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This study examines the relationship between population coding and spatial connection
statistics in networks of noisy neurons. Encoding of sensory information in the neocortex
is thought to require coordinated neural populations, because individual cortical neurons
respond to a wide range of stimuli, and exhibit highly variable spiking in response
to repeated stimuli. Population coding is rooted in network structure, because cortical
neurons receive information only from other neurons, and because the information they
encode must be decoded by other neurons, if it is to affect behavior. However, population
coding theory has often ignored network structure, or assumed discrete, fully connected
populations (in contrast with the sparsely connected, continuous sheet of the cortex). In
this study, we modeled a sheet of cortical neurons with sparse, primarily local connections,
and found that a network with this structure could encode multiple internal state variables
with high signal-to-noise ratio. However, we were unable to create high-fidelity networks
by instantiating connections at random according to spatial connection probabilities. In our
models, high-fidelity networks required additional structure, with higher cluster factors
and correlations between the inputs to nearby neurons.
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1. INTRODUCTION
In order to understand cortical function, it is important to know
how populations of neurons work together to encode and pro-
cess information. A fundamental question about the cortical spike
code is the approximate number of degrees of freedom in corti-
cal activity. Many neurons’ spike rates vary with a given external
variable, such as reach direction (Schwartz et al., 1988), suggest-
ing that there may be far fewer dimensions to cortical activity
than there are neurons. As an example, there are millions of neu-
rons in the primate middle temporal area (MT), but they may
encode only a few thousand variables. Specifically, the activity of
MT neurons varies markedly with fields of motion direction and
speed (Maunsell and van Essen, 1983), binocular disparity (Zeki,
1974; DeAngelis and Uka, 2003), and to some extent orientation
and spatial frequency (Maunsell and Newsome, 1987). Moreover,
receptive fields are much larger in MT than in V1 (Gattass and
Gross, 1981). If we suppose, for the sake of argument, that each
receptive field encodes 10 motion-related variables, and if there
are about 1000 distinct receptive fields in MT, then perhaps only
about 10,000 distinct variables are encoded by the activity of
millions of neurons.

One potential advantage of such redundancy is that it
enables accurate reconstruction of stimuli or motor commands
(Georgopoulos et al., 1986) from the relatively noisy spiking
activity of individual neurons. The collective activity of a popu-
lation of many neurons conveys more information to perceptual
decision processes than the activity of individual neurons (Cook
and Maunsell, 2002; Cohen and Newsome, 2009), despite early

indications to the contrary (Britten et al., 1992). Overlapping
tuning of many neurons may also facilitate information process-
ing, e.g., function approximation in support of sensori-motor
transformations (Pouget et al., 2000; Deneve et al., 2001).

Overlapping neural tuning (sometimes called signal correla-
tions) may arise from inputs that are shared between neurons.
Neighboring neurons typically receive many common inputs
(Perin et al., 2011; Yoshimura et al., 2005). However, this does
not guarantee correlated responses, because shared inputs could
in principle be weighted differently by each neuron, result-
ing in varied tuning (analogous to multiple distinct outputs
of a feedforward artificial neural network). Correlated activity
would, however, arise from shared inputs if synaptic weights
were correlated across neurons. This assumption is made in the
population-coding models of Eliasmith and Anderson (Eliasmith
and Anderson, 1999, 2003; Eliasmith et al., 2002). In these mod-
els, matrices of synaptic weights have a rank much lower than the
number of neurons in the pre-synaptic and post-synaptic popula-
tions. The low rank of the weight matrix constrains the responses
of post-synaptic neurons to encode a low-dimensional vector. For
example, Singh and Eliasmith (2006) modeled two-dimensional
(2-D) working-memory in a population of 500 neurons with
recurrent connections. (The same assumption is implicit in neu-
ral network models with small numbers of high-fidelity neurons
that are each meant to approximate a group of low-fidelity neu-
rons, e.g., O’Reilly and Munakata, 2000). These models have
assumed dense recurrent connections, in contrast with the sparse
connections of the cortex.

Frontiers in Computational Neuroscience www.frontiersin.org May 2012 | Volume 6 | Article 23 | 1

COMPUTATIONAL NEUROSCIENCE

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2012.00023/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=BryanTripp_1&UID=39652
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JeffOrchard&UID=48236
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Tripp and Orchard Population codes in sparsely connected networks

In the present study, we address the question of whether the
low-dimensional neural spike codes that appear to exist in the
cortex are actually consistent with cortex-like spatial connection
patterns. In particular, we study recurrent networks with sparse,
mainly local connections, modeled after the intrinsic connections
within superficial cortical layers. In superficial layers, most of
the synapses onto each neuron originate from nearby neurons
(Nicoll and Blakemore, 1993). Adjacent neurons have the highest
probability of connection—about 20% if only functional connec-
tions are considered (Perin et al., 2011) or as high as 50–80%
considering physical contacts estimated by microscopy (Hellwig,
2000)—and the probability falls off with distance over a few hun-
dred micrometers (Hellwig, 2000; Perin et al., 2011). We construct
network models by connecting nodes at random according to
such probability functions, and find that these connection matri-
ces typically have a rank roughly equal to the number neurons. We
show that high rank is consistent with a high-dimensional neural
activity manifold, and a high-noise spike code. This suggests that
network structure is a potential contributor to the observed high
variability of cortical activity. However, we also show that it is pos-
sible to construct networks with very similar spatial connection
probabilities that nonetheless have low-dimensional dynamics
and low noise. The connections in these low-dimensional net-
works have additional structure and higher cluster factors than
random connections that are sampled directly from spatial con-
nection probabilites.

2. MATERIALS AND METHODS
Note that vectors are in bold and matrices are in capitals
throughout.

2.1. SIMULATIONS
Our network models consist of leaky integrate-and-fire (LIF)
spiking point neurons (Koch, 1999). Post-synaptic current at a
synapse decays exponentially (with a single time constant) after
each spike. The net synaptic current Ii(t) that drives the ith neu-
ron’s spike generator is a weighted sum of post-synaptic currents,
i.e.,

Ii(t) = αi

τ
e−t/τ∗

∑
j

Wij

∑
p

δ(t − tjp), (1)

where αi is a scaling factor, τ is the time constant of post-synaptic
current decay, Wij is the weight of the synapse from the jth to the
ith neuron, δ(t − tjp) is an impulse at the time of the pth spike of
the jth neuron, and ∗ denotes convolution.

The neurons have cosine tuning curves, as in the data e.g.,
of Georgopoulos et al. (1986), and Dubner and Zeki (1971).
Specifically, the spike rate of the ith neuron is:

ri = G[αiφ̃
T
i x + βi], (2)

where αi and βi are constants, x is the vector variable to which
neurons are responsive, φ̃i is the neuron’s preferred direction in
the corresponding vector space, and G[·] is the LIF spike rate
function,

G[ J] =
⎧⎨
⎩

1

τref−τm ln
(

1− Jth
J

) if J > Jth

0 otherwise
, (3)

in which τref is the neuron refractory period, τm is the membrane
time constant, and Jth is the lower threshold for activity.

Cosine tuning is a consequence of linear synaptic integration
(as in Equation 1). This can be seen by noting that the synap-
tic weights W can be decomposed [e.g., through singular value
decomposition (SVD)] into a product,

W = �̃�. (4)

� maps the spiking activity of n neurons onto a new vector
x ∈ R

k, where k ≤ n is the rank of W . The synaptic input to
each neuron can be viewed as a function of x, specifically �̃x.
The dimension k of x, therefore, corresponds to the number of
degrees of freedom in the firing rates of all neurons in the net-
work. The spiking activity of the neurons can be said to encode x,
which we call the “state” of the network, or the “encoded vari-
able,” and similarly x can be reconstructed from the neurons’
firing rates through various means. (In a more elaborate model
in which some nodes provide sensory input, x might correspond
to identifiable stimulus properties). The ith row of �̃ is the pre-
ferred direction of the ith neuron. The jth column of � is called
the decoding vector of the jth neuron.

Network dynamics depend on synaptic weights W , and W can
be adjusted to approximate desired dynamics. We were particu-
larly interested in networks that exhibit k-dimensional dynamics,
with k much less than the number of neurons. For some sim-
ulations we chose decoding weights so that network dynamics
approximated a differential equation,

dx/dt = f (x). (5)

Here f (x) is a feedback function that defines the dynamics of x.
In combination with exponential post-synaptic current dynam-
ics, this required that � reconstruct a linear estimate of τf (x) + x,
i.e.,

τf (x) + x ≈ �

⎡
⎢⎣

1
τ

e−t/τ∗∑p δ(t − t1p)
1
τ

e−t/τ∗∑p δ(t − t2p)

. . .

⎤
⎥⎦. (6)

This modeling approach is based on the work of Eliasmith and
Anderson (Eliasmith and Anderson, 2003; Eliasmith, 2005).

The input to the LIF spiking models was biased so that each
neuron’s firing rate intercepted zero at some point between −1
and 1 along the neuron’s preferred direction. The intercepts were
chosen at random with uniform density in this range. The input
was also scaled so that the ith neuron’s firing rate was between 80
and 120 spikes/s (again randomly chosen with uniform density)
at x = �̃i.

2.2. SPARSE LOCAL CONNECTIONS
Our networks had random, sparse, primarily local connec-
tions. The notion of locality means that the neurons exist in
a topological space; the neurons were placed in a 2-D grid.
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Connections were randomly chosen according to the Euclidean
distance between neurons. The probability of a synapse from the
jth onto the ith neuron was:

�ij = Pmax exp

(−D2
ij

2σ 2

)
, (7)

where Dij is the distance between the neurons and Pmax is the
maximum connection probability. Unless otherwise specified, we
chose a Pmax of 1/3 for our experiments. Throughout the paper,
� are matrices of spatial connection probabilities, C are Boolean
matrices of connections (often these were simply samples of �),
with a 1 or true indicating a connection, and 0 or false indicat-
ing no connection. Matrices of synaptic connection weights are
denoted by W , where non-zero elements correspond to elements
of C containing 1 (true).

2.3. OPTIMIZATION OF NETWORK DYNAMICS
Synaptic weights can be generated according to Equation 4, by
choosing diverse preferred direction vectors at random, and opti-
mal decoders (Eliasmith and Anderson, 2003). However, the
resulting connections are invariably dense, and therefore, physio-
logically unrealistic. We searched instead for synaptic weights that
optimally approximated certain feedback dynamics under various
sparseness constraints. We compared two approaches in partic-
ular. In Method A, we generated sparse connection structures
C by sampling from the connection probability matrix �. We
then optimized the synaptic weights W of these connections to
approximate predefined network dynamics as closely as possible
(details below). This method produced very poor approxima-
tions, in which network activity was dominated by noise. In
Method B, we created new connection matrices that were guar-
anteed to have a low rank, and which approximated the spatial
connection probabilities � as closely as possible (details below).
This method produced high-fidelity networks with interesting
higher-order connection statistics.

2.3.1. Method A: optimization of sparse connections
In this approach, we began by generating an n × n connection
matrix C by sampling randomly according to connection proba-
bilities �. We then weighted these connections to minimize two
cost functions, which we called decoding error and encoding error
(associated with � and �̃, respectively). We defined the decoding
error in the approximation of a function f (x) as,

εd = 1

2

∫
x

∥∥�r(x) − f (x)
∥∥2

2 dx, (8)

where r(x) are the firing rates of the neurons. We used a Monte-
Carlo integration method, sampling x from a Gaussian distribu-
tion with mean zero and covariance matrix I. This produced a
simplified estimate of decoding error,

εd = 1

2m
‖�R − F‖2

F, (9)

where R and F are matrices of firing rates and f (x), respectively,
at each sample of x, m is the number of samples, and ‖ · ‖F is the

Frobenius norm. The gradient of this error with respect to Wij is,

∂εd

∂Wij
=
∑

l

∂εd

∂�lj

∂�lj

∂Wij
, (10)

where,
∂εd

∂�lj
= 1

m

∑
q

[�R − F]lq Rjq (11)

and
∂�lj

∂Wij
= (�̃−1)li (12)

Ideally, all the neurons in the model would have tuning curves
over the same few variables (e.g., reach directions), because k
such variables can be accurately reconstructed from the firing
rates of n neurons if k � n (as discussed in the Introduction
and elaborated further in the Results; see Section 3.1). However,
in principle, population activity could have as many degrees of
freedom as there are neurons (k ≈ n), preventing accurate recon-
struction from noisy spiking. We defined encoding error in terms
of the extent to which the neurons’ firing rates vary in more
than k dimensions. Specifically, without loss of generality, we
defined the encoding error as the fraction of the squared length
of the preferred direction vectors that was orthogonal to the first
k dimensions, i.e.,

εe = 1

2

∑
i

∑n
l=k+1(�̃il)

2∑
i

∑n
l=1(�̃il)

2
, (13)

where k is the dimension of the lower-dimensional subspace to
which we tried to constrain network activity. (Other lists of pre-
ferred direction vectors with the same rank are related to �̃ by a
change of basis). The gradient of this error with respect to Wij is,

∂εe

∂Wij
=
∑

l

∂εe

∂�̃il

∂�̃il

∂Wij
. (14)

where,
∂�̃il

∂Wij
= (�−1)jl (15)

and

∂εe

∂�̃il>k
= σ − σk

σ 2
�̃il, (16)

∂εe

∂�̃il≤k
= −σk

σ 2
�̃il, (17)

where σ = ∑
i

∑n
l=1(�̃il)

2 and σk = ∑
i

∑n
l=k+1(�̃il)

2.
To minimize these costs for a sparse connection matrix, we

first drew the synaptic weight of each connection (correspond-
ing to Ci = true) from a zero-mean Gaussian distribution. These
initial weights were scaled to give neurons realistic ranges of fir-
ing rates (typically <120 spikes/s). We performed SVD to obtain
W = USVT , and set �̃ = US, and � = VT . We then divided
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�̃ by the average length of preferred direction vectors (rows of
�̃), and multiplied � by the same factor. This made the pre-
ferred direction vectors unit-length on average without changing
W (the preferred directions were later scaled to have exactly unit
length).

We then performed 20,000 gradient-descent steps. In each
step, we first adjusted W according to ∂εe/∂Wij, changing only
the elements that corresponded to true entries in the connec-
tion matrix C. We then rescaled rows of �̃ to have unit length,
and recalculated the weights as W = �̃�. The latter change did
not introduce new connections, because it did not affect whether
pairs of encoding and decoding vectors were orthogonal. We
then updated W according to ∂εd/∂Wij . The step size along the
∂εe/∂Wij gradient was 1/1000 of the change predicted by the gra-
dient to eliminate the error. We encountered stability problems
related to the step size along the ∂εd/∂Wij gradient, so at each
iteration we began with a step of 1/100 of the change predicted to
eliminate the cost, and repeatedly halved the step size and retried
if changes did not decrease the decoding error (up to 10 step-size
reductions in each iteration).

2.3.2. Method B: generation of low-rank sparse connections
Method A was ineffective in producing high-fidelity, low-
dimensional feedback dynamics (see Results). We, therefore,
sought a way to introduce additional structure into the con-
nections to reduce the rank of W with minimal changes to
connection probabilities. In particular, given an n × n matrix �

of connection probabilities, we wanted to find n × k and k × n
matrices of probabilities, denoted �L and �R, such that sam-
ples CL and CR from these matrices would yield C = CLCR,
with P(Cij) ≈ �ij. Given such a decomposition, we could then
draw samples CL and CR to obtain Boolean connection matri-
ces with realistic spatial connection probabilities. We could also
replace the non-zero elements of CL and CR with any choice
of real numbers. In particular, we could replace elements of CR

with decoding weights that were optimized to produce various
feedback dynamics. This method resulted in networks with low-
dimensional dynamics and a much better signal-to-noise ratio
than Method A (see Results).

Note that P(Cij) = 1 −∏
l

(
1 − CL

ilC
R
lj

)
and that P(Cij) ≤

1/3 in our models. For low probabilities, P(Cij) ≈ ∑
l CL

ilC
R
lj .

Therefore, we first performed non-negative matrix factorization
(Lee and Seung, 2001) of � to obtain a rough approximation of
�L and �R, and then adjusted these factors using gradient descent
to obtain a better approximation of �. The gradient of P(Cij) with
respect to CL

il is:

∂P(Cij)

∂CL
il

= CR
lj

∏
k�=l

[1 − CL
ikCR

kj]. (18)

At each step, we updated CL according to:

CL
il = CL

il − κ
∑

j

∂P(Cij)

∂CL
il

(P(Cij) − �ij), (19)

where κ is a learning rate, and performed the analogous update
for CR. As shown in the Results, the accuracy with which � was
approximated depended mildly on k.

2.4. FACTORS OF BOOLEAN MATRICES
To further examine the failure of Method A, we investigated
whether connection matrices C that were directly sampled from
connection probabilities � had a low-rank decomposition (see
Section 3.3), like the C matrices created using Method B. Our
goal was to confirm that these C were inherently high-rank, and
that the gradient descent procedure of Method A had not simply
missed a low-dimensional decomposition. We drew sparse, local
connection matrices C from � and tried to decompose them into
low-rank products. As in Method B, we sought Boolean matrices
CL and CR so that Cij of the connection matrix is true if some
pair of corresponding entries in the left and right factor matri-
ces CL and CR are both true, i.e., Cij = (CL

i1&CR
1j) ∨ (CL

i2&CR
2j) ∨

. . . ∨ (CL
ik&CR

kj).

For an n × n Boolean matrix C and rank k, there are 22nk

different potential combinations of Boolean CL and CR, so it is
not feasible to check whether each of them produces a given C.
Therefore, we iteratively inspected larger and larger submatrices.
We first found all submatrices of CL

1,1:k and CR
1:k,1 (where the sub-

script 1:k denotes elements between 1 and k, inclusive) that had
product C1,1, and all submatrices CL

2,1:k and CR
1:k,2 that had prod-

uct C2,2. We then combined these lists to find combinations of
submatrices CL

1:2,1:k and CR
1:k,1:2 that were consistent with both

C1,1 and C2,2, and eliminated from the list any combinations that
were inconsistent with either C2,1 or C1,2. We then expanded the
search to include C3,3, etc. Once we encountered a submatrix that
could not be represented as a rank-k product, we knew that the
full connection matrix also could not be factored into a rank-k
product.

2.5. SPARSELY CONNECTED INTEGRATOR
To verify that Method B (above) resulted in high-fidelity feedback
dynamics, we used this method to model multi-dimensional neu-
ral integrators (Section 3.5). These models consisted of 30 × 30
square grids of neurons (edge length = 1). We used Method
B to produce sparse connections with connection probabilities

P(Cij) ≈ 1
3 exp

(−D2
ij

2σ2

)
where Dij is the distance between nodes

i and j, and σ = 9. We simulated two networks, one with rank-
9 and one with rank-90. Synaptic weights W were defined as a
product W = �̃�, where the ith row of �̃ is the preferred direc-
tion vector of the ith neuron and the lth row of � contains weights
of the optimal linear estimator (OLE) (Salinas and Abbott, 1994)
of the variable xl. The resulting integrator models were similar
to those of Eliasmith and Anderson (2003) except that �̃ and �

were sparse. Non-zero entries corresponded to non-zero (true)
values of the left and right factors CL and CR. The non-zero ele-
ments of each preferred direction vector were drawn at random
from a hypersphere, with ‖�̃i‖2 = 1. For each row of �, an OLE
(Salinas and Abbott, 1994) was constructed from only the non-
zero entries. Feeding the decoded estimates of the encoded vector
x back to the neurons in this manner caused the network to act as
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an integrator of x, similarly to the densely connected networks of
Eliasmith and Anderson (2003).

3. RESULTS
3.1. SIGNAL-TO-NOISE RATIO AND THE DIMENSION OF FEEDBACK

DYNAMICS
This section presents introductory simulations that are meant
to clarify the context of the later results. The key points are
that (1) dense recurrent networks can exhibit low-dimensional
dynamics with a high signal-to-noise ratio, and in contrast (2)
high-dimensional neural network dynamics are noisy.

We begin with an example of 2-D dynamics in a densely con-
nected network. Past work (Eliasmith and Anderson, 2003) has
shown that neuron populations with all-to-all recurrent con-
nections can encode small numbers of state variables with high
fidelity, and can express a wide variety of dynamics. Matrices
of recurrent synaptic weights have a low rank in this situation,
relative to the number of neurons. To illustrate this point, we
implemented the van der Pol oscillator using the feedback dynam-
ics of a neural network of LIF nodes. The van der Pol oscillator has
two state variables, x = [x1 x2]T , with dynamics dictated by,

ẋ1 = μ

(
x1 − 1

3
x3

1 − x2

)
, (20)

ẋ2 = 1

μ
x1.

Its solution follows a periodic trajectory in a 2-D space, as
indicated in Figure 1A. Each neuron in the simulation was con-
nected to all the other neurons. Using the approach outlined
in Section 2.1, we assigned random preferred directions to each
neuron (uniformly distributed around the unit circle), and used a
pseudoinverse (based on SVD) to find the linear decoding weights
that optimally approximated τf (x) + x, where f (x) is in this case
the right hand side of Equation 20. The (dense) synaptic weights
were then W = �̃�, where rows of �̃ ∈ R

300×2 are the preferred
direction vectors and � ∈ R

2×300 are the optimal linear decod-
ing weights. Even though the network is fully connected, and thus
the synaptic weight matrix is 300 × 300, it has a rank of only 2,
and (equivalently) two non-zero singular values (Figure 1C). The
solution of this system is a limit-cycle in the x1x2-plane, revealing
that the neural network has 2-D dynamics.

It is also possible to create all-to-all recurrent neural networks
that encode high-dimensional dynamics. Their encoding fidelity
suffers, however. Figure 2 illustrates how the dimension of the
encoding space influences the accuracy with which a finite num-
ber of noisy neurons can encode variables. If the encoding space
is only 2-D, then the activity of the 200 neurons is focussed
on representing these dimensions, yielding an accurate repre-
sentation as shown in Figure 2D. However, if the activity of the
200 neurons is spread over a 200-dimensional (200-D) encod-
ing space, then each neuron’s firing rate typically does not vary
much along any one dimension. These subtle variations in firing
rate are more easily lost within the noise, so that estimates of

A

D

B

E

C

FIGURE 1 | Neuron approximation of a van der Pol oscillator using 300

leaky-integrate-and-fire neurons with all-to-all connections. (A) Flow
field of the ideal system. (B) Illustration of a fully connected network.

(C) Singular values of recurrent weights in neural model. (D) Flow field of
neural model. (E) State variables decoded from spiking activity in a simulation
of the network.
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A B C

D E F

FIGURE 2 | Multidimensional encoding using all-to-all networks. (A)

Slice through tuning curves along a single dimension x1 in a 2-dimensional
(2-D) population (xi �=1 = 0). (B) Slice through tuning curves along x1 in a
200-D population in which the singular values of the weight matrix decrease
linearly from the highest value to zero, similar to those of random matrices
discussed later. (C) Slice through tuning curves along x200 in the 200-D

population (i.e., the dimension associated with the smallest singular value).
(D,E,F) Optimal linear estimate [Salinas and Abbott (1994)] of represented
variables, from spikes of the populations shown in the top panels.
(D) Estimate of x1 in the 2-D population shown in A. (E) Estimate of x1 in the
200-D population, different projections of which are shown in B and C.
(F) Estimate of x200 in the same 200-D population.

higher-dimensional state variables are less accurate. This is exem-
plified by the highly noisy state estimate shown in Figure 2E, and
the very highly noisy estimate in Figure 2F, compared to the more
accurate low-dimensional state estimate in Figure 2D. Note that
the LIF parameters, maximum firing rates, and intercepts along
the preferred direction vectors are identical in panels A, B, and C
of Figure 2. Only the dimension of the preferred direction vec-
tors differs across these panels. The tuning curves appear less
steep on average in panel B than in panel A because in a higher
dimensional space, the neurons’ preferred directions tend to have
a smaller projection onto x1.

3.2. OPTIMIZING SPARSELY CONNECTED NETWORKS FOR
LOW-DIMENSIONAL DYNAMICS (METHOD A)

As illustrated in the previous section, networks with all-to-
all recurrent connections support low-dimensional, high-fidelity
population codes. However, connections in the cortex are
sparse, and dominantly between nearby neurons (Hellwig, 2000;
Stepanyants and Chklovskii, 2005). We wanted to see if such
biological constraints were consistent with the low-dimensional,
high-fidelity population coding that we know to be possible in
densely connected networks.

Random, sparse, locally connected networks typically have full
rank. Panels A and B of Figure 3 show a sketch of an example net-
work of neurons in an 8 × 8 grid with sparse, local connections,
and the corresponding connection matrix. If synaptic weights are
drawn randomly from a Gaussian distribution, these connection
matrices typically have full rank with a wide range of singular

values (Figure 3C). There is little variation in magnitudes of these
singular values (see error bars Figure 3C), so low rank is very
unlikely in these networks.

We wondered if the synaptic weights in these networks could
be modified to reduce the rank, or at least to concentrate the
network dynamics into a small number of dimensions. Figure 4
shows a sparsely connected network that was optimized for low-
dimensional feedback dynamics using Method A (Section 2.3.1).
This model consisted of a 10 × 10 grid of neurons with Pmax =
1/3 and σ = 2.5, and was optimized for 2-D dynamics. The opti-
mization procedure reduced both encoding and decoding error
(panel A). However, optimal performance was still very poor.
Panel C shows a scatter plot of reconstructions x̂1 = �1r(x) vs
x1. There was some correlation between x1 and its reconstruction,
but errors were large (this is a typical example).

We also experimented with various other methods of reducing
the rank of a sparse weight matrix, without regard to decod-
ing error. For example, we took the SVD of the synaptic weight
matrix and iteratively scaled down the smaller singular values
and reconstructed the modified weight matrix, throwing away
any new connections that were not in the original network. This
method concentrated variations in the synaptic weights along a
small number of dimensions. However, this resulted in a small
number of large weights. Typically, k (with k � n) neurons had
many large input or output weights, while the rest had near zero
input or output (not shown).

In general, we were unable to find a way to set the synap-
tic weights in such a network (i.e., with connections sampled
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FIGURE 3 | Random, sparse, locally connected networks,

like the one sketched in A, have connection matrices

with high rank. (B) Example of a sparse, local connection matrix.
A black dot in the i th row and j th column indicates a connection from the

j th to the i th neuron. (C) The distribution of singular values is very
regular. The graph shows the mean and one standard deviation over 100
trials. The networks were generated using a Pmax = 0.3 and a σ = 2
(see Section 2.2).

from spatial connection probabilities �) so that the network
exhibited both low-dimensional dynamics and accurate linear
reconstruction of a feedback function. These results suggest
that sparse, random, diagonally dominant connections may be
inconsistent with high-fidelity dynamics. The inherently high
rank of these weight matrices is related to the limited overlap
between inputs to different neurons. In the extreme, if there
were no overlap at all (as in a diagonal feedback matrix) then
the weights could only be rank-deficient if some neurons lacked
input.

3.3. DECOMPOSITION OF BOOLEAN CONNECTION MATRICES
As discussed above, various optimization methods failed to find
synaptic weights that could impart low-dimensional dynamics
to the sparse connection matrices C ∈ {true, false}n × n sampled
from �. This was an intuitive outcome, but failure of the opti-
mization methods does not guarantee that such weights do
not exist. Therefore, we examined a related question that could
be tested conclusively. Specifically, we tested whether various
instances of C could be decomposed into lower-dimensional
Boolean factors, as C = CLCR, with CL ∈ {true, false}n × k and
CR ∈ {true, false}k × n. If this were possible, the connection struc-
ture itself would have inherently low rank, independent of a
specific choice of synaptic weights. Replacing the true elements
of CL and CR with real numbers would then create low-rank
weight matrices with corresponding k-dimensional dynamics.
This approach, therefore, tests whether a given connection matrix
has an associated family of low-dimensional recurrent dynamics,
similar to an all-to-all connection matrix.

To test this possibility, we first generated connection matri-
ces C by sampling connections from probabilities �. For an
n × n Boolean matrix C and rank k, we sought the largest sub-
matrix of C that could be represented as a product of rank-k
Boolean matrices (for details see Section 2.4). Our approach
allowed us to test whether 400 × 400 Boolean connection matri-
ces were consistent with any product of Boolean matrices up to
rank 4. As shown in Figure 5C, none of the connection matrices
we generated could be decomposed into low-rank products. In

fact, typically only a small fraction of each connection matrix
(of dimension less than 10 × 10) was consistent with any prod-
uct of rank four or less. This is an intuitive result because for
k � n, the factor matrices contain many fewer degrees of free-
dom than the connection matrix. These results suggest that—in
contrast to densely connected networks—random, sparse, local-
ized networks do not typically have a connection structure that
is consistent with flexible low-dimensional dynamics (unless
low-dimensional dynamics are due to a small number of large
synapses).

3.4. LOW-RANK APPROXIMATION OF SPATIAL CONNECTION
PROBABILITIES (METHOD B)

It is straightforward to create an n × n synaptic weight matrix
W ∈ R

n × n of reduced rank k, as a product WLWR, where
WL ∈ R

n×k and WR ∈ R
k × n. For example, multiplying a 7 × 4

matrix by a 4 × 7 matrix yields a 7 × 7 matrix with rank at
most 4. Indeed, every rank-defficient matrix can be represented
as such a product. Furthermore, one may construct sparse low-
rank weight matrices by choosing sparse enough WL and WR;
Figure 6 shows an example. However, it was not immediately
obvious to us whether a low-rank matrix product could generate
a sparse weight matrix with realistic spatial connection statis-
tics. To address this question as directly as possible, therefore, we
attempted to factor matrices � of spatial connection probabili-
ties into left and right matrices that could be sampled to give a
low-rank product (see Section 2.3.2, Method B).

Figure 7 shows an example of a 100-neuron network that
was constructed according to Method B (Section 2.3.2). In con-
trast with the results of Method A (above) this network has
exactly 4-D dynamics, by construction. Furthermore, the decod-
ing weights � reconstruct x much more accurately than those
of Method A (Figure 7B), although not as accurately as dense �

(Figure 7D).
In this example network, some columns of the sparse weight

matrix have many large values while others only have small val-
ues, so that some neurons have a much larger impact on network
activity than others. We suspected that this was related to the
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A B

DC

FIGURE 4 | Optimization of sparse connection weights. The network in
this example consisted of a 10 × 10 grid of neurons, with Pmax = 1/3 and
σ = 2.5. Optimization was performed as described in 2.3.1 to approximate
2-D dynamics (specifically a 2-D integrator). (A) Decoding error (solid) and
encoding error (dashed) decreased over 20 K gradient descent iterations, but
did not improve beyond about half the values associated with random
weights (this example was typical). (B) Final �̃, with the preferred directions

of different neurons in columns (light = high value; dark = low value). The
final preferred direction vectors have larger amplitudes in the first two
dimensions than in all other dimensions. (C) Linear reconstruction of x1 from
firing rates at 500 random values of x, as x̂1 = �1[r(x) + ε], where ε is
Gaussian noise with standard deviation of of 10 spikes/s. The reconstruction
is very poor. (D) Reconstruction by an alternative � associated with dense
connections (with the same neurons) is much more accurate.

small network size and low absolute number of dimensions.
Therefore, we investigated connection statistics in much larger
networks (on the scale of a cortical column) with a wide range
of ranks, in order to estimate the range of ranks that correspond
to realistic connectivity in large networks.

Figure 8A shows an example � for a 10,000-neuron net-
work with sparse, primarily local connections. The top panel
of Figure 8B zooms in on a small sub-matrix of the spatial
connection probabilities �. To illustrate how the rank k affects
the approximation of spatial connection statistics, the remain-
ing panels in Figure 8B show (for the same sub-matrix) the
empirical connection probabilities P(Cij), generated over 1000
samples. P(Cij) is shown for networks with rank 1, 10, 100, and
1000 (progressing from the top down). In these networks, rank
k ≥ 10 (up to three orders of magnitude lower than the num-
ber of neurons) yielded good approximations of the ideal spatial
connection probabilities. This suggests that subtle changes in
connection structure (with minimal effect on spatial connection
probability) allow a network to support very low-rank population
codes.

We then examined various statistics of the low-rank networks
and compared them to those of high-rank networks with approxi-
mately the same spatial connection probabilities. Figure 8C plots
the distribution of in-degree over 10,000-node networks of var-
ious ranks. The out-degree distributions were nearly identical.
Networks of rank k ≥ 100 had qualitatively similar degree dis-
tributions. Figure 8D plots distributions of cluster factors (Watts
and Strogatz, 1998) for various ranks. In networks with k =
100 (but not k = 1000), cluster factors were substantially higher
than those of full-rank networks. In k = 10 networks, the degree
distribition was multi-modal, because a minority of neurons
received dense connections from one or more clusters other than
their own.

3.5. A SPARSELY CONNECTED, LOW-DIMENSIONAL INTEGRATOR
We performed example simulations in order to verify that
our sparse, low-rank networks (Section 3.4) could in fact be
configured to exhibit chosen dynamics, and that their activity
has a much better signal-to-noise ratio than high-rank net-
works with the similar spatial connection probabilities. Figure 9
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FIGURE 5 | Boolean matrices (black = connection; white = no

connection). (A) Sparse, localized connections in a random example network
of 20 × 20 neurons. (B) The largest sub-matrix starting from (1,1) that can be
expressed as a product of two rank-4 Boolean matrices. (C) Mean ± SD

dimension of largest submatrices that can be expressed as a product of
Boolean matrices of various ranks, tabulated over 10 random connection
matrices per dimension. Low-rank products are typically inconsistent even
with very small fractions of random connection matrices.

FIGURE 6 | Low-rank connection matrices (see Material and

Methods section), (Pmax = 0.3, σ = 3). (A) illustrates a product of
two rank-6 matrices creating a 100 × 100 rank-6 matrix. (B) distribution

of connections over different lengths. (C) a rank-6 connection
matrix for a 30 × 30 network; one can plainly see the 6 different
clusters of neurons.

shows simulations of 9-D and 90-D neural integrators (Aksay
et al., 2007). In each case, the network consisted of a 30 × 30
grid of neurons with random, sparse, and local connections,
and similar spatial connection probabilities. The ideal connec-
tion probabilities � are shown in Figure 9A, and the empirical
connection probabilities P(Cij) are shown in B (rank-9) and
C (rank-90).

An integrator network should ideally maintain a constant
encoded value when there is no external input, and gradually
change the encoded value at a rate proportional with non-zero
input. [Neural integrators, however, exhibit non-ideal behavior
such as drift toward attractors (Koulakov et al., 2002)]. The
ideal behavior in these simulations, with external input shown in
Figure 9G, is to hold a value of 0 for 0.1 s, then increase at a rate

of 5 units per second for 0.2 s, and then hold an attained value of
1 thereafter.

Figure 9H and I plot linear reconstructions of x obtained by
multiplying post-synaptic currents by �, for the 9-D and 90-
D networks, respectively. The value of x1 is plotted in black,
and xl>1 in gray. Panel H demonstrates that the sparsely con-
nected 900-neuron network behaves roughly as an integrator in
nine dimensions (≈100 neurons per dimension). In contrast,
Figure 9I shows that a similar 90-D network (≈10 neurons per
dimension) is dominated by noise and does not integrate its
input.

These simulations illustrate that sparsely connected networks
can exhibit low-dimensional, high-fidelity dynamics if the weight
matrix has a low-rank.
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A B

C D

FIGURE 7 | A sparse, low-rank network. The neurons and spatial
connection probabilities in this example are the same as those in 3.
Connections were structured according to Method B (2.3.2) to approximate a
4-D integrator. (A) Synaptic weights of the sparse network (white = highest;
black = lowest; gray = zero). (B) Linear reconstruction of x1 from noisy firing

rates, based on the � associated with the synaptic weights in A.
(C) Synaptic weights of dense connections between the same
neurons, in a network that approximates a 4-D integrator.
(D) Reconstruction error associated with the dense decoding
weights.

4. DISCUSSION
Low-dimensional recurrent dynamics allow noisy neurons to
encode an underlying state vector with high fidelity. The main
conclusion of this study is that sparse and primarily local con-
nections are consistent with low-dimensional recurrent dynam-
ics. However, if connections are simply instantiated at random
according to spatial connection probabilities, network dynamics
apparently have about as many dimensions as there are neurons.
Some additional structure is needed to obtain a low-rank synaptic
weight matrix and corresponding low-dimensional dynamics.

4.1. RELEVANCE OF LINEAR RECONSTRUCTION
We considered the fidelity of the spike code in various networks in
terms of linear reconstruction (Salinas and Abbott, 1994) of the
state x.

Therearemanyotherreconstructionmethods.Anearlymethod,
the population vector, was developed to decode activity in the pri-
mate motor cortex during reaching movements (Georgopoulos
et al., 1986). The preferred reaching directions of these neurons
are combined using a weighted vector sum, where the vector
points in the preferred direction and has magnitude equal to the
neuron’s firing rate. This simple weighted vector sum is a good

predictor of reaching direction (Georgopoulos et al., 1986). The
population vector method works if there is a sufficient num-
ber of neurons, and if their preferred stimuli are uniformly
distributed (Theunissen and Miller, 1991; Salinas and Abbott,
1994). Moreover, the population vector method is very simi-
lar in performance to maximum likelihood estimates when the
neurons have broad turning curves (Seung and Sompolinsky,
1993). As another example, researchers inferred a rat’s location
from the activity of hippocampal neurons (so called “place cells”)
(Wilson and McNaughton, 1993). First, they compiled a signature
ofneuralactivitiesassociatedwitheachlocationintherat’senviron-
ment. Later, hippocampal activities were used to estimate the rat’s
locationbychoosingthesignaturewith“maximalcorrespondence.”

Other reconstruction methods have various advantages over
optimal linear reconstruction. These include the centroid of
preferred directions (e.g., Boyraz and Treue, 2011), which can
be generalized to avoid the sensitivity of linear reconstruction to
noise correlations (Tripp, 2012), maximum likelihood estimation
(Seung and Sompolinsky, 1993), and others (Quian Quiroga and
Panzeri, 2009). Information theory also provides a way to evaluate
the content of a spike code, independently of any decoding
method (Bialek et al., 1999).
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FIGURE 8 | Factorization of a 10,000 node probability matrix and

associated network statistics. (A) Ideal connection probability matrix �

(white = 0; black = 1/3). (B) Close-up of a sub-matrix of � (top panel)
showing more detail from neuron 5000 to neuron 5100 (at the location of the
arrow in A). The remaining panels are empirical probabilities P(C) of the
same connections from factorizations of various ranks (1000 samples each;

rank = 1, 10, 100, and 1000 from top to bottom). (C and D) In-degree
histogram (out-degree was almost identical) and cluster factor
histogram. (Both over nine networks.) Top: connections sampled
directly from probability matrix. Second from top: connections sampled
from rank-1 factors. Third: rank-10 factors. Fourth: rank-100.
Fifth: rank-1000.
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A B C

D E F

G H I

FIGURE 9 | Neural integrator example with 900 sparsely connected

neurons in a 30 × 30 grid. (A) Matrix � of ideal spatial connection
probabilities (white = 0; black = 1/3). (B) Actual connection probabilities P(C)

with rank-9 factors. (C) Connection probabilities P(C) with rank-90 factors.
(D) Illustrative sketch of a small integrator network, with external input node.

An example of the weight matrices for the rank-9 and rank-90 networks is
shown in E and F, respectively. For the input function shown in G, plots H

and I show the linear reconstruction of x1 (dark), and other dimensions of x
(light) from network spiking activity. The decoding vectors � of each network
were used for these reconstructions (rank-9 and rank-90, respectively).

We chose linear reconstruction because it is physiologically
relevant in terms of its relationship with linear synaptic integra-
tion (see Section 2.1). In particular, neurons that integrate inputs
linearly can be viewed as being cosine-tuned to a linear recon-
struction of a state vector that is encoded by network activity.
Linear reconstruction error, therefore, provides a compact index
of the shared noise intrinsic in feedback dynamics, in the context
of linear synaptic integration.

Linear synaptic integration is a simplification, but it is a rea-
sonable approximation in many conditions (Poirazi et al., 2003;
Araya et al., 2006), despite the complexity of neuron mem-
branes and morphology. The computational role of various non-
linearities is the subject of ongoing work (Carandini and Heeger,
2011; Gómez González et al., 2011).

4.2. RELATIONSHIPS WITH CORTICAL ANATOMY
The network models used in this study are highly simplified
and only loosely related to cortical anatomy. However, qualita-
tive comparisons are possible. It is striking that in all but the
lowest-dimensional networks, spatial connection probabilities are

almost indistinguishable from those of full-rank randomly con-
nected networks. With 10,000 neurons, networks with dimensions
as low as 10 had connection probabilities that were very similar
to 10,000-dimensional networks (Figure 8B). In-degree and out-
degree were also similar across networks of rank 100 and higher
(Figure 8C). We would, therefore, not expect a biological net-
work’s spatial connection probabilities or degree distribution to be
very predictive of the network’s dynamics or signal-to-noise ratio.

The clearest hallmark of our lower-rank networks was the ten-
dency for nearby neurons to form clusters, with relatively dense
inter-connections (Figure 6C). This is consistent with evidence
of clustering in cortical microcircuits. Pairs of connected layer 5
neurons are more likely than random networks to have reciprocal
connections (Markram, 1997). Similarly, pairs of connected layer
2/3 neurons are more likely than unconnected pairs to share input
from a third layer 2/3 cell (Yoshimura et al., 2005). Dense inter-
connections among triplets are also more likely than expected
in a random network (Song et al., 2005). In larger groups of
up to eight neurons, connection probabilities diverge even more
from the expectations of random networks (Perin et al., 2011).
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Cortical neurons, therefore, appear to form clusters with relatively
dense interconnections, as did our networks with reduced rank
and high signal-to-noise ratio. These clusters have been viewed
as cell assemblies that encode individual memories (Perin et al.,
2011). Their role in our models is slightly broader; they simply
encode a state variable (which could be a scalar or vector) and
govern its feedback dynamics. Feedback dynamics could poten-
tially form an attractor (e.g., Figure 1), consistent with a content-
addressable memory function, and/or an integrator (Figure 9),
consistent with a working-memory function. Feedback dynamics
could also conceivably underlie a non-memory-like function.

4.3. LIMITATIONS AND FUTURE WORK
The limitations of this study are mainly due to the simplicity
of our model compared with the immense complexity of real
cortical microcircuits.

A key limitation is that we did not distinguish between dif-
ferent cell types, most notably between excitatory and inhibitory
neurons. In realistic synaptic weight matrices, each column would
contain values of only one sign, reflecting the fact that neu-
rons are typically either excitatory or inhibitory. Some of our
results (e.g., Figure 5) did not require the specification of synap-
tic weights, and are, therefore, not affected by this limitation.
However, our method of generating a sparse weight matrix by
decomposing the connection probability matrix (Method B) does
not allow us to distinguish between excitatory and inhibitory
neurons in a straightforward way. Such a distinction might be
achieved by constraining the factor matrices, but we have not
explored this approach. Alternatively, our weight matrices could
be viewed as functional rather than physical connections, which
are implemented by a closely related physical combination of
excitatory and inhibitory connections. A matrix of functional
synaptic weights can be transformed into a more realistic com-
bination of direct excitatory connections and indirect inhibitory
connections through a separate population of inhibitory neurons
(Parisien et al., 2008). Previous use of this method has involved
dense connections, but we experimented with this approach and
found that it also works well with sparse connections.

Our model of cell-intrinsic dynamics is also highly simpli-
fied, and we have not explored the impact of more complex cell
dynamics. Cell-intrinsic dynamics could potentially increase the
dimension of recurrent dynamics, e.g., via spike rate adaptation

or synaptic depression that varies in rate across the population
(Markram, 1997).

We have modeled recurrent networks in isolation without con-
sidering the effects of external inputs (except at a very high level;
Figure 9). This is a standard approach, and some dynamic prop-
erties (e.g., stability) depend only on internal dynamics and state.
A relevant point for future work in this direction is that clusters of
layer 2/3 neurons may receive input from distinct groups of layer 4
neurons, with less-segregated input from layer 5 (Yoshimura and
Callaway, 2005).

4.3.1. Approximation of low-dimensional dynamics
In our models, neuron responses are restricted to a low-
dimensional space by low-rank synaptic weight matrices. As we
have shown, this leads to high-fidelity representation despite indi-
vidually noisy neurons. In the simplest case, if the weight matrix
has rank one, each neuron receives the same inputs with the same
weights (or their negatives). In this case, each neuron is driven
by the same weighted sum of spikes, Sw. Such a network would
behave similarly if, in some of the neurons, the weights of two
very similarly active neurons were swapped. The synaptic weight
matrix would then have rank two. However, if the swapped neu-
rons were perfectly synchronized, the network dynamics would
not change at all. In general, there may be many combinations
of weights Sw∗ ≈ Sw that approximate the original sum. In this
way, a high-dimensional network might behave much like a low-
dimensional network. We have not yet explored the effects in such
a network of the residual dimensions that would arise from varied
approximations Sw∗ .

5. CONCLUSION
In highly simplified models of superficial cortical layers, we
have shown that low-dimensional, high-fidelity encoding of state
variables depends on additional structure, beyond connection
probabilities that depend only on distance between neurons.
This additional structure involves clusters of relatively densely
connected neurons, consistent with cortical microsctructure.
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