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We review a body of theoretical and experimental research on Hebbian and

homeostatic plasticity, starting from a puzzling observation: while homeo-

stasis of synapses found in experiments is a slow compensatory process,

most mathematical models of synaptic plasticity use rapid compensatory

processes (RCPs). Even worse, with the slow homeostatic plasticity reported

in experiments, simulations of existing plasticity models cannot maintain

network stability unless further control mechanisms are implemented.

To solve this paradox, we suggest that in addition to slow forms of homeo-

static plasticity there are RCPs which stabilize synaptic plasticity on short

timescales. These rapid processes may include heterosynaptic depression

triggered by episodes of high postsynaptic firing rate. While slower forms

of homeostatic plasticity are not sufficient to stabilize Hebbian plasticity,

they are important for fine-tuning neural circuits. Taken together we suggest

that learning and memory rely on an intricate interplay of diverse plasticity

mechanisms on different timescales which jointly ensure stability and

plasticity of neural circuits.

This article is part of the themed issue ‘Integrating Hebbian and homeo-

static plasticity’.
1. Introduction
Homeostasis refers to a family of compensatory processes at different spatial

and temporal scales whose objective is to maintain the body, its organs, the

brain or even individual neurons in the brain in a dynamic regime where

they function optimally. A well-known example is the homeostatic regulation

of body temperature in mammals, maintained at about 378C independently

of weather condition and air temperature. In neuroscience, homeostasis or

homeostatic plasticity often refers to a compensatory process that stabilizes

neural firing rates. In a classic experiment, cultured neurons that normally

fire at, say 5 Hz, change their firing rate after a modulation of the chemical con-

ditions in the culture, but eventually return to their target rate of 5 Hz during

the following 24 h [1]. Thus, the experimentally best-studied form of homeosta-

sis acts on a timescale of hours to days. This slow form of homeostatic plasticity

manifests itself as the rescaling of the efficacy or weight of all afferent synapses

onto a single neuron by a fixed fraction, for instance 0.78. This phenomenon is

called ‘synaptic scaling’ [1].

Mathematical models of neural networks often make use of compensatory

processes similar to synaptic scaling to stabilize firing rates in the presence of

Hebbian plasticity. Hebbian plasticity is a form of synaptic plasticity which is

induced by and further amplifies correlations in neuronal activity. It has been

observed in many brain areas and can be induced quickly on a timescale of

seconds to minutes. Its effect, however, is often long-lasting. It can last hours,

days and possibly a lifetime. Owing to these properties, Hebbian plasticity

is widely assumed to be the neural basis of associative long-term memory
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Figure 1. The timescales of synaptic scaling or metaplasticity are faster in models than reported in experiments. Here, we plot the timescale of either synaptic
scaling or homeostatic metaplasticity as used in influential modeling studies (light grey). For comparison, we plot the typical readout time for experimental studies
on synaptic scaling and metaplasticity (dark red). Publications suffixed with * describe network models as opposed to the other studies which relied on single
neurons. Note that the model marked with † by Toyoizumi et al. [17] is an interesting case which has both RCPs and a slow form of homeostasis. Here, we have
aligned it according to its homeostatic timescale. Work referenced in the figure: [10,14,17 – 35].
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[2–4]. Moreover, Hebbian learning is thought to be the

basis of developmental changes such as receptive field

development [5–9].

However, Hebbian plasticity alone leads to a positive

feedback loop in which correlations of pre- and postsynaptic

firing drive potentiation of synapses that increase postsynap-

tic rates and correlations further, which is unstable. To avoid

pathological runaway dynamics of neural activity in

mathematical models, it is necessary to add appropriate con-

straints to plasticity models [10,11]. A typical example of

such a constraint is the normalization or rescaling of the sum

of afferent synaptic weights: when the weight of one synaptic

connection increases, weights of other connections onto the

same neuron are algorithmically decreased to keep the total

input constant or close to the optimal target regime. At a

first glance, this form of multiplicative normalization [10]

seems virtually identical to homeostatic ‘synaptic scaling’

introduced above. However, these two mechanisms are funda-

mentally distinct because they act on vastly different

timescales. While normalization in models typically takes

place on a timescale of seconds or less [10,12–14], in biology

the effects of synaptic scaling manifest themselves only after

hours [15,16]. A similar observation holds for homeostatic

metaplasticity, which exists on timescales ranging from some

tens of minutes to days (figure 1) [36,37]. Moreover, the differ-

ence between experimental data and models cannot be

explained by a simple rescaling of time in the models, because

the problem persists for quantitative plasticity models which

capture the time course of biological data.

However, this difference in timescales may challenge the

popular view that in biology Hebbian plasticity is con-

strained through homeostatic plasticity [16,38–41]. The

algorithmic normalization of synaptic weights every second

is not the same mechanism as the biological rescaling of

synaptic weights over hours. Although, in the theoretical lit-

erature, a rapid stabilizing mechanism is typically called

‘homeostatic’, here we will refer to this class of control mech-

anisms as rapid compensatory processes (RCPs). The term

‘homeostatic plasticity’ is in the following reserved for slow

negative feedback processes on the timescale of hours or

days—a terminology that seems consistent with the available

experimental literature [15,16]. In this review, we focus on
this discrepancy of timescales and ask which biologically

plausible processes could constrain Hebbian plasticity.

Specifically, we will try to answer the following questions:

Why do we need RCPs to stabilize Hebbian plasticity? How

fast do these processes have to be—hours, minutes, seconds

or less? Which mechanisms could fill this role in Hebbian

learning? Moreover, what are the consequences of fast control

mechanisms on memory formation and recall in network

models? And finally, if RCPs are a requirement, what is the

role of slower forms of negative feedback implemented by

known forms of homeostatic plasticity?
2. Models of synaptic plasticity
Synaptic plasticity exists across different timescales. For

instance, synaptic changes induced by a sequence of four pre-

synaptic spikes in rapid sequence typically decay within a

few hundred milliseconds [42–44] and are called short-term

plasticity. The rapid decay implies that the changes are not

useful for long-term memory formation, but more likely

involved in gain control [42].

Other forms of plasticity induced by classic induction

protocols [45–47] can have long-term effects on the timescale

of hours or more. Long-term plasticity is therefore potentially

useful for memory formation [2]. We remind the reader that

the induction of long-term plasticity can be as fast as seconds,

but the induced changes persist for much longer. Depending

on the direction of synaptic change, we speak of long-term

potentiation (LTP) or long-term depression (LTD).

Under suitable conditions the changes induced by a pro-

tocol of LTP or LTD are further consolidated after about an

hour [48–50]. These effects are often referred to as late-

phase long-term plasticity. In the rest of the paper, we

focus on plasticity induction and the early phase of long-

term plasticity and neglect consolidation and maintenance.

The diverse effects of long-term plasticity can be cast into

a mathematical framework which describes the change of

synaptic efficacy over time. Apart from a few notable excep-

tions [17,51–54], the vast majority of models of long-term

plasticity assume a one-dimensional synaptic state space

which represents the synaptic efficacy or weight wij of a
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synapse from neuron j to neuron i [5,8,9,27,55–65]. The evo-

lution wij is then characterized by the differential equation

dwij

dt
¼ G, ð2:1Þ

in which the function G, often called the ‘learning rule’, is a

member of an infinite dimensional function space G, the

space of all possible learning rules. This space is strongly

constrained if we only focus on plausible learning rules,

which are the rules in agreement with experimental findings.

For example, classical stimulation protocols for LTP

[45–47], LTD [66,67] or spike-timing-dependent plasticity

(STDP) [68–70], combine the activation of a presynaptic

neuron, or a presynaptic pathway, with an activation, depolar-

ization or chemical manipulation of the postsynaptic neurons,

to induce synaptic changes. In models, this is typically formal-

ized by stating that G only depends on quantities which are

locally accessible to the synapse. It is customary to assume

that the main locally accessible variables include: (i) the cur-

rent synaptic state wij; (ii) the activity prej of the presynaptic

neuron; and (iii) the state posti of the postsynaptic neuron

[64,71,72]. Thus, we can write dwij=dt ¼ Gðwij, posti, prejÞ.
Additionally, G could also depend on low-dimensional infor-

mation carried by chemical signals such as neuromodulators

(see Frémaux & Gerstner [73] for a review).

Most published learning rules G can be written as the

linear sum of different terms in which each term can be inter-

preted as a specific manifestation of plasticity. These terms

act together to explain the measured outcome in plasticity

experiments. Let us explain the most common ones using

the following example learning rule:

Gðwij,posti,prejÞ¼

g0ðwijÞ
|fflfflffl{zfflfflffl}

e:g:decay term

þ g1ðwij,prejÞ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

0transmitter-induced0

þg2ðwij,postiÞ
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

heterosynaptic

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
non-associative

þHðwij,posti,prejÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

homosynaptic

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{
associative

:

ð2:2Þ

We will discuss each of the terms, going from right to left.

H: Co-stimulation of a presynaptic pathway (or presynaptic

neuron) and a postsynaptic neuron, as used in many clas-

sic induction protocols of LTD or LTP, changes the

activated synapses. Such input specific changes are

called ‘homosynaptic’ because they affect the same
synapses that are stimulated. In the above equation, the

homosynaptic changes are characterized by the term H
on the right, where H is shorthand for ‘Hebbian’. The

homosynaptic changes are often further separable into

individual contributions of LTD and LTP (e.g. [8,74]).

g2: If a stimulation protocol induces a change at other (unstim-

ulated) synapses onto the same postsynaptic neuron, the

effect is called ‘heterosynaptic’ [66,75–77].1 In equation

(2.2), heterosynaptic effects are described by the function

g2 which does not depend on prej, but only on the state

of the postsynaptic neuron. An example of heterosynaptic

plasticity is synaptic scaling [1,38] which has been mod-

elled using a heterosynaptic term g2 with a linear weight

dependence [25].

g1: If presynaptic activity alone is sufficient to induce plas-

ticity—one could think of non-associative LTP at the

parallel fibre to Purkinje-cell synapses [79,80] or spon-

taneous spine growth in the presence of glutamate
[81]—this is captured by the function g1, which depends

on the presynaptic activity prej, but not on posti.

g0: Finally, a slow drift, a spontaneous growth or decay of the

synaptic strength that does not depend on the input or

the state of the postsynaptic neuron is captured by the

function g0(wij).

In our example, all terms explicitly depend on wij. While this

is not a strict requirement, it is customary to limit the allowed

range of wij to avoid infinite weight growth. As big weights

are associated with physically large synapses, while the

total space in the brain is limited, a bound on synaptic

weights is reasonable. Depending on the implementation

details, the limit can be implemented either as a ‘hard

bound’ or as a ‘soft bound’ (e.g. [74,82,83]).

Virtually, all existing plasticity models can be written in a

form similar to equation (2.2). Differences between model for-

mulations arise if: (i) prej is interpreted as presynaptic firing

rate, presynaptic spikes or as chemical traces left by spikes

(e.g. glutamate); (ii) posti is interpreted as postsynaptic

firing rate, postsynaptic spikes, chemical traces left by post-

synaptic spikes, postsynaptic calcium, postsynaptic voltage

or combinations thereof; and (iii) the weight dependence is

chosen identical or differently for each term. With this frame-

work, we can now state what we mean by compensatory

processes and address the question why we need them to

be fast.
3. Why do we need rapid compensatory
processes to stabilize Hebbian plasticity?

Intuitively, synaptic plasticity that is useful for memory for-

mation must be sensitive to the present activation pattern of

the pre- and postsynaptic neuron. Following Hebb’s idea of

learning and cell assembly formation, the synaptic changes

should make the same activation pattern more likely to

reappear in the future, to allow contents from memory

to be retrieved. However, the reappearance of the same pat-

tern will induce further synaptic plasticity. This forms an

unstable positive feedback loop. Anybody who was sitting

in the audience when the positive feedback loop between

the speaker’s microphone and the loudspeaker resulted in

an unpleasant shriek, knows what this means. In many

cases, an unstable system can be made stable by adding sen-

sible control mechanisms [84] which are thus typically

integrated in theoretically motivated plasticity models.

Let us now consider one such classic example of a

learning rule. To that end, we consider Oja’s rule [57]

dwij

dt
¼ G ¼ hðxjyi � wijy2

i Þ, ð3:1Þ

where h is a small constant called learning rate. As Oja’s rule

corresponds to a specific choice of G in equations (2.1) and

(2.2), let us highlight the relation. First, in Oja’s rule the pre-

synaptic activity prej is characterized by the presynaptic rate

xj and the state of the postsynaptic neuron posti by its firing

rate yi. Second, and with this in mind, we can now identify

two terms on the right-hand side of equation (3.1). Oja’s

rule contains a Hebbian term H ¼ hxjyi, which does not

have any weight dependence as well as a heterosynaptic

term g2 ¼ �hwijy2
i which comes with a negative sign and is

linear in the weight. Following our convention from above
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(equation (2.2)), we call the term heterosynaptic because it

acts on all synapses, even those that do not receive presyn-

aptic stimulation. For simplicity, and following the tradition

[57], we combine Oja’s rule with a linear neuron model

yi ¼ Sjwijxj.

It is quite intuitive to see how stability arises in

this model. As the synaptic weights wij grow, due to the

Hebbian term, the firing rate yi of the postsynaptic neuron

increases and therefore the influence of the negative hetero-

synaptic term gets stronger. Because the heterosynaptic

term has a superlinear dependence on yi, it is guaranteed to

‘catch up’ with the Hebbian term eventually. It can be

shown that for a linear neuron model and sufficiently small

h, Oja’s rule ensures that the weights converge such that

wi ¼ ðwi1, . . . , wiNÞ aligns with the first principal component

of the data x, while the squared sum of all afferent weights

remains normalized [57].

We interpret the heterosynaptic term in Oja’s rule as RCP.

First, it is rapid because it responds instantaneously to

activity fluctuations in yi. Second, it is compensatory because

it ensures stability by effectively enforcing a constraint on the

afferent synaptic weights [10,57]. Biologically, such a hetero-

synaptic effect could be obtained, for instance, when

synapses have to compete for a shared resource [57,85] or

send chemical signals to each other [86].

One could now ask if we really need these compensatory

processes to be rapid. Could we not simply replace the instan-

taneous firing rate yi in the heterosynaptic term by a slower

variable? The timescale of the slow variable could be related

in a biological system to the time necessary to estimate the

firing rate from, e.g. calcium concentration, and translate

these into metaplastic changes in the learning rule. To illus-

trate the general idea by a concrete example, we take Oja’s

rule, as in equation (3.1), except that, in the heterosynaptic

term, we replace y2
i by �y2

i , where �yi is a low-pass filtered

version of the postsynaptic rate

ty
d�yi

dt
¼ yi � �yi : ð3:2Þ

If we choose ty ¼ 1 ms (for a fixed h of, e.g. h21 ¼ 10 ms), the

processes g2 ¼ �hwij�y2
i would still be considered as rapid

(figure 2a), but if we choose ty ¼ 1 h, it would be considered

as slow. When the compensatory processes are too slow,

positive feedback induced by the Hebbian term is prone to

take over and oscillations (figure 2b) or even runaway

dynamics arise. This is why we generally want the

compensatory processes to be rapid.

The same problematic has also been demonstrated in the

Bienenstock–Cooper–Munro (BCM) model [5]

t
dwij

dt
¼ hxjfðyi, �yiÞ, ð3:3Þ

where f is a nonlinear function with a shape characterized by

a threshold u between LTP and LTD (figure 3a) consistent

with some induction protocols [70,87]. The threshold u

depends on the moving average �yi over past neuronal activity

(figure 3b) where �yi is defined in equation (3.2). This is the

reason why the model is said to have a ‘sliding’ threshold.

To ensure stability, the BCM model requires two

independent assumptions. First, the sliding threshold has to
be a superlinear function of �yi [5]. A standard choice is [88]

uðtÞ ¼
�y2

i

k
, ð3:4Þ

where k is the ‘target rate’ to which the moving average of the

postsynaptic firing rate should converge. Second, ty cannot

be ‘too large’ compared with t, because otherwise oscillations

or runaway activity occur [17,26,88]. In fact, the ratio ty/t

determines the stability of the model.

Oscillations and instabilities are generic to many non-

linear systems and not limited to the above models. Control

theory enables theoreticians to identify parameter ranges

that lead to stable behaviour and avoid instabilities

[25,84,89]. The control theoretic analysis of several plasticity

models relying on moving averages of the postsynaptic

firing rate shows that the response timescale of the compen-

satory processes is constrained from above [17,26,88,90].

In other words, the response time of the firing rate control

has to be ‘relatively fast’ compared with Hebbian plasticity.

But how fast is fast enough? Is it seconds, hours or days?
4. How fast do compensatory processes have
to be?

Because time can be rescaled arbitrarily in the above model, a

quantitative answer to the question can only be given for a

specific combination of neuronal, network and plasticity

model parameters once units of time are calibrated with

biological data. In other words, we need to put a numerical

value on t to set the timescale of ty. To fix a timescale,2 one

can thus use any quantitative plasticity model which has

been fitted to experimental data in combination with plaus-

ible spiking neuron models embedded into a spiking neural

network with a biologically inspired activity state.
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Such an analysis was done by Zenke et al. [26] using

the plasticity model of Pfister & Gerstner [27], combined

with negative feedback via either a sliding threshold or

synaptic scaling. The critical timescale tcrit was determined

as the value ty (equation (3.2)) above which a recurrent

neural network, initially tuned to a low-activity asynchron-

ous state [91,92], generates runaway activity. Using

simulations and mean field theory, tcrit was found to be

of the order of seconds to minutes. Thus, the negative

feedback needs to be too rapid to be linked to the

known experiments of homeostatic synaptic plasticity

reviewed in figure 1.

Several remarks are in order. First, although signatures of

the stereotypical activity dependence of the BCM model

(figure 3a) are also present in STDP data and captured by

many modern plasticity models [27,61–63,65,93], the exist-

ence of a sliding threshold mechanisms is still a topic of

ongoing debate. However, we have shown analytically, and

confirmed in simulations, that the instability that arises

through slow feedback in the BCM model is virtually identi-

cal to the situation in which the sliding threshold in equation

(3.3) is replaced by a fixed threshold and instead synaptic

scaling is added to the model [26]. Additionally, the analysis

suggests that similar temporal requirements hold for an entire

family of plasticity models with an explicit rate dependence

(see Yger & Gilson [90] for a review). Note, however,

that additional instabilities can arise in the case of synaptic

scaling [89].

Second, the critical timescale tcrit depends not only on

the plasticity model, but also on multiple parameters of

the neuron and network model. Moreover, the results
showed a strong dependence on background firing rate

which was comparatively high in the Zenke et al. [26]

model (approx. 3 Hz). On the other hand, robust stability

is only possible if the actual value of ty is chosen to be

much smaller than tcrit. The precise value of the critical time-

scale has therefore to be viewed with care: we believe that

any published numerical value for tcrit may be out by a

factor of 5 or 10 (because of uncertainty in choices of neur-

onal and network parameters), but it is unlikely to be out by

a factor of 100. In any case, despite the remaining uncer-

tainty, these numerical results suggest that most

experimental forms of homeostatic plasticity are too slow

to stabilize Hebbian plasticity as captured by current

models, and that RCPs are required to maintain stability.

A recent voltage-based plasticity model by Jedlicka et al.
[23] corroborates the above findings. By fitting their model

with a rapid sliding threshold to in vivo data from dentate

gyrus, the authors find ty � 12 s which allows them to specu-

late that the sliding threshold could be linked to CaMKII

inactivation.

Interestingly, Toyoizumi et al. [17] arrive at qualitatively

similar conclusions by carefully analysing the different

phases of synaptic dynamics following monocular depri-

vation [35]. Specifically, they find that a fast sliding

threshold guarantees stability, but provides a poor fit to

experimental data, whereas as slow sliding threshold com-

promises stability altogether. Consequently, they suggest a

model in which LTP and LTD saturate quickly to attain

steady states. Additionally, a slow form of homeostatic plas-

ticity is required to capture the data (cf. figure 1), but is no

longer required to provide stability. In their model, LTP

and LTD saturate due to soft weight bounds. However, the

model does not crucially depend on this point and would

presumably also work with other RCPs.

Finally, these findings are in good empirical agreement

with many existing simulation studies of plastic network

models (figure 1)—in each of these, a rapid homeostatic

control mechanism on a timescale of seconds to minutes

was implemented to maintain stability [14,19,21,22,27,63,94].

We can summarize our insights as follows. The fact that

Hebbian plasticity has to be appropriately constrained

through stabilizing mechanisms to avoid runaway activity

is well known. Classic models such as Oja’s rule or the

BCM model, for example, explicitly include appropriate

mechanisms based on the postsynaptic firing rate as an indi-

cator and driver of stabilizing processes. However, the fact

that these processes have to be rapid in absolute terms only

becomes apparent when units of time are fixed to a biologi-

cally meaningful timescale. Moreover, RCPs need to be

even more rapid in large recurrent network models, because

a large number of plastic synapses tend to amplify instabil-

ities unless the learning rate is scaled with the inverse

number of synapses. Accumulating evidence suggests that

biological forms of LTP and LTD have to be accompanied

by RCPs which operate on timescales of seconds to minutes

and are thus orders of magnitude faster than most known

forms of homeostatic plasticity (cf. figure 1). This answers

the questions as to why RCPs are needed and gives us first

upper limits on the intrinsic timescale of RCPs to successfully

stabilize LTP and LTD. However, do we want RCPs to be a

rapid version of homeostatic plasticity with a single set

point? We will now discuss this question in more detail,

before we turn to potential mechanisms.
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5. Functional consequences of enforcing
constraints on short timescales

Homeostatic mechanisms are typically interpreted as nega-

tive feedback processes [41], which rely on an error signal

to maintain a given control variable of a dynamical system

at designated target values, or set points. Many control sys-

tems have a single set point. For instance, an autopilot tries

to maintain a single given course at any given time. Similarly,

most models of homeostatic plasticity have a single target

value, such as the average postsynaptic firing rate (see k in

the BCM model equations (3.3) and (3.4)). Suppose we are

dealing with a fast negative feedback processes, what are

the functional consequences for plasticity and circuit

dynamics? To do so, we focus on commonly found forms

of firing rate homeostasis (FRH) with a single firing rate set

point [15,16,95].

Neurons encode information in changes of their electrical

activity levels. For instance, subsets of simple cells in the

visual system fire spikes in response to specific edge-like

features in the visual field [96]; cells in higher brain areas

respond with high specificity to complex concepts and
remain quiescent when the concept they are coding for is

not brought to mind [97–99]; and finally certain neurons

respond selectively with elevated firing rates over extended

periods during working memory tasks [100–102]. The ability

of neurons to selectively indicate through periods of strong

activity the presence of specific features in the input or

specific concepts in working memory is an important

condition for computation.

Is the notion of a single set point compatible with the task

of neurons to selectively respond to stimulation? If negative

feedback control of firing rates is slow (e.g. synaptic homeo-

stasis), neuronal firing can deviate substantially from the

mean firing rates during short times and thus encode infor-

mation (figure 4a,b). However, we have strong reasons to

believe that a slow homeostatic control mechanism cannot

stabilize the ravaging effects of Hebbian plasticity. So what

can we say about a putative RCP? If it were to act like

FRH, but on a short timescale (e.g. seconds to minutes),

neural codes based on neuronal activity become problematic

because synaptic plasticity starts to suppress activity fluctu-

ations which could be carrying important information

(figure 4c). For example, if the RCP has a timescale of 2 s,

rapid stimuli that change on a timescale of 0.5 s would be

transmitted as a rate signal of the postsynaptic neuron,

while stimuli sustained for more than 5 s would be sup-

pressed by compensatory synaptic changes. Even more

alarmingly, certain forms of homosynaptic plasticity, like

the BCM [5] or the triplet STDP [27] model endowed with

a rapid sliding threshold, not only suppress high-activity

periods, but also ‘unlearn’ previously acquired selectivity

and erase memories (figures 4a,c and 5a–d). Therefore,

RCPs which enforce a single set point are hardly desirable

from a functional point of view. Thus, the requirement of

fast negative feedback control over Hebbian plasticity with

a single set point poses a problem in itself.

It is important to appreciate that this problem arises

from the combination of a single target with the requirement

to implement negative feedback on a short timescale. Fortu-

nately, most forms of homeostatic plasticity are slow

(cf. figure 1). Thus, known homeostatic mechanisms do not

interfere with neuronal coding. For RCPs not to interfere

with coding either, it thus seems important that they do not

enforce a single set point constraint on postsynaptic activity.

Nevertheless, these RCPs have to prevent runaway activity.

There could be at least one simple solution to this conun-

drum [17,103]. Suppose there are two, or more, set points

enforced by two or more RCPs. For instance, one RCP

could activate above a certain activity threshold and ensure

that neuronal activity does not exceed this threshold. Simi-

larly, a second mechanism could activate below another

lower activity threshold. The combined action of the two

mechanisms enforces neural activity to stay within an

allowed range, but still permits substantial firing rate

fluctuations inside that range (figure 4d ).

When such a pair of RCPs is combined with a form of

Hebbian plasticity which has its plasticity threshold within

the limits of the allowed activity regime, the neural activity

of the compound system naturally becomes multistable for

prolonged stimulation with the same stimulus. Within the

allowed range no RCP is active, but Hebbian plasticity is

intrinsically unstable. Thus, for a stimulus sustained longer

than the timescale of the RCP and Hebbian learning, any

value of the postsynaptic rate within the allowed region
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initialized at the same value and can freely move between hard bounds at zero and �6 times the initial value. (b) Population firing rates of the input populations
averaged over 2 s bins. Firing rates in the active pathway (solid line) are switched three times from 2 Hz to a higher rate and back (10, 20 and 10 Hz for 50 s each
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two postsynaptic neurons. The only difference between the two neurons is the choice of initial conditions of the synaptic weights. For neuron 2, the active pathway
weights are initialized at a lower value than for neuron 1. All synaptic weights exhibit triplet STDP combined with heterosynaptic plasticity [103]. ( f ) Output firing
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weights quickly saturate. Synapses in the control pathway exhibit heterosynaptic depression. (h) Same as g, but for neuron 2. The weights in the active pathway are
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will lead to either LTP or LTD until the system reaches the

limits at which either RCP rapidly intervenes by undoing

any excess LTP or LTD from there on. The compound

system exhibits therefore two, potentially stimulus depen-

dent, stable equilibrium points, one at low and one at high

activity.

Let us apply these considerations to two different sys-

tems, a sensory system and a memory system. To be

concrete, we assume that in either system the timescales of

both LTP induction and RCP are 2 s. In the sensory system,

each neuron will respond in a graded manner to short stimuli

(say, with a duration of half a second) because synapses

hardly change during a single stimulus duration. However,

the repeated stimulation with different stimuli will cause
long-lasting weight changes. The location of the high-activity

fixed point depends on the stimulus ensemble used during

stimulation. Moreover, if we drive the neuron with a

single sustained stimulus, the high-activity fixed point

adjusts on the timescale of a few seconds and reflects the

value of the input.

The case of a memory system was considered in [103].

Suppose the high-activity fixed point corresponds to a

memory retrieval state, while the low-activity equilibrium is

associated with a quiescent memory which is not being

recalled. Because both states are stable, it is irrelevant

whether the memory is recalled every other minute or once

a year. Importantly, this is different from models with rapid

FRH, which might require neuronal activity to regularly



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

37

8
turn on and off to satisfy the constraint. An example for this

is the network model by Litwin-Kumar & Doiron [14] in

which inhibitory synaptic plasticity (ISP) acts as rapid FRH

with a single activity fixed point.

We can therefore answer the third of the questions

raised in §1: ‘The functional consequences of a rapid control

mechanism with a single set point are that neurons lose the

flexibility that is necessary for coding’. The consequences

are therefore undesirable and the proposed solution is to

design RCPs that allow for several set points or a target

range of permissible activity. In the next section, we will

first discuss common ways to constrain unbounded weight

growth and explain why they are insufficient to provide

stability, before we turn to potential candidate plasticity

mechanisms which could act as RCP. Finally, we show an

example of a spiking network model based on these prin-

ciples which forms and recalls memories encoded in cell

assemblies.
 2:20160259
6. Potential mechanisms
To stabilize Hebbian plasticity, any RCP at the synaptic,

dendritic, neuronal or network level can be considered.

Owing to temporal and spatial constraints of the biological

substrate it seems most probable, however, that the fastest

mechanisms are implemented as close to the synapse

as possible.

At the synaptic level, excessive growth has traditionally

been limited by soft or hard bounds on individual synaptic

weights or other choices of explicit weight dependence of

the Hebbian and heterosynaptic terms in equation (2.2)

[8,10,25,65,82,83,104–107]. For example, to avoid bimodal

weight distributions, which sometimes arise in competitive

models, but are not observed in biology, a range of multi-

plicative plasticity models [25,82,83,104,105,108], with an

appropriate choice of the weight dependence of H in

equation (2.2), have been devised. However, bounds on indi-

vidual synaptic weights only impose an implicit constraint

on the postsynaptic activity. To see this, consider a permis-

sible range of individual synaptic strength of, say, +50%

around the initial efficacy, which seems not uncommon

for plasticity induction protocols. However, by setting

this range we do not automatically exclude the situation

in which all synapses increase their efficacy by 50%

which would in all likelihood correspond to pathological

activity levels.

To avoid such runaway activity, plasticity has to ensure

that not all synapses are potentiated or depressed equally.

Rather there should be some form of competition which

ensures that when one set of synapses is potentiated other

synapses are depressed by a certain amount. While some

degree of competition can be seen in STDP models, in

which presynaptic spikes compete in time to elicit a postsyn-

aptic spike [8,58,109,110], this competition is generally weak

[25] and without additional constraints, activity levels still

succumb to runaway effects with detrimental consequences

in recurrent neural networks [14,26,103]. Robust competition,

for instance through a BCM-like threshold [5], or explicit con-

straints on the sum of weights [10], is therefore of paramount

importance for plasticity models.

In summary, there exist multiple mechanisms to limit

growth of individual synaptic weights. However, to achieve
robust synaptic competition and stability of output firing

rates, more explicit activity constraints are required, as exem-

plified in the BCM model, or through explicit heterosynaptic

interactions, similar to Oja’s rule (cf. equation (3.1)). We have

already argued that these constraints need to be enforced

rapidly. We now ask what possible mechanisms at the

neuronal or network level could achieve that.

At the network level, RCPs might be implemented

by inhibition and ISP which could influence plasticity at

excitatory synapses either directly or indirectly. Some

theoretical forms of ISP are known to implement a rapid

form of FRH for individual neurons [14,111]. With accumu-

lating experimental evidence for ISP [95,112,113], it

therefore seems likely that synaptic inhibition influences

plasticity of excitatory synapses at least indirectly through

changes in activity. However, in experiments, the timescale

of FRH mediated through ISP appears to be relatively slow

[95] and it remains to be seen whether biological forms of

ISP can act as RCPs or whether they have a rather

homeostatic role.

However, in some cases, inhibition without ISP can have

a stabilizing effect. Lim et al. [114] have recently demon-

strated that this can indeed lead to stability of certain forms

of Hebbian plasticity. Moreover, inhibition can also directly

affect and regulate excitatory plasticity [115]. Particularly

interesting in this context are results by Delgado et al. [116],

who observed total-conductance-dependent changes of the

STDP curve depending on excitatory and inhibitory back-

ground input. Their results suggest that increased, but

balanced, excitatory and inhibitory input biases the STDP

window towards LTD and can thus act as a RCP. Delgado

et al. [116] demonstrated this in a single-neuron feed-forward

model, but it is not yet known whether these results

generalize to larger networks.

At the neuronal level, algorithmic normalization of affer-

ent synaptic weights is a commonly used mechanism to

stabilize Hebbian plasticity in network models while simul-

taneously allowing structure formation [9,10,13,14]. While

such rapid and precise scaling at the neuronal level has

been criticized as biologically implausible [5], an ‘approxi-

mate’ scaling could potentially be achieved through

heterosynaptic plasticity at the dendritic level [117].

Heterosynaptic plasticity has moved back in focus

recently because of its potential role as an RCP [39,40,

86,103,118]. Importantly, some forms of heterosynaptic plas-

ticity are fast, and provide primarily negative feedback in

response to high postsynaptic activity levels [39,119] or in

the presence of strong LTP on a dendritic segment [86].

This is reminiscent of Oja’s rule (equation (3.1)) and seems

well suited to counteract runaway LTP. In contrast to Oja’s

rule, these heterosynaptic changes are induced by bursts of

postsynaptic activity which implies that the quadratic term

y2
i in equation (3.1) should be replaced by a term that is trig-

gered either by firing rates yi above some threshold [118] or

by a higher power such as y4
i [103].

In models which also show runaway LTD at low activities

(e.g. [27,63]), an additional RCP is needed which either

saturates or counteracts LTD. Possible forms of plasticity

include, but are not limited to, transmitter-induced plasticity,

homeostatic scaling-up or spontaneous spine formation.

In the following section, we review a plasticity model

which combines Hebbian plasticity with two RCPs that

enable more than a single set point of neuronal activity. We
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also discuss, in the context of the model, the potential role of

additional slow homeostatic mechanisms.
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7. Learning and recall in a recurrent spiking
network model

We now discuss a learning rule which combines a plaus-

ible model of Hebbian plasticity with two additional RCPs

[103]. For sensible combinations, this compound model

does not suffer from the runaway effects of purely Hebbian

plasticity and exhibits intrinsic multistability instead

(cf. figure 4d ).

The basic logic of multistable plasticity can be summar-

ized as follows. At high activity levels, a rapid form of

heterosynaptic plasticity limits runaway LTP and creates

synaptic competition. Similarly, at low activity levels, an

unspecific form of plasticity which only depends on presyn-

aptic activity prevents runaway LTD. The well-orchestrated

interplay between these adversarial plasticity mechanisms

dynamically creates multistability of neuronal activity and

prevents pathological runaway effects.

Our approach is quite general and many Hebbian plas-

ticity models can be stabilized through the addition of two

non-Hebbian forms of plasticity. For illustration purposes,

we now focus on the triplet STDP model for which biologic-

ally plausible sets of model parameters exist [27]. To prevent

runaway LTP, we require a mechanism which balances out

potentiation at high activity levels. To that end, we use a

form of weight-dependent, multiplicative heterosynaptic

depression [40,103,118]. Our choice of a purely heterosynap-

tic RCP is one possibility, but other homosynaptic forms of

plasticity could achieve similar results. For instance, ‘hetero-

synaptic’ LTD [23,120] which requires low presynaptic

activity for depression in the unstimulated pathway, is one

possibility. In short, as long as LTP in a strongly stimulated

pathway is accompanied by either ‘no change’ or synaptic

depression of synapses with low levels of presynaptic

activity, runaway LTP can be avoided. To similarly prevent

runaway LTD in our model, we introduced a hypothetical

form of transmitter-induced plasticity. Together the three

plasticity mechanisms—Hebbian plasticity and two RCPs—

work in symphony to generate stable levels of neuronal

activity.

Let us consider the weight wij from a presynaptic neuron j
to a postsynaptic neuron i. Although the full model is an

STDP model, we now express its core ideas in terms of a

rate model of the pre- and postsynaptic rates xj and yi:

dwij

dt
¼ d � xj

|ffl{zffl}

Transmitter-induced

þh � xjyi(yi � u)
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Triplet model

�b � (wij � ~wij)y4
i

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Heterosynaptic

:

ð7:1Þ

Here, d and b are strength parameters for the two non-

Hebbian components of the plasticity model; h is the strength

parameter (learning rate) for Hebbian plasticity; and ~wj

serves as a reference weight that can be related to consolida-

tion dynamics [54,103]. Note, because the negative feedback

plasticity mechanisms are ‘rapid’, there is no low-pass filtered

variable �y in this expression. Runaway effects which normally

would occur in the triplet STDP model without RCPs

(figure 5a–d) are avoided with the additional plasticity
mechanisms. Owing to its rapid action and the high power,

the heterosynaptic term in equation (7.1) acts as a burst

detector [118] which dominates at high activity levels and

prevents LTP runaway dynamics (figure 5e,f ).
For sensible choices of d and b, neuronal firing rates

remain in intermediate regimes (figure 5f ) and synaptic

weights in the model converge towards stable weights ŵ
whose values are dependent on the activation history and

enable the formation of long-term memories (figure 5g).

Importantly, the model preserves the plasticity threshold

between LTD and LTP of the original triplet STDP model.

The triplet STDP model together with the non-Hebbian plas-

ticity mechanisms, dynamically creates one unstable and two

stable equilibrium points. The activity level of the higher

stable fixed point depends on the stimulus. In particular, it

is sensitive to the number, firing rate and temporal structure

of the active synaptic inputs and a stronger stimulus will

typically result in a higher steady-state response. For any

given stimulus, synaptic weights converge rapidly towards

one of two possible stable equilibrium states (figure 5f–h).

First, there is a ‘selective’ equilibrium state associated with

high postsynaptic activity. In this state, some weights are

strong while other weights onto the same postsynaptic

neuron remain weak. Thus, the neuron becomes selective to

features in its input (neuron 1 in figure 5f,g). Second, there

is a ‘non-selective’ equilibrium at low activity (figure 5f,h).

Which fixed point a neuron converges to depends on its

initial conditions, lateral interactions and the details of the

activation pattern (figure 5g,h). Once weights have converged

to one of the respective stable states, they keep fluctuating,

but do not change on average. As the RCPs do not impose

a single set point, activity patterns are not unlearned when

a certain input is kept active (inactive) for extended periods

of time (compare figure 5d with 5g,h).

As a result, neuron 2 shown in figure 5h shows ‘no learn-

ing’ which seems undesirable at first. However, it is in fact

useful for such a stable equilibrium to exist when learning

is considered as a network phenomenon. Other neurons

(neuron 1 in our case) already are selective and code for a

given stimulus. Analogously, neuron 2 might in fact code

for a different stimulus which is not active at the moment,

in which case we would like to perturb it as little as possible

while other neurons ‘learn’ (figure 5h). Similar dynamics can

be achieved in learning models with strong lateral inhibition

which completely suppresses neuronal activity and thus

also associative plasticity. In the present scenario, however,

this is not the case. Neuron 2 is still firing with some low

background activity throughout (figure 5f ).

There are several aspects worth noting about the model.

First, heterosynaptic plasticity not only stabilizes Hebbian

plasticity in the active pathway, it also introduces synaptic

competition between the active and the control pathway

(figure 5g). In contrast to BCM-like models in which hetero-

synaptic depression of the inactive pathway depends on

intermediate periods of background activity in between

stimuli [23,88], here the heterosynaptic depression happens

simultaneously with LTP induction (figure 5g). Second,

although the learning rule effectively implements a rapid

redistribution of synaptic weights reminiscent of synaptic

scaling, it is still a fully local learning rule which only

depends on information that is available at the synapse (cf.

equation (7.1)). Third, although the learning rule effectively

implements bistable dynamics for each stimulus, the
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‘selective’ equilibrium level remains stimulus dependent,

which allows the neuron to respond in a graded and reprodu-

cible way to input stimuli of varying intensity (figure 6).

Fourth, in general the reference weight ~w is not fixed, but fol-

lows its own temporal dynamics on a slower timescale

(�20 min and more). Such slow complex synaptic dynamics

are essential to capture experiments on synaptic consolida-

tion [50,54,121], but could similarly be used to model slow

forms of homeostatic plasticity [17].

Finally, the stability properties of the learning rule in

equation (7.1) are not limited to simple feed-forward circuits,

but generalize to more realistic scenarios. Specifically, the

combination of heterosynaptic and Hebbian plasticity enables

stable online learning and recall of cell assemblies in large

spiking neural networks (figure 7a,b; [103]). Stationary

firing rates in the model depend on the connectivity pattern

and the spiking statistics of active inputs. In a recurrent net-

work, however, output spike trains pose as inputs to other

neurons. As a non-trivial consequence, stationary solutions

of the network state exhibit firing rate distributions which

are unimodal and long-tailed (figure 7c,d). Individual neur-

onal firing rates only stabilize under stationary conditions.

If the rates are non-stationary, for instance, owing to the

inclusion of additional adaptation processes in the neuron

model, rates in the model drift on behavioural timescales

(see Zenke et al. [103] for details).

In summary, orchestrating Hebbian plasticity and RCPs

on comparable timescales dynamically generates multistabil-

ity. This reconciles the experimentally observed fast induction

of synaptic plasticity with stable synaptic dynamics and stab-

ility of learning and memory at the single neuron level as well

as in large networks. However, there are a few caveats with

this approach which we will discuss in the following section.
8. Problems of rapid compensatory processes
at the single neuron level

Consider a population of neurons with plastic synapses

which follow intrinsically stable plasticity dynamics such as

the ones described in §7. To encode and process information

efficiently, neuronal populations need to create internal rep-

resentations of the external world. Doing this efficiently

requires the response to be sparse across the population. In

other words, only a subset of neurons should respond for
each stimulus. Moreover, different stimuli should evoke

responses from different subsets of neurons within the popu-

lation to avoid all stimuli looking ‘the same’ to the neural

circuit. Finally, individual neurons should respond sparsely

over time. Imagine a neuron which is active for all possible

stimuli. It would be as uninformative as one which never

responds to any of the inputs. Therefore, to represent and

process information in neural populations efficiently, differ-

ent neurons in the population have to develop selectivity to

different features.

Multistable plasticity at the neuronal level as described

above does not prevent neurons from responding weakly to

all stimuli (see, for example, Neuron 2 in figure 5f ). This is

a direct consequence of the fact that the model presented

here does not have a sliding threshold like the BCM model.

Moreover, with more similar initial conditions and in the

absence of lateral inhibition both Neurons 1 and 2 could

have developed selectivity to the same input. Thus, in a

large network in which all synapses are changed by the

intrinsically stable plasticity rule introduced above, all neur-

ons could end up responding to the same feature. How can

such an undesired outcome be avoided?

To successfully implement network functions like the

ones shown in our example (figure 7), several network par-

ameters and properties of the learning rules themselves

need to be fine-tuned and maintained in sensible parameter

regimes. For instance, successful learning as demonstrated

by Zenke et al. [103], depends on sensible choices of the initial

synaptic weights and connectivity values. To achieve the

necessary degree of tuning and maintenance, biological net-

works presumably rely on additional forms of plasticity

which drive the network towards a dynamical state which

is conducive for learning. However, due to the intrinsic

stability of the learning rule, these additional mechanisms,

for instance, a BCM-like sliding threshold, can now safely

operate on much longer timescales. This suggests that

homeostatic plasticity and metaplasticity could fulfil this

fine-tuning and maintenance role.
9. What is the role and scope of slower
homeostatic plasticity mechanisms?

Diverse homeostatic mechanisms exist in the brain at differ-

ent temporal and spatial scales [123–127]. We have argued
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that RCPs are important for stability, but what advantages do

slow homeostatic mechanisms have and what is their

computational role?

An advantage of slow homeostatic processes is that they

can integrate activity over long timescales to achieve precise

regulation of neural target set points [25,38,89]. Longer inte-

gration times also allow integration of signals from other

parts of a neural network which take time to be transmitted

as diffusive factors [124,128]. Slower homeostasis thus

seems well suited for control problems which either require

fine-tuning or a spatially distributed homeostatic regulation

of functions at the network level.

There are at least two important dynamical network

properties which are not directly controllable by neuronal-

level RCPs (equation (7.1)). First, temporal sparseness at the

neuronal level is not automatically guaranteed. A neuron

that never responds to any stimulus will never learn to do

so under multistable plasticity if the LTP threshold is too

high. Similarly, a neuron that always responds is uninforma-

tive, but will not change its behaviour if the LTD threshold is

too low. Second, spatial sparseness at the network level, in

the sense that for any stimulus a subset of neurons responds,

is also not automatically guaranteed. Lateral inhibition is a

suitable candidate to decorrelate responses of different neur-

ons in a network, but, as excitatory synapses change during

learning, the strength of lateral inhibition needs to be

co-regulated.

The problem of temporal sparseness can be solved by any

mechanism which ensures that a neuron which has been

completely silent for very long, eventually ‘gets a chance’ to

reach an activity level above the LTP threshold. This can be

achieved by either lowering the threshold as in the BCM

theory [5,88,103] or by slowly increasing the gain of either

the neuron itself or the excitatory synapses through other
forms of slow homeostatic plasticity [17,129,130]. Finally,

similar homeostatic effects could be achieved by dis-

inhibition through the action of neuron specific ISP [112] or

by decreasing the response of inhibitory neurons [33,131].

Conversely, a neuron that is uninformative because it is

always active could decrease its response to some stimuli

by the opposite action of one or several of the homeostatic

mechanisms mentioned above, such as increased inhibition,

reduced excitation, or reduced excitability.

While it is conceivable that mechanisms addressing

the issue of temporal sparseness could act locally at the

neuronal level, it is clear that enforcing spatially sparse activity
at the population level can only be achieved in a non-

local manner. A common approach to guarantee spatial

sparseness in models is to include lateral inhibition, as done

in subspace learning algorithms [132,133], sparse coding

paradigms [134,135], or models of associative memory

[14,103,136–140]. However, achieving appropriate levels of

inhibition can be difficult, especially if excitatory synaptic

weights are not static, but change over time and on a per

neuron basis [111]. To solve this task in biological networks,

ISP would be a natural candidate. However, most existing

models of ISP are purely local and tune inhibition on a per

neuron level [111,112,141]. More specifically, ISP acts as a

neuronal RCP which rapidly drives firing rates to a single

stable set point (cf. figure 4) [111]. To achieve a certain level

of spatial sparseness through any form of homeostatic plas-

ticity, requires a signal with a wider scope which encodes

network activity [124,128]. Using such a signal, it is then

possible to modulate plasticity [73]. For example, in Zenke

et al. [103] ISP is modulated by a low-pass filtered signal

which encodes network activity. As a result, the combination

of intrinsically multistable plasticity at excitatory synapses

and ISP, ensures that recurrent inhibition is tuned to a level
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where only one cell assembly can be active at any given time.

Importantly, this homeostatic mechanism does not have to be

permanently active. For instance, once the inhibitory feed-

back within the model is tuned to the ‘sweet spot’ at which

the network can operate, ISP can be turned off safely without

impairing stability. Similarly, it seems likely that some forms

of homeostatic plasticity could be dormant for most of the

time and spring into action only during the initial phase of

development [142] or when an extreme external manipu-

lation changes the network dynamics [1].

We are thus able to answer the final question from §1 as

follows: ‘Slow homeostatic mechanisms tune parameters of

plasticity rules and neurons to enable efficient use of the

available resources in networks’. For example, for the sake

of efficiency, no neuron should never be active; no neuron

should always be active; the number of neurons that respond

to the exact same set of stimuli should stay limited.
372:20160259
10. Discussion
Taken together with the results from §§2–9, these insights

suggest two distinct roles for negative feedback on different

timescales. First, RCPs on short timescales stabilize Hebbian

plasticity and make synapses onto the same neuron compete

with each other. Heterosynaptic plasticity is likely to play a

major role for these functionalities. Second, homeostatic

mechanisms on slower timescales achieve fine-tuning of mul-

tiple network parameters. A slow shift of the threshold

between LTD and LTP, the slow rescaling of all synaptic

weights, or a slow regulation of neuronal parameters, are

good candidates for these functionalities. Some of these

slow mechanisms could be important only in setting up the

network initially or after a strong external perturbation to

the circuit. This view, however, raises an important question:

Why do many modern plasticity models not include built-in

RCPs, whereas classic models do?

(a) Why are rapid compensatory processes missing in
many spike-timing-dependent plasticity models?

Modern plasticity models try to capture a diversity of experi-

mental data from rate-dependent [45], voltage-dependent

[87] and spike-timing-dependent [68–70] plasticity experi-

ments. One salient feature captured by most models

[27,61,63,65,93] is the notion of a plasticity threshold which

correlates with postsynaptic voltage, calcium concentration,

postsynaptic firing rate, or other neuronal variables related

to postsynaptic activation (figure 3a). Interestingly, most

existing STDP models, although often explicitly fitted to

data, are purely Hebbian and do not include the notion of

RCPs. If such a rapid mechanisms exist—which is what we

argue here—then how can it be that existing plasticity

models without them can quantitatively capture the data

from experiments?

There are presumably three main reasons for this. First,

STDP experiments typically manipulate a single pathway,

either by stimulating a presynaptic neuron or a bundle of pre-

synaptic axons. Sometimes a designated control pathway

(i.e. a second presynaptic neuron) is missing, or, if it is not

missing, the effect size in the control pathway is considered

as weak. However, from a theoretical perspective, we

expect that heterosynaptic effects caused by stimulation of
one presynaptic pathway are weak when measured at only

one ‘control’ synapse; a weak change at individual synapses

could still have a strong accumulated effect over thousands of

synapses. Therefore, even weak heterosynaptic plasticity

could act as a strong RCP [40,103,118].

Second, in an STDP experiment with 60 repetitions of pre-

post-pairs, the total activation of the postsynaptic neuron is

still in a reasonable regime. Therefore, it is unclear whether

the ‘burst-detector’ for heterosynaptic plasticity would be

triggered [40,103,118].

Third, experiments typically rely on repeated pre- and

postsynaptic activation. Moreover, during the induction

protocol, synaptic efficacy changes are usually not observ-

able. Plasticity models are thus fitted to pairs of initial and

final synaptic strength. However, the unobserved intermedi-

ate synaptic dynamics during a standard LTP induction

protocol could be qualitatively very different (figure 8), but

are obscured in experiments by measurement artefacts as

well as short-term plasticity riding on top of the induced

Hebbian LTP. These differences in the dynamics contain the

answers to questions such as: Is the final synaptic strength

stable or would it increase further with additional pairings?

Is there a threshold number of pairings that needs to be

reached for an all or nothing effect?

Because the detailed internal dynamics of synapses

during induction are not known, different plasticity models

make different assumptions about the saturation of weights.

Owing to the limited amount of experimental data, it is pos-

sible to construct a diversity of different models which are all

consistent with the data. For instance, the Zenke et al. [103]

model discussed in this paper is based on the triplet STDP

model, and therefore consistent with existing STDP data,

but it includes additional non-Hebbian RCPs. Although

the presence of these added processes is important for net-

work stability, their overall contribution to simulated STDP

protocols is negligible. So, how can one verify or disprove

the existence of RCPs experimentally?
(b) How can we further constrain plasticity models by
experiments?

There are multiple ways in which synaptic plasticity models

could be constrained better through additional data. In the

past, a large body of research has focused on homosynaptic
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associative plasticity, also called Hebbian plasticity, using

pairing experiments with various protocols such as STDP.

Here, we argue that heterosynaptic plasticity as well as

transmitter-induced plasticity or similar stabilizing plasticity

mechanisms are as important as Hebbian plasticity due to

their crucial role for network stability.

Heterosynaptic plasticity and heterosynaptic effects

mediated through metaplasticity [23,120,143] are promising

candidates to stabilize Hebbian plasticity models against run-

away LTP [26,40,103,118]. While heterosynaptic plasticity has

been observed in various experiments [39,117], a conclusive

picture and data-driven models are still scarce. Is it possible

to measure the timescale, frequency dependence and

weight dependence of neuron-wide heterosynaptic

depression by manipulating the stimulation of the postsyn-

aptic neuron? Does ‘pure’ heterosynaptic plasticity exist in

the absence of presynaptic activity or is a slight activation

of the presynaptic pathway always necessary to induce

changes [120]? Another important question for the interpret-

ation of heterosynaptic plasticity is whether it causes mostly

synaptic depression similar to LTD or if it rather prevents or

even resets early LTP through depotentiation at the unstimu-

lated pathway [144]. Finally, the role of heterosynaptic
metaplasticity [143] remains largely elusive.

Transmitter-induced plasticity is important in models and

might be present in many experiments, even though it has

not been reported as such. Here, we have interpreted trans-

mitter-induced plasticity as a potentially weak form of LTP

that is caused by presynaptic firing in the absence of postsyn-

aptic activity. Why is this form of plasticity important?

Suppose you have a network of neurons firing at low activity,

so that any given neuron can be considered a weakly active

postsynaptic neuron. As low activity typically induces LTD,

many plastic network simulations have the tendency to fall

silent. To compensate for this, theorists have either intro-

duced lower bounds on synaptic weights or added weak

LTP triggered by presynaptic activity [103,114]. How realistic

are these assumptions?

Direct experimental evidence for such terms would, for

instance, be the growth of synaptic efficacy during low

activity ‘pre only’ stimulation. Such a term would manifest

as a systematic positive drift of baseline in an experiment

and could thus be easily interpreted as an unwanted instabil-

ity [145,146]. From a theoretical standpoint, the importance of

such a term—even if only weak—makes it an interesting

target for future studies.

Finally, transmitter-induced plasticity could be replaced

by a growth term without explicit presynaptic dependence.

A plausible candidate for such a mechanism would for

instance be spontaneous spine growth in the vicinity of a pre-

synaptic axon. However, whether or not these rates would be

on the correct timescale to compensate for LTD effects

requires further theoretical investigation.

Consolidation of synapses is summarized in the present

model by a reference weight ~w [54,103]. Simulations predict

that synaptic consolidation renders synapses inert against

heterosynaptic plasticity. Intuitively, the measured synaptic

weights become ‘sticky’ and are always attracted back

to their momentary stable state, i.e. weak or strong. This

prediction requires future experimental clarification.

The path towards saturation of synaptic weights during a pair-

ing experiment (figure 8) is vital to building better plasticity

models. Virtually any information which helps theorists to
constrain how the synaptic weight increases would be help-

ful. Importantly, this also includes any information about

conditions (or experimental protocols) which do not induce

plasticity, despite the fact that either the presynaptic or the

postsynaptic neuron or both have been activated.
11. Conclusion
One of the most striking differences between plasticity models

and experimental data concerns their timescales. Hebbian plas-

ticity can be induced within seconds to minutes [45,68,69,87].

In simulated network models, a similarly fast form of Hebbian

plasticity leads to runaway activity within seconds, unless

Hebbian plasticity is complemented with RCPs. Here, ‘rapid’

means that these changes need to take effect after seconds or

at most a few minutes [26]. This, however, is much faster

than homeostatic plasticity observed in experiments. One of

the most extensively studied forms of homeostasis in experi-

ments is synaptic scaling [1] which proportionally scales

synapses up or down when the network activity is too low or

too high, respectively. However, even the fastest known

forms of scaling take hours to days to cause measurable

changes to synaptic weights (figure 1; [15,29,30]).

This apparent difference of timescales between RCPs

required for stability in models and experimental results is

a challenge for current theories [17,26,118,147]. To reconcile

plasticity models and stability in networks of simulated neur-

ons, we need to reconsider models of Hebbian plasticity and

how they are fitted to data.

In most plasticity induction experiments, neither the time

course of the manipulated synaptic state nor the precise

changes of other synapses are observable during stimulation.

Quantitative models of synaptic plasticity thus make minimal

assumptions about these unobserved temporal dynamics and

generally ignore heterosynaptic effects entirely. In other

words, missing experimental data makes it possible to build

different models which all capture the existing experimental

data, but make different assumptions about the unobserved

dynamics. Importantly, some of these models become intrin-

sically stable [10,57,118] or even multistable [17,103]. In most

situations, these models can be interpreted as compound

models consisting of Hebbian plasticity and forms of RCPs

which only rely on quantities that are locally known to the

synapse, i.e. the pre-postsynaptic activity as well as its own

synaptic weight. Although such local forms of plasticity can

solve the problem of stability at a neuronal level, in practice,

most network models require additional fine-tuning of par-

ameters to achieve plausible activity levels across a network

of neurons. This role can be fulfilled by slow homeo-

static mechanisms which act on timescales of hours or days,

consistent with experimental data on homeostatic plasticity.

In summary, several theoretical arguments suggest that

Hebbian plasticity is intrinsically stabilized on short time-

scales by RCPs, likely to be implemented as heterosynaptic

plasticity, or network-wide negative feedback mechanisms.

Slow forms of homeostatic plasticity, on the other hand, set

the stage for stable learning. This hypothesis will now have

to stand the test of time. It will thus be an important

challenge for the coming years to go beyond homosynaptic

Hebbian plasticity and to gain a more complete understand-

ing of its interactions with a diversity of compensatory

processes across timescales.
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Endnotes
1As an aside, we note that the term ‘heterosynaptic plasticity’ is
sometimes also used for synaptic changes that are visible at the
connection from a presynaptic neuron j to a postsynaptic neuron i,
but induced by the activation of a third, typically modulatory
neuron [78]. However, in this paper we do not consider this
possibility.
2Strictly speaking, the notion of a ‘timescale’ is meaningless for a
nonlinear differential equation like equation (3.3), it is only defined
for linear dynamical systems. The notion can be rescued, however,
in the vicinity of a fixed point around which the system can be lin-
earized. We refer the interested reader to the electronic
supplementary material where we provide additional information
on this important, but technical issue.
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