albeit, with marginal support) Porifera-sister (Figure 4D), and

also diminishes support for Placozoa + Cnidaria (in contrast to the 430-gene matrix; Figure 2), per-

haps reflecting the inherent information loss of using a reduced amino-acid alphabet for this rela-

tively shorter matrix.

A possible hidden variable related to the phylogenetic discordance we describe, the precise sig-

nificance of which remains unclear, is mean trimmed alignment length: both the test-passing and the

original 430-gene matrix are composed of considerably shorter alignments than the test-failing and

the 303-gene BUSCO matrix (see Materials and methods). Indeed, alignment length has been previ-

ously shown to be predictive of a number of other metrics of phylogenetic relevance (Shen et al.,

2016); the generality and directionality of such relationships in empirical datasets at varying scales of

divergence is clearly worthy of further investigation.

The previously cryptic phylogenetic link between cnidarians and placozoans seen in gene sets less

influenced by compositional bias will require further testing with other analyses and data modalities,

such as rare genomic changes, which should be ever more visible as highly contiguous assemblies

continue to be reported from non-bilaterian animals (Eitel et al., 2018; Kamm et al., 2018;

Table 2. Mean (and standard deviation of) z-scores from posterior predictive tests of per-site amino

acid diversity and among-lineage compositional homogeneity, called for amino-acid alignments

using the PhyloBayes-MPI v1.8 readpb_mpi –div and –comp options, respectively, with burn-ins

selected as per the posterior consensus summaries shown elsewhere.

Except for the diversity statistic in the test-passing matrix, all tests reject (at p=0.05) the adequacy of

the inferred CAT + GTR + Г4 model to describe the data.

Diversity Composition (mean) Composition (maximum)

430 matrix 1.94 (0.09) 181.35 (7.50) 105.04 (3.13)

BUSCO 303-gene matrix 11.27 (0.73) 334.98 (4.56) 107.56 (6.17)

comp-failed matrix 2.51 (0.19) 270.16 (12.03) 173.87 (9.15)

comp-passed matrix 0.81 (0.18) 107.67 (10.10) 63.19 (6.95)

DOI: https://doi.org/10.7554/eLife.36278.009
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Jiang, 2018; Leclère, 2018). However, if validated, this relationship must continue to raise questions

on the homology of certain traits across non-bilaterians. Many workers, citing the incompletely

known development (Eitel et al., 2011; Pearse and Voigt, 2007) and relatively bilaterian-like gene

content of placozoans (Srivastava et al., 2008; Eitel, 2017), presume that these organisms must

have a still-unobserved, more typical development and life cycle (DuBuc et al., 2018), or else are

merely oddities that have experienced wholesale secondary simplification, having scant significance

to any evolutionary path outside their own. Indeed, it is tempting to interpret this new phylogenetic

position as further bolstering such hypotheses, as much work on cnidarian models in the evo-devo

Figure 4. Schematic depiction of deep metazoan interrelationships in posterior consensus trees from CAT + GTR + Г4 mixture model analyses of

matrices made from subsets of genes passing or failing a sensitive null-simulation test of compositional heterogeneity. Panels correspond to (A) the

amino acid matrix made within the failing set; (B) the amino acid matrix derived from the passing set; (C) the Dayhoff-6 recoded matrix from the failing

set; (D) the Dayhoff-6 recoded matrix from the passing set. Only nodes with posterior probability less than 1.00 are annotated numerically.

DOI: https://doi.org/10.7554/eLife.36278.010

The following figure supplements are available for figure 4:

Figure supplement 1. Maximum likelihood tree under a profile mixture model inferred from the 349-orthologue matrix composed from the subset of

genes binned as failing the null-simulation compositional bias test.

DOI: https://doi.org/10.7554/eLife.36278.011

Figure supplement 2. Maximum likelihood tree under a profile mixture model inferred from the 348-orthologue matrix composed from the subset of

genes binned as passing the null-simulation compositional bias test.

DOI: https://doi.org/10.7554/eLife.36278.012

Laumer et al. eLife 2018;7:e36278. DOI: https://doi.org/10.7554/eLife.36278 8 of 19

Short report Evolutionary Biology

https://doi.org/10.7554/eLife.36278.010
https://doi.org/10.7554/eLife.36278.011
https://doi.org/10.7554/eLife.36278.012
https://doi.org/10.7554/eLife.36278


paradigm is predicated on the notion that cnidarians and bilaterians share, more or less, many

homologous morphological features, viz. axial organization (Genikhovich and Technau,

2017; DuBuc et al., 2018), nervous systems (Liebeskind et al., 2017; Moroz and Kohn, 2016;

Kelava et al., 2015; Kristan, 2016; Arendt et al., 2016), basement-membrane lined epithelia

(Fidler et al., 2017; Leys and Riesgo, 2012), musculature (Steinmetz et al., 2012), embryonic

germ-layer organisation (Steinmetz et al., 2017), and internal digestion (Presnell et al., 2016;

Putnam et al., 2007; Hejnol and Martindale, 2008; Martindale and Hejnol, 2009). While we do

not argue, as some have done (Schierwater, 2005; Syed and Schierwater, 2002), that placozoans

resemble hypothetical metazoan ancestors, we hesitate to dismiss them a priori as irrelevant to

understanding early bilaterian evolution in particular: although apparently simpler and less diverse,

placozoans nonetheless have equal status to cnidarians as an immediate extant outgroup. Rather,

we see value in testing assumed hypotheses of homology, character by character, by extending pair-

wise comparisons between bilaterians and cnidarians to include placozoans, an agenda which

demands reducing the large disparity in embryological, physiological, and molecular genetic knowl-

edge between these taxa, towards which recent progress has been made using both established

methods such as in situ hybridization (DuBuc et al., 2018) and image analysis (Varoqueaux, 2018),

as well as new technologies such as single-cell RNA-seq (Sebé-Pedrós, 2018a; Sebé-Pedrós et al.,

2018b). Conversely, we emphasize another implication of this phylogeny: characters that can be vali-

dated as homologous at any level between Bilateria and Cnidaria must have originated earlier in ani-

mal evolution than previously appreciated, and should either cryptically occur in modern placozoans

or else have been lost at some point in their ancestry. In this light, paleobiological scenarios of early

animal evolution founded on inherently phylogenetically-informed interpretations of Ediacaran fossil

forms (Cavalier-Smith, 2018; Cavalier-Smith, 2017; Dufour and McIlroy, 2018; Sperling and

Vinther, 2010; Evans et al., 2017) and molecular clock estimates (Cunningham et al., 2017;

dos Reis et al., 2015; Dohrmann and Wörheide, 2017; Erwin et al., 2011) may require re-

examination.

Materials and methods

Sampling, sequencing, and assembling reference genomes from
previously unsampled placozoans
Haplotype H4 and H6 placozoans were collected from water tables at the Kewalo Marine Labora-

tory, University of Hawaii-Manoa, Honolulu, Hawaii in October 2016. Haplotype H11 placozoans

were collected from the Mediterranean ‘Anthias’ show tank in the Palma de Mallorca Aquarium, Mal-

lorca, Spain in June 2016. All placozoans were sampled by placing glass slides suspended freely or

mounted in cut-open plastic slide holders into the tanks for 10 days (Pearse and Voigt, 2007). Pla-

cozoans were identified under a dissection microscope and single individuals were transferred to

500 ml of RNAlater, stored as per manufacturer’s recommendations.

DNA was extracted from 3 individuals of haplotype H11 and 5 individuals of haplotype H6 using

the DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany). DNA and RNA from three haplotype

H4 individuals were extracted using the AllPrep DNA/RNA Micro Kit (Qiagen), with both kits used

according to manufacturer’s protocols.

Illumina library preparation and sequencing was performed by the Max Planck Genome Centre,

Cologne, Germany, as part of an ongoing metagenomics project in marine symbiosis. In brief, DNA/

RNA quality was assessed with the Agilent 2100 Bioanalyzer (Agilent, Santa Clara, USA) and the

genomic DNA was fragmented to an average fragment size of 500 bp. For the DNA samples, the

concentration was increased (MinElute PCR purification kit; Qiagen, Hilden, Germany) and an Illu-

mina-compatible library was prepared using the Ovation Ultralow Library Systems kit (NuGEN, Leek,

The Netherlands) according the manufacturer’s protocol. For the haplotype H4 RNA samples, the

Ovation RNA-seq System V2 (NuGen, 376 San Carlos, CA, USA) was used to synthesize cDNA and

sequencing libraries were then generated with the DNA library prep kit for Illumina (BioLABS, Frank-

furt am Main, Germany). All libraries were size selected by agarose gel electrophoresis, and the

recovered fragments quality assessed and quantified by fluorometry. For each DNA library 14 – 75

million 100 bp or 150 bp paired-end reads were sequenced on Illumina HiSeq 2500 or 4000
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machines (Illumina, San Diego, U.S.A); for the haplotype H4 RNA libraries 32 – 37 million single 150

bp reads were obtained.

For assembly, adapters and low-quality reads were removed with bbduk (https://sourceforge.net/

projects/bbmap/) with a minimum quality value of two and a minimum length of 36 and single reads

were excluded from the analysis. Each library was error corrected using BayesHammer

(Nikolenko et al., 2013). A combined assembly of all libraries for each haplotype was performed

using SPAdes 3.62 (Bankevich et al., 2012). Haplotype four and H11 data were assembled from the

full read set with standard parameters and kmers 21, 33, 55, 77, 99. The Haplotype H6 data was pre-

processed to remove all reads with an average kmer coverage <5 using bbnorm and then assembled

with kmers 21, 33, 55 and 77.

Reads from each library were mapped back to the assembled scaffolds using bbmap (https://

sourceforge.net/projects/bbmap/) with the option fast = t. Scaffolds were binned based on the

mapped read data using MetaBAT (Kang et al., 2015) with default settings and the ensemble bin-

ning option activated (switch –B 20). The Trichoplax host bins were evaluated using metawatt

(Strous et al., 2012) based on coding density and sequence similarity to the Trichoplax H1 reference

assembly (NZ_ABGP00000000.1). The bin quality metrics were computed with BUSCO2

(Simão et al., 2015) (Table 1) and QUAST (Gurevich et al., 2013). Both the stringent metagenomics

binning procedure (a procedure also expedient in other holobiont organisms (Celis et al., 2018))

and the very low proportion of multiple orthologue hits in the BUSCO2 assessment (Table 1) attest

to the lack of evidence for residual non-placozoan contamination within the scaffolds used for gene

prediction.

Predicting proteomes from transcriptome and genome assemblies
Predicted proteomes from species with published draft genome assemblies were downloaded from

the NCBI Genome portal or Ensembl Metazoa in June 2017. For Clade A placozoans, host metage-

nomic bins were used directly for gene annotation. For the H6 and H11 representatives, annotation

was entirely ab initio, performed with GeneMark-ES (Ter-Hovhannisyan et al., 2008); for the H4 rep-

resentative, total RNA-seq libraries obtained from three separate isolates (BioProject PRJNA505163)

were mapped to genomic contigs with STAR v2.5.3a (Dobin et al., 2013) under default settings;

merged bam files were then used to annotate genomic contigs and derive predicted peptides with

BRAKER v1.9 (Hoff et al., 2016) under default settings. Choanoflagellate proteome predictions

(Simion et al., 2017) were provided as unpublished data from Dan Richter. Peptides from a Calva-

dosia (previously Leucosolenia) complicata transcriptome assembly were downloaded from compa-

gen.org. Peptide predictions from Nemertoderma westbladi and Xenoturbella bocki as used in

Cannon et al 2016 (Cannon et al., 2016) were provided directly by the authors. The transcriptome

assembly (raw reads unpublished) from Euplectella aspergillum was provided by the Satoh group,

downloaded from (http://marinegenomics.oist.jp/kairou/viewer/info?project_id=62). Predicted pep-

tides were derived from Trinity RNA-seq assemblies (multiple versions released 2012–2016) as

described by Laumer et al (Laumer et al., 2015). for the following sources/SRA accessions:: Porifera:

Petrosia ficiformis: SRR504688, Cliona varians: SRR1391011, Crella elegans: SRR648558, Corticium

candelabrum: SRR504694-SRR499820-SRR499817, Spongilla lacustris: SRR1168575, Clathrina coria-

cea: SRR3417192, Sycon coactum: SRR504689-SRR504690, Sycon ciliatum: ERR466762, Ircinia fasci-

culata, Chondrilla caribensis (originally misidentified as Chondrilla nucula) and Pseudospongosorites

suberitoides from (https://dataverse.harvard.edu/dataverse/spotranscriptomes); Cnidaria: Abylopsis

tetragona: SRR871525, Stomolophus meleagris: SRR1168418, Craspedacusta sowerbyi: SRR923472,

Gorgonia ventalina: SRR935083; Ctenophora: Vallicula multiformis: SRR786489, Pleurobrachia

bachei: SRR777663, Beroe abyssicola: SRR777787; Bilateria: Limnognathia maerski: SRR2131287. All

other peptide predictions were derived through transcriptome assembly as paired-end, unstranded

libraries with Trinity v2.4.0 (Haas et al., 2013), running with the –trimmomatic flag enabled (and all

other parameters as default), with peptide extraction from assembled transcripts using TransDe-

coder v4.0.1 with default settings. For these species, no ad hoc isoform selection was performed:

any redundant isoforms were removed during tree pruning in the orthologue determination pipeline

(see below).
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Orthologue identification and alignment
Predicted proteomes were grouped into top-level orthogroups with OrthoFinder v1.0.6 (Emms and

Kelly, 2015), run as a 200-threaded job, directed to stop after orthogroup assignment, and print

grouped, unaligned sequences as FASTA files with the ‘-os’ flag. A custom python script (‘renamer.

py’) was used to rename all headers in each orthogroup FASTA file in the convention [taxon abbrevi-

ation] + ‘@’ + [sequence number as assigned by OrthoFinder SequenceIDs.txt file], and to select

only those orthogroups with membership comprising at least one of all five major metazoan clades

plus outgroups, of which exactly 4300 of an initial 46,895 were retained. Scripts in the Phylogenomic

Dataset Construction pipeline (Yang and Smith, 2014) were used for successive data grooming

stages as follows: Gene trees for top-level orthogroups were derived by calling the fasta_to_tree.py

script as a job array, without bootstrap replicates; six very large orthogroups did not finish this pro-

cess. In the same directory, the trim_tips.py, mask_tips_by_taxonID_transcripts.py, and cut_long_in-

ternal_branches.py scripts were called in succession, with ‘./. tre 10 10’, ‘././y’, and ‘./. mm 1 20. /’

passed as arguments, respectively. The 4267 subtrees generated through this process were

concatenated into a single Newick file and 1419 orthologues were extracted with UPhO

(Ballesteros and Hormiga, 2016). Orthologue alignment was performed using the MAFFT v7.271

‘E-INS-i’ algorithm, and probabilistic masking scores were assigned with ZORRO (Wu et al., 2012),

removing all sites in each alignment with scores below five as described previously (Laumer et al.,

2015). 31 orthologues with retained lengths less than 50 amino acids were discarded, leaving 1388

well-aligned orthologues.

Matrix assembly
A full concatenation of all retained 1388 orthogroups was performed with the ‘geneStitcher.py’

script distributed with UPhO available at https://github.com/ballesterus/PhyloUtensils. However,

such a matrix would be too large for tractably inferring a phylogeny under well-fitting mixture mod-

els such as CAT + GTR; therefore we used MARE v0.1.2 (Misof et al., 2013) to extract an informa-

tive subset of genes using tree-likeness scores, running with ‘-t 100’ to retain all taxa and using ‘-d 1’

as a tuning parameter on alignment length. This yielded our 430-orthologue, 73,547 site matrix, with

a mean partition length of 202.24 (s.d. 116.96) residues.

As a check on the above procedure, which is agnostic to the identity of the genes assigned into

orthologue groups, we also sought to construct a matrix using complete, single-copy sequences

identified by the BUSCO v3.0.1 algorithm (Simão et al., 2015), using the 303-gene eukaryote_odb9

orthologue set. BUSCO was run independently on each peptide FASTA file used as input to Ortho-

Finder, and a custom python script (‘extract.py’) was used to parse the full output table from each

species, selecting only those entries identified as complete-length, single-copy representatives of

each BUSCO orthologue, and grouping these into unix directories, facilitating downstream align-

ment, probabilistic masking, and concatenation, as described for the OrthoFinder matrix. This 303-

gene BUSCO matrix had a total length of 94,444 amino acids, with 39.6% of sites representing gaps

or missing data, with mean partition length 311.70 (standard deviation 202.78).

Within the gene bins nominated by the test of compositional heterogeneity (see below), matrices

were constructed again by concatenating and reducing matrices with MARE, using ‘-t 100’ to retain

all taxa and setting ‘-d 0.5’ to yield a matrix of an optimal size for inferring a phylogeny under the

CAT + GTR model. This procedure gave a 349-gene matrix of 80,153 amino acids (mean partition

lengths 228.67 ± s.d. 136.19, 41.64% gaps) within the test-failing gene set, and a 348-gene matrix of

55,426 amino acids (mean partition lengths 158.27 ± s.d. 79.06, 38.92% gaps), within the test-pass-

ing set (Figure 4).

Phylogenetic inference
Individual ML gene trees were constructed on all 1388 orthologues in IQ-tree v1.6beta, with ‘-m

MFP -b 100’ passed as parameters to perform automatic model selection and 100 standard nonpara-

metric bootstraps on each gene tree.

For inference on the initial 430-gene matrix, we proceeded as follows: ML inference on the

concatenated matrix (Figure 1—figure supplement 1) was performed with IQ-tree v1.6beta, pass-

ing ‘-m C60 +LG + FO + R4 bb 1000’ as parameters to specify a profile mixture model and retain

1000 trees for ultrafast bootstrapping; the ‘-bnni’ flag was used to incorporate NNI correction during
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UF bootstrapping, an approach shown to control misleading inflated support arising from model

misspecification (Hoang et al., 2018). ML inference using only the H1 haplotype as a representative

of Placozoa (Figure 1—figure supplement 2) was undertaken similarly, albeit using a marginally less

complex profile mixture model (C20 +LG + FO + R4). Bayesian inference under the CAT + GTR + Г4

model was performed in PhyloBayes MPI v1.6j (Lartillot et al., 2013) with 20 cores each dedicated

to four separate chains, run for 2885–3222 generations with the ‘-dc’ flag applied to remove con-

stant sites from the analysis, and using a starting tree derived from the FastTree2 program

(Price et al., 2010). The two chains used to generate the posterior consensus tree summarized in

Figure 1 converged on exactly the same tree in all MCMC samples after removing the first 2000

generations as burn-in. Analysis of Dayhoff-6-state recoded matrices in CAT + GTR + Г4 was per-

formed with the serial PhyloBayes program v4.1c, with ‘-dc -recode dayhoff6’ passed as flags. Six

chains on the 430- gene matrix were run from 1441 to 1995 generations; two chains showed a maxi-

mum bipartition discrepancy (maxdiff) of 0.042 after removing the first 1000 generations as burn-in

(Figure 2). QuartetScores (Zhou, 2017) was used to measure internode certainty metrics including

the reported EQP-IC, using the 430 gene trees from those orthologues used to derive the matrix as

evaluation trees, and using the amino-acid CAT + GTR + Г4 tree as the reference to be annotated

(Figure 1).

For inference on the BUSCO 303 gene set, we ran 4 chains of the CAT + GTR + Г4 mixture model

with PhyloBayes MPI v1.7a, applying the -dc flag again to remove constant sites, but here not speci-

fying a starting tree; chains were run from 1873 to 2361 generations. Unfortunately, no pair of chains

reached strict convergence on the amino-acid version of this matrix (with all pairs showing a max-

diff = 1 at every burn-in proportion examined), perhaps indicating problems mixing among the four

chains we ran. However, all chains showed full posterior support for identical relationships among

the five major animal groups, with differences among chains assignable to minor differences in the

internal relationships within Choanoflagellata and Bilateria. Accordingly, the posterior consensus

tree in Figure 3A is summarized from all four chains, with a burn-in of 1000 generations, sampling

every 10 generations. For the Dayhoff-recoded version of this matrix, we ran six separate chains

again with CAT + GTR + Г4 with the -dc flag, for 5433 – 6010 generations; two chains were judged

to have converged, giving a maxdiff of 0.141157 during posterior consensus summary with a burn-in

of 2500, sampling every 10 generations (Figure 3B).

For inference on the 348 and 349 gene matrices produced within gene bins defined by the null-

simulation test of compositional bias (see below), we ran six chains each for the amino acid and

recoded versions of each matrix, under CAT + GTR + Г4 with constant sites removed. In the amino-

acid matrix, chains ran from 2709 to 3457 and 1423 – 1475 generations for the test-failing and test-

passing matrices, respectively. In the recoded matrix, chains ran from 3893 to 4480 and 4350 – 4812

generations for the test-failing and test-passing matrices, respectively. In selecting chains to input

for posterior consensus summary tree presentation (Figure 4A–D), we chose pairs of chains and

burn-ins that yielded the lowest possible maxdiff values (all <0.1 with the first 500 generations dis-

carded as burn-in, except for the amino-acid coded test-failing matrix, whose most similar pair of

chains gave a maxdiff of 0.202 with 1000 generations discarded as burn-in). We emphasize that the

topologies and supports displayed in Figure 4A–D are similar when all chains (and conservative

burn-in values) are used to generate consensus trees. For ML trees using profile mixture models for

the test-failing (Figure 4—figure supplement 1) and test-passing (Figure 4—figure supplement 2)

gene matrices, we used IQ-tree 1.6rc, calling in the same manner (with C60 +LG + FO + R4) as used

on our 430-gene matrix (see above).

Tests of compositional heterogeneity
For posterior predictive tests of compositional heterogeneity and residue diversity using MCMC

samples under CAT + GTR (Table 2), we used PhyloBayes MPI v1.8 to test two chains from the initial

430-gene matrix, three chains from the 303-gene BUSCO matrix, and six chains each from the 348

(test-failing) and 349 (test-passing) gene matrices, removing 2000 generations from the first matrix

and 1000 from the others as burn-in. Results from tests on representative chains were selected for

plotting in Figure 3C and summary in Table 2; however, results from all chains tested are deposited

in the Data Dryad accession.

For the per-gene null simulation tests of compositional bias (Foster, 2004), we used the p4 pack-

age (https://github.com/pgfoster/p4-phylogenetics), inputting the ML trees inferred by IQ-tree for
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each of the 1388 alignments, and assuming an LG+G4 substitution model with a single empirical fre-

quency vector for each gene; this test was implemented with a simple wrapper script (‘p4_compo_-

test_multiproc.py’) leveraging the python multiprocessing module. We opted not to model-test

each gene individually in p4, both because the range of models implemented in p4 are more limited

than those tested for in IQ-tree, and because, as a practical matter, LG (usually with variant of the

FreeRates model of rate heterogeneity) was chosen as the best-fitting model in the IQ-tree model

tests for a large majority of genes, suggesting that LG+G4 would be a reasonable approximation for

the purposes of this test. We selected an a-threshold of 0.10 for dividing genes into test-passing

and -failing bins as a conservative measure; however, we emphasize that even at a less conservative

a = 0.05, 47% of genes would still be detected as falling outside the null expectation.

Source data availability
SRA accession codes, where used, and all alternative sources for sequence data (e.g. individually

hosted websites, personal communications), are listed above in the Materials and methods section.

A DataDryad accession is available at https://doi.org/10.5061/dryad.6cm1166, which makes avail-

able all helper scripts, orthogroups, multiple sequence alignments, phylogenetic program output,

and raw host proteomes inputted to OrthoFinder. Metagenomic bins containing placozoan host con-

tigs and gene annotations from H4, H6 and H11 isolates are also provided in this accession. Phylo-

Bayes. chain files, due to their large size, are separately accessioned at in Zenodo at https://doi.org/

10.5281/zenodo.1197272.
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