
INTRODUCTION

Neuroinflammation is a response produced by the activation of 
the brain’s immune system due to various causes ranging from in-
fection to autoimmunity. Among the immune cells in the brain are 
microglia, considering as resident macrophage [1]. Accumulating 
evidence has demonstrated that reactive microglia/macrophage 
play a critical role in the cause and progression of cell death in 
various neurodegenerative diseases including Parkinson’s disease 

(PD), Alzheimer’s disease (AD) and stroke [2, 3]. Reactive microg-
lia/macrophage exhibit large cell bodies with short, thick or no 
processes and exert neurotoxic effects by producing inflammatory 
cytokines, which consequently triggers severe neuroinflammation 
[4].

Astrocytes are the most abundant glial cells in the brain and exert 
neuroprotection by producing various neurotrophic factors such 
as ciliary neurotrophic factor (CNTF) [5, 6], mesencephalic astro-
cyte-derived neurotrophic factor (MANF) [7] and glial cell line-
derived neurotrophic factor (GDNF) [8]. Astrocytes are required 
to maintain the blood brain barrier (BBB) integrity [9], which was 
destructed in neurodegenerative diseases [10]. BBB protects the 
brain from potential neurotoxic molecules in circulation because 
the BBB helps regulate ion balance, nutrient transport, the entry of 
plasma components and blood cells [9, 11]. Many studies includ-
ing ours showed that BBB damage contributes to neurodegenera-
tion in the striatum of 3-NP-treated mice [12] or 6-OHDA-treated 
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rats [13], and in the substantia nigra of lipopolysaccharide (LPS)-
treated rats [14]. 

Interleukin-13 (IL-13) is well known anti-inflammatory cyto-
kine and has diverse immunomodulatory functions on cell repair 
and regeneration in the brain [15, 16]. IL-13 is expressed in reac-
tive microglia in the brain and can produce both beneficial and 
harmful effects on neurons in vivo and in vitro [4, 17-19]. IL-13 
increases oxidative stress, resulting in neurodegeneration in the 
hippocampus of amyloid beta (Aβ)1-42 [20] or prothrombin krin-
gle-2 (pKr-2)-treated rats [4] and in the substantia nigra of LPS-
treated mice [21]. On the other hand, IL-13 controls neuroinflam-
mation and contributes to neuronal survival in LPS-treated rat 
cortex [22], in the pMCAo mouse model of cerebral ischemia [23] 
and in mouse model of multiple sclerosis [24].

Here we report that in LPS-injected rat striatum, IL-13 endoge-
nously expressed in reactive microglia/macrophage contributes to 
degeneration of striatal neurons by destructing BBB integrity and 
astrocytes and inhibiting expression of neurotrophic factors on 
astrocytes such as CNTF and conserved dopamine neurotrophic 
factor (CDNF). The present data suggest that IL-13 is harmful to 
striatal neurons of LPS-lesioned rat in vivo. 

MATERIALS AND METHODS

Animals and stereotaxic surgery 

All surgical experiments were performed following the approved 
animal protocols and guidelines established by Committee on 
Animal Research of Kyung Hee University (KHSASP-21-364) to 
minimize suffering and the number of animals. Female Sprague–
Dawley (SD) rats (230-260 g, purchased from Daehan Biolink, 
introduced from Taconic Co., USA) were housed under a 12:12 hr 
light: dark cycle at an ambient temperature of 21~23℃. Through-
out animal housing and the experiment, water and rat chow were 
available ad libitum. 

Stereotaxic surgery was carried out as described [5]. SD rats anes-
thetized by intraperitoneally injection of chloral hydrate (360 mg/
kg, intraperitoneal injection) received unilateral administration of 
LPS (5 µg in 3 µl Dulbecco’s phosphate-buffered saline (PBS)) into 
the right striatum [anteroposterior (AP) +0.7 mm, mediolateral 
(ML) -2.8 mm, and dorsoventral (DV) -5.0 mm from bregma], 
according to the atlas of Paxinos and Watson (Paxinos, 1998, The 
Rat Brain in Stereotaxic Coordinates 6th Edition). Injections of 
LPS or PBS or rat recombinant IL-13 (IL-13 (50 ng/3 µl) / (300 
ng/3 µl); R&D Systems) as a control were made using a Hamilton 
syringe equipped with a 30 S-gauge beveled needle and attached 
to a syringe pump (KD Scientific, MA, USA), at a rate of 1 µl/
min. To neutralize function of IL-13, some animals stereotaxically 

received LPS with anti-murine IL-13-neutralizing antibody (IL-
13NA; 1 µg/µl; R&D Systems). IL-13NA alone or nonspecific goat 
IgG alone (goat IgG; 1 µg/µl; R&D Systems) as controls was also 
administered [4, 20, 25]. At the completion of each injection, the 
needle was left in place for 10 min and then slowly withdrawn. 
Animals were humanely sacrificed using an overdose of chloral 
hydrate and their brains harvested at indicated time points for the 
various analyses. 

Tissue preparation and immunohistochemistry 

As described [4, 26] rat brain tissues (40 µm thickness) were 
rinsed in PBS and then, incubated with the following primary 
antibodies: mouse anti-neuron-specific nuclear protein (NeuN; 
1:1000; Merck millipore) for general neurons, and mouse anti-
OX-42 (1:400; Bio-rad), which recognizes complement receptor 
3; mouse anti-ED1 (1:5000; abcam), which recognizes specific for 
glycosylated lysosomal antigen for microglia; rabbit anti-GFAP 
(1:50000; Neuromics) for astrocyte. The next day, for light micros-
copy, tissue sections were rinsed and incubated with the appropri-
ate biotinylated mouse (1:400; KPL, MD, USA) or rabbit (1:400, 
KPL, MD, USA) secondary antibody and followed by avidin-
biotin-peroxidase complex (Vectastain ABC kit; Vector Labora-
tories, Burlingame, CA, USA) for 1 hr at room temperature. The 
bound antiserum was visualized by incubating with 3,3’ diamino-
benzidine (DAB: Sigma) solution under a bright-field microscope 
(Olympus Optical, Tokyo, Japan).

For immunofluorescence staining, tissue sections were incubated 
overnight at RT in a combination of following primary antibodies: 
mouse anti-OX-42, mouse anti-GFAP (1:500, Sigma), mouse anti-
NeuN, goat anti-IL-13, rabbit anti-CDNF (1:400, Abnova), rabbit 
anti-CNTF (1:400, Santa-Cruz). After washing in PBS containing 
0.5% BSA, the sections were incubated simultaneously with a mix-
ture of following secondary antibodies for 1 hr at RT. Alexa Fluor 
594-conjugated anti-goat IgG (1:500, Invitrogen) with a Fluoresce-
in conjugated anti-mouse IgG (1:500, Invitrogen); Cy3-conjugated 
anti-rabbit IgG (1:1000, Sigma) with a Fluorescein conjugated 
anti-mouse IgG. The stained tissue sections were viewed under 
confocal laser-scanning microscope (Carl Zeiss, Germany).

For Nissl staining, 40 µm thick coronal sections of the striatal 
regions of the brain were mounted on Amininosian coated slides, 
dried for 1 hr at RT, dehydrated in 100% ethanol, cleared in xylene, 
hydrated in decreasing alcohol gradient, stained with 0.5% cre-
syl violet (Sigma), washed in distilled water, dehydrated in 100% 
ethanol, coverslipped, and then viewed under a bright-field micro-
scope (Olympus Optical).
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Striatal cell counting 

Tissue sections (40-um-thick coronal sections) were collected 
in six separate series and selected 4 evenly spaced sections from 
anterior to posterior in the striatum region. Cell counts and evalu-
ation of immunoreactivity were then conducted using Adobe 
Photoshop CS6. Every selected section passed through the stria-
tum region, containing up to 4.6×105 µm2 of the striatum for DAB 
staining. Finally, immunopositive cells were counted using the 
“count tool” under the Analysis menu. 

Image J analysis 

Imaging data obtained from bright-field microscope and confo-
cal microscope were analyzed as pixel values using the Image J 
program (National Institutes of Health, Washington County, MD, 
USA). Image J was used to quantify the chromogenic signal inten-
sity of images adjusted above the threshold to rule out unspecific 
background signal. For measurement of IL-13, CDNF, CNTF, 
FITC-labeled albumin, images were transformed to 8-bit grayscale 
and adjusted at the endpoint of threshold histogram. Then the 
pixel value was quantified and normalized by unstained area. For 
measurement of IL-13 within OX-42+ microglia/macrophages, 
and CDNF or CNTF within GFAP+ astrocytes, GFAP(-) area and 
leakage of FITC-labeled albumin from blood vessels, the adjusted 
images of each channel are colocalized using a colocalization plu-
gin, then the overlaid signal are quantified.

FITC-labeled albumin assay

As previously described [14] with some modifications, a fluo-
rescein isothiocyanate (FITC)-labeled albumin (Sigma) assay 
was carried out in order to analyze damage of BBB. Animals were 
anesthetized with chloral hydrate and killed after LPS or PBS 
injections. In all animals, heparin (10 U/ml in Hank’s Balanced 
Salt Solution) was injected into common carotid artery following 
cardiac puncture. Immediately after heparin was injected, 10 ml 
FITC-linked albumin (5 mg/ml, in 0.1 M PBS buffer) was simi-
larly infused at a rate of 1.5 ml/min. Within 2 min, the brains were 
removed and immersed immediately into a 4% paraformaldehyde 
solution (dissolved in 0.1 M PBS) at 4℃ for 1 day; then, the brains 
were cryoprotected in 30% sucrose. The brains were cut on a slid-
ing microtome in 40-µm-thick coronal sections. The sections were 
collected, floated in 0.1 M PBS, and mounted on gelatin-subbed 
glass slides. The sections were dried and coverslipped using Vecta-
shield mounting medium (Vector Laboratories). To quantify the 
total area of FITC-linked albumin leakage, two images of striatal 
regions were obtained, thresholded using Image J, quantified, and 
normalized by value obtained in PBS injected striatum.

Statistical analysis

Statistical analyses were performed using GraphPad Prism 5 
(GraphPad Software., San Diego, CA, USA). Results are expressed 
as mean ± standard error of the mean (SEM). For statistical 
evaluation between two groups, p value was assessed by Student’s 
unpaired t-test. For comparison of multiple groups, p value was 
assessed by one-way of variance (ANOVA) with Newman–Keuls 
analysis. p<0.05 was considered to indicate statistical significance.

RESULTS

Interleukin 13 on microglia contributes to  

neurodegeneration of LPS-injected rat striatum in vivo

LPS (5 µg) or PBS as a control was unilaterally microinjected into 
the striatum of rats. Seven days later, brains were removed, and 
coronal sections were processed for neuronal nuclei (NeuN) im-
munohistochemical staining to detect general neurons and Nissl 
staining on the same sections. In the striatum treated with LPS, 
we observed dramatic reductions in the number of NeuN+/Nissl+ 
cells (Fig. 1C, F) compared with PBS-treated striatum (Fig. 1A, F). 

Fig. 1. Interleukin-13 contributes to neurodegeneration of LPS-injected 
rat striatum in vivo. Animals unilaterally received intrastriatal injection of 
PBS (A, 3 µl) or non-specific IgG (IgG) only (B, 1 µg) as a control, LPS (C, 
5 µg), LPS+IgG (D, 1 µg) and LPS+Interleukin 13 neutralizing antibody 
(IL-13NA) (E, 1 µg). (A~E) At 7 days after LPS injection, animals were sac-
rificed, and the coronal sections (40 µm) were selected and processed for 
neuronal nuclei (NeuN) immunohistochemical staining and Nissl stain-
ing. Arrowheads indicate NeuN+ cells merged with Nissl+ cells (NeuN+/
Nissl+). (F) Number of NeuN+/Nissl+ cells in the striatum at 7 days after 
LPS injection. #p<0.001, as compared with PBS, *p<0.001, as compared 
with LPS+IgG. One-way ANOVA and Newman–Keuls analyses. Four to 
eleven animals were used for each experimental group. The results repre-
sent mean±SEM. Scale bar, (A~E) 25 µm.
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Moreover, PBS-treated striatum had a clearly defined nucleus and 
prominent Nissl substances (Fig. 1A) when compared with LPS-
treated striatum, exhibiting a significant loss of Nissl substances 
with gliosis (Fig. 1C). These observations indicated that NeuN+ 
neurons in the striatum were substantially destructed. 

Accumulating evidence, including ours [14] have shown that 
LPS-activated microglia produce IL-13, contributing to neurode-
generation in vivo. Accordingly, we determined the activation of 
microglia in the striatum by LPS in vivo. Sections adjacent to those 
used in Fig. 1 were processed for immunohistochemical stain-
ing using antibodies against OX-42 and ED1 to detect microglial 
activation. In PBS-treated striatum, the majority of OX-42+ mi-
croglia exhibited resting morphology, specifically cell bodies and 
thin, long, or ramified processes (Fig. 2A). In marked contrast and 
consistent with our recent report [14], LPS triggered profound ac-
tivation of microglia with activated morphology (larger cell bodies 
with short, thick, or no processes) in OX-42+ cells (Fig. 2B). The 

data also showed that microglia appeared to reach a state like that 
of active phagocytes (Fig. 2D), as determined by ED1 immunohis-
tochemical staining, which labels phagocytic microglia, in particu-
lar, the presence of accumulating intracellular lipid vacuoles [27]. 
ED1+ cells were undetectable in the striatum on the PBS-treated 
control (Fig. 2C).

Next, we investigated whether LPS-activated microglia could 
produce IL-13 in the striatum. LPS or PBS as a control was in-
jected into the striatum and striatal sections were processed for 
immunofluorescence for IL-13 at indicated time points. There was 
no substantial increase in IL-13 expression at 1 day post LPS (Fig. 
2F, I), compared to PBS-injected control (Fig. 2E, I). By contrast, 
dramatic increases in IL-13+ cells were observed as early as 3 days 
after LPS injection (Fig. 2G, I), which was maintained up to 7 days 
after LPS injection (Fig. 2H, I), compared to PBS-injected control 
(Fig. 2E, I).

Expression of IL-13 was analyzed in OX-42+ microglia, GFAP+ 
astrocytes and NeuN+ neurons at 7 days post LPS. Double immu-
nofluorescence staining showed that in LPS-injected striatum, IL-
13 was merged exclusively within OX-42+ microglia (Fig. 2K), but 
not in GFAP+ astrocytes (Fig. 2L) or NeuN+ neurons (Fig. 2M). In 
PBS-injected striatum as a control, IL-13 was undetectable in OX-
42+ resting microglia (Fig. 2J).

To explore the role of IL-13 in LPS-induced neurodegeneration 
in vivo, we examined whether IL-13 neutralizing antibody (IL-
13NA) altered LPS-induced neuronal damage in the striatum. 
NeuN immunohistochemistry and Nissl staining were performed 
7 days after intrastriatal co-injection with LPS and IL-13NA. The 
results of NeuN+/Nissl+ staining revealed that the combination 
of IL-13NA and LPS partially protected neurons in the striatum 
against LPS-induced neurotoxicity (Fig. 1E) compared to LPS and 
IgG-treated control (Fig. 1D). Data were quantified and expressed 
as the number of NeuN+/Nissl+ cells, in LPS-injected and IL-
13NA-treated striatum, the number of NeuN+/Nissl+ cells were 
significantly increased compared to LPS-injected and IgG-treated 
striatum as a control (Fig. 1F). Like PBS alone (Fig. 1A, F; Fig. 3A, B, 
and M), the injection of non-specific IgG (Fig. 1B, F) or IL-13NA 
alone (Fig. 3G, H, and M) as a control did not affect the number of 
NeuN+/Nissl+ cells in the striatum. Taken together, results indicate 
that IL-13 contributes to neurodegeneration in the LPS-injected 
rat striatum in vivo.

IL-13 contributes to disruption of both BBB and astrocytes 

in the striatum in vivo

As IL-13 regulates blood retina barrier (BRB) integrity altered by 
subretinal transplantation of IL-13 expressing stem cells [19] we 
wonder if IL-13 produced by microglia can affect BBB permeabil-

Fig. 2. Interleukin-13 expression in the striatum of LPS-injected rat in 
vivo. (A~D) Striatal sections (A, C, PBS; B, D, LPS) adjacent to those used 
in Fig. 1A and C were immunostained with OX-42 (A, B) and ED1 (C, D) 
antibodies for microglia. Accumulating intracellular vacuoles are denoted 
by arrowheads in D. (E~H) IL-13 immunofluorescence staining in the 
striatum at 7 days after intrastriatal injection of PBS as a control (E), and 
at 1 day (F), 3 days (G), or 7 days (H) after intrastriatal injection of LPS. (I) 
Quantification of IL-13 expression in OX-42+ cells in the striatum at in-
dicated time points. *p<0.001, as compared with PBS. One-way ANOVA 
and Newman–Keuls analyses. Seven animals were used for each experi-
mental group. The results represent mean ± SEM. (J~M) Immunofluo-
rescence images of interleukin 13 (IL-13, K; red) and OX-42 (J, K; green), 
or IL-13 (L; red) and GFAP (L; green), or IL-13 (M; red) and NeuN (M; 
green) and both images are merged (Yellow; K) in the striatum at 7 days 
after PBS (J) or LPS (K~M) injection. Scale bars, (A, B) 25 µm; (C, D) 20 
µm; (E~H) 50 µm; (J~M) 20 µm.
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ity in the LPS-lesioned rat striatum. To test this, PBS as a control or 
LPS+IL-13NA or LPS+IgG (control for IL-13NA) was unilaterally 
injected into the rat striatum and BBB disruption was evaluated by 
detecting FITC-labeled albumin at 3 days after injection. In PBS 
injected rats, FITC labeled albumin was confined to the blood ves-
sels in the striatum, indicating that the BBB was intact (Fig. 4A, D). 
However, the diffusion of FITC-labeled albumin from multiple 
blood vessels was clear and detected at 3 days in the striatum of 
LPS+IgG-injected rats (Fig. 4B, D). Pharmacological inhibition 
of IL-13 functions by IL-13NA partly blocked LPS-induced BBB 
damage as analyzed by the diffusion of FITC-labeled albumin (Fig. 
4C, D).

Next, we wondered if  direct injection of exogenous IL-13 
could induce BBB damage and neurotoxicity. Two doses of rat 
recombinant IL-13 (50 ng and 300 ng) and PBS as a control was 
unilaterally injected into rat striatum (Fig. 5) [28, 29]. Consistent 
with PBS-injected striatum (Fig. 5A, D; Fig. 4A, D), FITC labeled 
albumin was enclosed to the blood vessels in the striatum at 3 days 
post IL-13 (Fig. 5B~D), indicating that the BBB was intact. Ad-

ditional experiments were performed to examine neurotoxicity 
of exogenous IL-13. Consistent with PBS-injected striatum (Fig. 
5E, H; Fig. 1A, F), NeuN immunohistochemical staining and Nissl 
staining showed a clearly defined nucleus and prominent Nissl 
substances in the striatum at 7 days post IL-13 (Fig. 5F~H), indi-
cating that exogenous IL-13 had no neurotoxicity. Taken together, 
these observations indicate that compared to endogenous IL-13 
originated from OX-42+ microglia/macrophages, exogenous IL-13 
fails to produce BBB damage and neurotoxicity. The discrepancies 
between these two experiments are probably because compared to 
LPS-induced endogenous IL-13, doses of exogenous IL-13 directly 

Fig. 3. Interleukin-13 neutralizing antibody has no effects on neurotoxic-
ity and inflammation in rat striatum in vivo. Animals unilaterally received 
intrastriatal injection of PBS (A~F, 3 µl) or Interleukin 13 neutralizing 
antibody (IL-13NA, 1 µg; G~L) as a control. 7 days later, animals were sac-
rificed, and the coronal sections (40 µm) were selected and processed for 
immunostaining with neuronal nuclei (NeuN) and Nissl staining (A, B, G, 
H), GFAP (C, D, I, J) and OX-42 (E, F, K, L). Arrowheads indicate NeuN+ 
cells merged with Nissl+ cells (NeuN+/Nissl+). (M) Number of NeuN+/
Nissl+ cells in the striatum at 7 days after injection. Three animals were 
used for each experimental group. The results represent mean±SEM. Scale 
bar, (A, C, E, G, I, K) 100 µm; (B, D, F, H, J, L) 25 µm.
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group. The results represent mean±SEM. Scale bars, (A~C) 500 µm; (E~H) 
100 µm.
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injected here are not enough to produce similar BBB damage and 
neurotoxicity. Alternatively, microenvironments induced by LPS 
injection might be different from those induced by simple injec-
tion of exogenous IL-13, suggesting that LPS-induced unknown 
factors with endogenous IL-13 are necessary to cause BBB damage 
and neurotoxicity. Further studies are required to determine the 
discrepancy between endogenous and exogenous IL-13.

As astrocytes are closely associated with maintenance and for-
mation of BBB [9], we wonder if IL-13 could influence astrocytes 
in the LPS-treated rat striatum. Immunohistochemical analysis 
demonstrated that in PBS-treated striatum, GFAP+ cells displayed 
ramified morphology as a resting astrocyte (Fig. 4E, I). By contrast, 
areas lacking of GFAP+ cells [GFAP(-) area] were observed in 
striatum at 7 days post LPS (Fig. 4F, I) compared to PBS-treated 
striatum as a control. Inhibition of IL-13 function by IL-13NA 

significantly reduced the GFAP(-) area in LPS-injected striatum 
(Fig. 4H, I) compared with LPS+IgG-treated striatum as a control 
(Fig. 4G, I). Like PBS (Fig. 3C, D), IL-13NA alone (Fig. 3I, J) had no 
effects on activation of GFAP+ astrocytes. In addition, IL-13NA 
alone (Fig. 3K, L) also had no effects on OX-42+ microglia/macro-
phage, compared to PBS (Fig. 3E, F).

Interleukin 13 inhibits expression of neurotrophic factors 

on astrocytes in LPS-injected rat striatum in vivo.

Astrocyte is known to be involved in neuronal survival by ex-
pressing neurotrophic factors (NTFs) [5, 30, 31]. Accordingly, we 
hypothesized that astrocytes rescued by treatment with IL-13NA 
(Fig. 4E~I) could contribute to neuronal survival by producing 
neurotrophic factors. To test this, sections adjacent to those used 
in Fig. 3 were immunostained with GFAP antibody for astrocytes, 
and CDNF or CNTF antibodies to detect expression of endog-
enous neurotrophic factors on astrocytes. In PBS-treated striatum, 
the majority of GFAP+ cells as a resting astrocyte did not express 
both CDNF (Fig. 6A, G) and CNTF (Fig. 6D, H). In LPS+IgG-
treated striatum, few of GFAP+, CDNF+ and CNTF+ cells were 
detectable because of disruption of astrocytes (Fig. 6B, E, G, and 
H). By contrast, accompanying increase in survival of GFAP+ as-
trocytes, IL-13NA increased expression of CDNF (Fig. 6C, G) and 
CNTF (Fig. 6F, H) on astrocytes at 7 days post LPS.

LPS-induced neurotoxicity and inflammation has no  

effects on degeneration of dopamine fibers in the striatum  

in vivo

Next, we examined whether LPS could produce degeneration 
of tyrosine hydroxylase (TH)+ dopamine fibers and prolonged 
inflammation in striatum. TH immunohistochemical analysis 
showed that intrastriatal injection of LPS failed to induce degen-
eration of TH+ dopamine fibers in striatum at 1 week post LPS and 
up to 8 weeks post LPS compared to PBS as a control (Fig. 7A~C, 
M), whereas LPS induced loss of striatal neurons as evidenced by 
NeuN immunostaining and Nissl staining (Fig. 7D~F, N). OX-42 
and GFAP immunohistochemical analysis showed that activation 
of OX-42+ microglia and loss of GFPA+ astrocytes observed at 
1 week post LPS compared to PBS control returned normal at 8 
weeks post LPS (Fig. 7G~L).

DISCUSSION

The present study demonstrates that LPS significantly decreases 
the number of NeuN+/Nissl+ cells, upregulates the expression of 
IL-13 exclusively within OX-42+ reactive microglia/macrophage 
and causes disruption of BBB in the striatum. Treatment with IL-
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immunostaining with neuronal nuclei (NeuN) and Nissl staining (E~G). 
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13NA increased the number of NeuN+/Nissl+ cells and maintained 
BBB integrity in LPS-injected striatum. In addition, IL-13NA 
blocked LPS-induced loss of GFAP+ astrocytes and contributed to 
production of neurotrophic factors in survived astrocytes. Taken 
together, these data support the hypothesis that IL-13 neurotoxic-
ity is associated with reactive microglia/macrophage, disruption of 
BBB and loss of GFAP+ astrocytes in LPS-injected striatum in vivo. 

As reactive microglia/macrophage can produce neurotoxic mol-
ecules such as proinflammatory cytokines and reactive oxygen/
nitrosative species [4, 25], they are considered as one of major 
potential contributors to neuronal loss in vivo and in vitro [2, 32, 
33]. Here, we show neurodegeneration and activation of microg-
lia/macrophage in LPS-injected striatum in vivo. Moreover, LPS-
induced IL-13 expression was observed exclusively within reactive 
microglia/macrophage and IL-13 NA prevented LPS-induced 
degeneration of striatal neurons (Fig. 1 and 2). It is therefore likely 
that IL-13 might contribute to neuronal death in LPS-injected 
striatum by regulating reactive microglia/macrophage. This inter-

pretation is supported by findings that IL-13 was expressed within 
reactive microglia/macrophage and IL-13 NA contributed to neu-
ronal survival by suppressing activation of microglia/macrophage 
and/or reactive microglia/macrophage-derived oxygen/nirtosative 
species in the hippocampus treated with thrombin [34], Aβ1-42 [20] 
and pKr-2 [4].

LPS-induced neuroinflammation is known to affect BBB func-
tion by destructing the BBB integrity [35-37], which has been as-
sociated with a number of diseases, including Parkinson’s disease, 
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Fig. 6. Interleukin-13 inhibits expression of neurotrophic factors on 
astrocytes in LPS-injected rat striatum in vivo. Sections (A, D, PBS; B, E, 
LPS+IgG; C, F, LPS+IL-13NA) adjacent to those used in Figure 3 were im-
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(CNTF: D~F) antibodies. (A~C) Immunofluorescence images of GFAP 
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striatum at 7 days after LPS+IgG injection. (D~F) Immunofluorescence 
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(Yellow) in the striatum at 7 days after LPS+IgG injection. (G) Quantifica-
tion of CDNF expression in GFAP+ cells in the striatum at 7 days after 
LPS injection. *p<0.05, as compared with LPS+IgG. One-way ANOVA 
and Newman–Keuls analyses. Three animals were used for each experi-
mental group. The results represent mean±SEM. (H) Quantification of 
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Alzheimer’s disease and stroke [38-41]. BBB damage can cause in-
filtration of plasma components, blood cells and other neurotoxic 
substances into the brain parenchyma due to neuroinflammation 
and/or neurodegenerative processes, resulting in neuronal dys-
function and loss [42-44]. We recently demonstrated in LPS-treat-
ed rats that compromising the integrity of the BBB contributes to 
the degeneration of nigral neurons [14, 45]. The present data show 
that LPS increases the filtration of FITC-linked albumin from 
blood vessels into striatum and IL-13 neutralization increases 
neuronal survival in striatum by attenuating LPS-induced damage 
to the BBB. It is therefore likely that IL-13 endogenously originated 
from microglia/macrophage may be neurotoxic by destructing 
BBB. Further studies will be required to determine how IL-13 
can be involved in BBB damage in LPS-injected striatum while 
increased levels of IL-13 do not prevent neurodegeneration and 
BBB damage in hippocampus in a model of transient forebrain 
ischemia [46].

Astrocytes, the most abundant glial cells in the brain, have been 
implicated in maintenance and formation of BBB [9, 47]. Bok and 
colleagues showed that LPS induces disruption of astrocytes and 
BBB damage in the substantia nigra of LPS-treated rats [14]. As-
trocytes confer neuroprotection by producing neurotrophic fac-
tors (NTFs) [48]. We have recently shown that endogenous CNTF 
[5, 49, 50] and CDNF (our unpublished observations) expressed 
on astrocytes attenuate activation of microglia/macrophage and/
or rescues nigral neurons from MPP+ neurotoxicity. The present 
results demonstrate that LPS attenuates GFAP+ astrocytes (in-
creases GFAP(-) area) and IL-13 neutralization increases GFAP+ 
astrocytes (decreases GFAP(-)area) and induces expression of 
CNTF and CDNF on GFAP+ astrocytes. Based on these observa-
tions, we carefully suggest that CNTF and CDNF on astrocytes 
might be involved in rescuing LPS-induced neurotoxicity. Further 
studies are required to determine how IL-13 regulates expression 
of neurotrophic factors on astrocytes in LPS-injected striatum in 
vivo.

Intraperitoneal injection of LPS produced disruption of BBB in 
striatum and activation of astrocytes [51]. They also observed that 
activation of astrocytes was not associated with promoting LPS-
induced disruption of BBB. This is somewhat different from our 
recent findings that instead of activation of astrocytes, intranigral 
injection of LPS induces loss of astrocytes with disruption of BBB 
[14]. This apparent discrepancy in experimental results between 
two studies is probably a result of different routes (intraperitoneal 
vs  intranigral) used for LPS treatment. This interpretation is sup-
ported by our current findings that intrastriatal injection of LPS 
induces both loss of astrocytes and disruption of BBB, which is 
partially blocked by IL-13 neutralization. Taken together, the pres-

ent data suggest that IL-13 might be involved in both damage of 
astrocytes and disruption of BBB in LPS-injected striatum in vivo.

IL-13 is the well-known anti-inflammatory cytokine, possibly 
leading to maintenance of physiologic homeostasis, cell survival 
and tissue repair [52-54]. Exogenous human recombinant IL-13 
has been shown to inhibit the development of experimental auto-
immune disease and expression of pro-inflammatory cytokines 
in a demyelinating disease model of central nervous system [55]. 
Taj and colleagues [15] have reported that intracerebral delivery 
of IL-13 markedly decreases pro-inflammatory cytokine secre-
tion, reduces inflammatory cell infiltration and suppresses axonal 
damage. In an experimental model of sepsis, endogenous IL-13 
contributed to survival in mice by suppressing the excessive pro-
duction of pro-inflammatory cytokines and chemokines [56]. IL-
13 might be related with neuroprotection in hippocampus against 
ischemic damage [57]. In addition, endogenous IL-13 controls 
brain inflammation by inhibiting expression of pro-inflammatory 
cytokines in LPS-treated rat cerebral cortices in vivo, resulting in 
an enhancement of neuronal survival [22]. These results collec-
tively support the beneficial effects of IL-13 as an anti-inflamma-
tory cytokine. 

Conversely, harmful effects of IL-13 have also reported. An 
earlier study showed that IL-13 knockout mice display decreased 
numbers of infiltrating cells (CD11b+) and MHC-II expression 
in an experimental autoimmune encephalomyelitis (EAE), result-
ing in reduced EAE incidence [58]. Further studies on a mouse 
asthma model disclosed that pharmacological inhibition of IL-
13 by an anti-IL-13 monoclonal antibody prevents progression of 
inflammation by attenuating the expression of pro-inflammatory 
cytokines and chemokines [59, 60]. All of these observations clear-
ly indicate toxicity of IL-13, which is line with our present findings 
that IL-13 neutralization protects striatal neurons from LPS neu-
rotoxicity in vivo.

Regarding the direct effects of IL-13 on neurons, Morrison and 
colleagues [21] demonstrated that expression of IL-13 receptor 
alpha1 chain (IL-13Rα1) on nigral dopamine neurons increased 
their susceptibility to LPS-induced oxidative stress and contrib-
uted to neurodegeneration, indicating that IL-13 might be directly 
neurotoxic. This interpretation is supported by the finding that 
lack of IL-13Rα1 delays degeneration of nigral dopamine neurons 
exposed to chronic stress [61]. Despite lacking evidence in our 
present study, these observations cannot rule out the possibilities 
of the direct neurotoxicity of IL-13 in LPS-injected striatum in 
vivo. This direct neurotoxicity would be in addition to the indirect 
neurotoxicity of IL-13 due to BBB damage and loss of astrocytes 
on striatal neurons. However, additional studies are required to 
prove direct actions of endogenous IL-13 on neurons in LPS-
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injected striatum in vivo.
It seems noteworthy that the current results are in contrast with 

the previous findings where expression of IL-13 controls brain 
inflammation by producing the death of reactive microglia/mac-
rophage, resulting in an eventual enhancement of neuronal sur-
vival in LPS-injected cortex in vivo [22]. In the present study, we 
demonstrated that IL-13 originated from reactive microglia/mac-
rophage mediates destruction of BBB and loss of astrocytes, lead-
ing to neurodegeneration in LPS-injected striatum in vivo . This 
finding is in line with our reports showing that IL-13 contributes 
to the production of proinflammatory cytokines and/or oxidative 
stress, leading to neurodegeneration in thrombin- [34], Aβ1-42- [20] 
or pKr-2-injected hippocampus in vivo  [4]. It is therefore likely 
that these apparent discrepancies may be attributed to the use of 
different stimuli (LPS vs thrombin, Aβ1-42 or pKr-2) and/or target 
areas (striatum vs cortex or hippocampus) although the underly-
ing mechanisms remain to be determined.

Finally, the present study demonstrates that single injection of 
total LPS (5 ug) into striatum does not cause substantial degenera-
tion of striatal TH+ fibers at 1 week and even up to 8 weeks post 
LPS whereas LPS-induced neurotoxicity (loss of NeuN+/Nissl+ 
cells) is maintained up to 8 weeks post LPS (Fig. 7 and Fig. 1). 
Changes in activation of OX-42+ microglia/macrophages and loss 
of GFAP+ astrocytes returned to normal at 8 weeks post LPS com-
pared to 1 week post LPS (Fig. 7; Fig. 2 and 3). Our results suggest 
that single injection of low dose LPS (5 ug) might not be enough 
to produce degeneration of striatal TH+ fibers and prolonged neu-
roinflammation (changes in OX-42+ and GFAP+ cells) although 
it is neurotoxic to striatal neurons. Regarding this, intrastriatal 
injection of LPS (total 10 ug) produces activation of microglia/
macrophages in the striatum with no changes in density of striatal 
TH+ fibers [62]. By contrast, Intrastriatal administration of LPS 
(total 21.5 ug) induces reactive microglia/macrophages-driven 
reduction in density of TH+ fibers in striatum [63]. This apparent 
discrepancy in experimental results between two studies is prob-
ably a result of different doses of total LPS (21.5 ug vs 10 ug) and/
or number of injection sites (one site vs four sites). This interpreta-
tion is supported by the findings that decrease dopamine with ac-
tivation of microglia/macrophages was observed in striatum when 
the higher doses of LPS (16, 32 and 60 ug) were administered into 
the striatum at three sites [64]. All these observations, including 
ours indicate that appropriate LPS dose and multiple injection sites 
into striatum are required to produce degeneration of striatal TH+ 
fibers, which may a highly relevant LPS-induced neuroinflamma-
tion model of PD.
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