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ABSTRACT

To identify PAM50 subtype–specific associations between distant metastasis-
free survival (DMFS) in breast cancer (BC) patients and gene modules describing 
potentially targetable oncogenic pathways, a comprehensive analysis evaluating the 
prognostic efficacy of published gene signatures in 2027 BC patients from 13 studies 
was conducted. We calculated 21 gene modules and computed hazard ratios (HRs) for 
DMFS for one-unit increases in module score, with and without adjustment for clinical 
characteristics. By comparing gene expression to survival outcomes, we derived four 
subtype-specific prognostic signatures for BC. Univariate and multivariate analyses 
showed that in the luminal A subgroup, E2F3, PTEN and GGI gene module scores 
were associated with clinical outcome. In the luminal B tumors, RAS was associated 
with DMFS and in the basal-like tumors, ER was associated with DMFS. Our defined 
gene modules predicted high-risk patients in multivariate analyses for the basal-
like (HR: 2.19, p=2.5×10−4), luminal A (HR: 3.03, p=7.2×10−5), luminal B (HR: 3.00, 
p=2.4×10−10) and HER2+ (HR: 5.49, p=9.7×10−10) subgroups. We found that different 
modules are associated with DMFS in different BC subtypes. The results of this study 
could help to identify new therapeutic strategies for specific molecular subgroups of 
BC, and could enhance efforts to improve patient-specific therapy options.

INTRODUCTION

Breast cancer (BC) is a biologically and clinically 
heterogeneous disease with diverse morphologies, 
molecular features, and clinical behaviors. 
Clinicopathologic characteristics such as clinical 
TNM stage at diagnosis, histologic grade, lymph node 
involvement and estrogen receptor (ER) and human 
epidermal growth factor receptor 2 (HER2) statuses have 
been associated with BC prognosis. Gene expression 
studies have shown that different molecular BC subtypes 
exhibit different characteristics and prognoses [1, 2]. 
Tumor subtypes based on the PAM50 classifier have 
distinct prognoses, and respond differently to systemic 
therapy [3–5]. Further, expression signatures for genes 
such as Gene70 [6], Gene76 [7], Grade Index (GGI) [8] 
and OncotypeDx [9] have been studied to help identify 
low-risk patients who are unlikely to benefit from systemic 

adjuvant therapy, while still correctly identifying high-risk 
patients [6–11].

Several gene signatures have been identified to 
describe oncogenes such as RAS, E2F3, SRC, MYC and 
β-catenin [12], as well as activation of insulin-like growth 
factor 1 (IGF1) [13], and the AKT/mammalian target of 
rapamycin (mTOR) [14] and mitogen-activated protein 
kinase (MAPK) [15] pathways. Other signatures have 
identified PIK3CA mutations [16], and deficiencies in PTEN 
[17]. Chemotherapy sensitivity in different BC subtypes is 
altered based on activation of different oncogenic pathways 
[18], and Desmedt, et al. reported that BC survival depended 
on ER and HER2 status [4]. However, it is still unknown 
whether patients within different PAM50 subtypes have 
different DMFS based on activation of different biological 
process and oncogenic pathways.

To identify robust, PAM50 subtype–specific 
associations between DMFS and gene modules describing 
biologically relevant, potentially targetable oncogenic 
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pathways and prognosis signatures, a comprehensive 
systematic analysis evaluating the prognostic efficacy of 
21 published gene signatures in 2027 BC patients from 
13 studies [16, 19–30] was conducted. In this pooled in-
silico study, we also investigated whether modules were 
associated with DMFS beyond clinical characteristics 
in each molecular subtype. Furthermore, we wanted to 
confirm previous findings from small sample studies on the 
association between DMFS and specific pathways, such 
as AKT-MTOR and RAS [31], and extend our analysis 
to PAM50 subtypes. This study expands on the analysis 
conducted by Desmedt, et al. [4] in four ways. First, ten 
more oncogenic pathways were evaluated in our study. 
Second, only datasets generated using the Affymetrix 
U133 plus 2.0 or U133A platforms were utilized in our 
study, while the datasets used in Desmedt, et al. [4] were 
gathered from different platforms, possibly resulting in 
heterogeneity [32]. The final distinction is that we not only 
explored the associations between gene modules and BC 
patient survival within each PAM50 subtype, but we also 
identified four subtype-specific prognosis modules that 
could predict high-risk of distant metastasis.

RESULTS

Identification of PAM50 subgroups

The clinicopathological characteristics of the 2027 
BC patients included in the study are listed in Table 1. Out 
of the 2027 samples, we classified 554 as luminal A, 774 
as luminal B, 129 as HER2+, 440 as basal-like and 130 as 
normal-like. There are differences between subtypes based 
on PAM50 with regard to DMFS. The survival probability 
for DMFS (Supplementary Figure S1) of the basal-like 
subtype was lower than the luminal A and luminal B 
groups (Hazard ratio (HR)=0.37, P < 2.0×10−16 for luminal 
A; HR=0.80, P = 1.5×10−2 for luminal B). However, no 
survival difference was found between the basal-like and 
HER2+ subgroups (HR=1.07, P= 0.65).

Pair-wise gene module correlations

Pair-wise correlations between 21 gene modules for 
the pooled population are depicted in Figure 1 (Pearson’s 
coefficient correlations are listed in Supplementary Table 
S3). GGI, a gene signature that mainly measures tumor 
proliferation, was highly correlated with Oncotype DX, 
Gene70, modules describing proliferation (AURKA) and 
PTEN loss, and MYC and IGF1 pathway activation.

Gene modules associated with DMFS

Univariate associations between gene modules and 
DMFS were analyzed for all patients and PAM50 subtypes 
(Figure 2). High module scores of AURKA, Gene70, 
AKTmTOR, HER2 receptor signaling and PTEN loss 
were associated with poor DMFS in the luminal A and 

luminal B subtypes, but not in the basal-like and HER2+ 
subtypes. Additionally, a significant reduction in DMFS 
was associated with low ER signaling, PIK3CA and Gene76 
module scores, and high PLAU, VEGF, E2F3, IGF1, 
MAPK, MYC, RAS, OncotypeDX and GGI module scores 
for the entire cohort (Figure 2A). Luminal A tumors with 
high STAT1, E2F3 and Gene70 module scores had poor 
DMFS (Figure 2C); luminal B tumors with high activation 
of IGF1, MAPK, MYC, and OncotypeDX gene modules 
and low activation of the ESR1 module had poor DMFS 
(Figure 2D). However, there is no module significantly 
associated with DMFS within the basal-like and HER2+ 
subtypes after FDR adjustment (Figure 2B & 2E).

In a multivariate model including age, histologic grade, 
node status and treatment, we found that node-positivity; 
grades 2 and 3, no adjuvant treatment and chemotherapy were 
all associated with poor DMFS for the entire cohort (Table 2). 
Additionally, older patients (>=50 years) with basal-like 
tumors who received chemotherapy, had grade 2 or 3 luminal 
A tumors, or had luminal B tumors with positive nodal status 
had poor DMFS (Table 2). There was no covariate associated 
with DMFS in the HER2+ subtype.

We also analyzed the prognostic values of the gene 
expression modules adjusted for the clinical parameters 
selected above (Figure 3). For the entire cohort, low SRC 
signaling and high AURKA, AKTmTOR, E2F3, IGF1, 
PTEN-loss, RAS, OncotypeDX, GGI and Gene70 module 
scores were associated with poor DMFS (Figure 3A). 
In the luminal A subpopulation (n = 554), the E2F3 
(adjusted HR=2.45; 95% CI: 1.45-4.14; P = 8.0×10−4, 
FDR=1.7×10−2), PTEN loss (HR=2.16; 95% CI: 1.29-
3.63; P = 3.5×10−3, FDR=3.6×10−2) and GGI (HR=2.26; 
95% CI: 1.28-4.01; P = 5.1×10−3, FDR=3.6×10−2) modules 
were associated with DMFS (Figure 3C). In the luminal 
B tumors (n = 774), only the RAS module was associated 
with DMFS (HR=1.66; 95% CI: 1.20-2.30; P = 2.1×10−3, 
FDR=4.4×10−2) in the multivariate model (Figure 3D); in 
the basal-like tumors (n=440), only the ER module was 
associated with DMFS (HR=2.03; 95% CI: 1.40-2.92; P = 
1.6×10−4, FDR=3.5×10−3) (Figure 3B).

Development of a prognostic survival 
module within each subtype

For each BC PAM50 molecular subtype, we 
identifed subtype-specific prognostic signatures. To 
identify the prognostic gene candidates, we calculated HRs 
in relation to DMFS for each gene. Then, 20 candidate 
modules with the most significant 10 to 200 prognostic 
gene candidates were determined (e.g., module 1 with 
the most significant 10 prognostic genes, module 2 with 
the most significant 20 prognostic genes… module 20 
with the most significant 200 prognostic genes.), and 
corresponding module scores were calculated. Finally, 
HRs of DMFS for one unit increase in module score 
were computed at the univariate and multivariate levels, 
and the module with highest HRs was identified. From 
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Table 1: Patient characteristics from the gene expression data sets
Characteristic GSE7390 GSE9195 GSE16446 GSE45255 GSE20685 GSE6532 GSE11121 GSE12093 GSE2603 GSE25066 GSE42568 GSE19707 GSE12276

Sample size 75 59 107 135 238 190 37 140 111 80 508 104 39 204

Age,years

 <=50 51 2 107 54 154 42 0 0 0 0 264 27 18 0

 >50 24 57 0 81 84 148 37 0 0 0 244 77 21 0

 Unknown 0 0 0 0 0 0 0 140 111 80 0 0 0 204

Histologic grade

 1 12 8 2 16 0 30 3 16 0 0 32 11 0 0

 2 27 17 19 49 0 114 18 98 0 0 180 40 9 0

 3 36 19 81 67 0 22 9 26 0 0 259 53 29 204

 Unknown 0 15 5 3 238 24 7 0 111 80 37 0 1

cN

 positive 0 27 59 44 0 44 24 0 0 0 351 59 25 0

 negative 75 32 48 91 0 142 13 140 0 0 157 45 11 0

 Unknown 0 0 0 0 238 0 0 0 111 80 0 0 3 204

ER

 Positive 44 59 0 88 144 160 37 90 67 46 300 68 14 129

 Negative 31 0 107 47 94 30 0 50 44 34 208 36 25 75

HER2

 Positive 9 4 42 61 64 16 7 2 1 19 6 41 31 129

 Negative 66 55 65 74 174 174 30 138 110 61 502 63 8 75

DMFS event 50 10 24 32 82 66 21 41 18 27 111 48 17 185

DMFS 
(year):mean±sd 4.9±2.8 7.1±2.0 3.0±1.5 4.2±2.0 5.8±2.9 5.4±2.9 5.4±2.9 5.6±2.7 6.5±2.1 5.0±2.2 3.0±1.6 4.5±2.7 3.2±2.4 2.2±1.8

 Platform GPL96 GPL570 GPL96 GPL96 GPL96 GPL96 GPL570 GPL96 GPL96 GPL96 GPL96 GPL570 GPL570 GPL570

 Reference Desmedt 
et al. [19]

Loi 
et al. [16]

Desmedt 
et al. [20]

Nagalla 
et al. [21]

Kao 
et al. [22] Loi et al. [23] Schmidt 

et al. [24]
Zhang 
et al. [25]

Minn 
et al.[26]

Hatzis 
et al. [27]

Clark 
et al. [28]

Sircoulomb 
et al. [29] 

Bos 
et al. [30]

Abbreviations: cN, clinical nodal status; ER, estrogen receptor; FISH, fluorescent in situ hybridization; HER2, human epidermal growth factor receptor 2.
ER status determined by IHC for patients or inferred by single ESR1 gene mRNA expression.
HER2 status determined by IHC/FISH for patients or inferred by single HER2 gene mRNA expression.

Figure 1: A heat map presents pair-wise correlations between different modules in the cohort with 2027 BC patients. The cells 
are colored on the basis of Pearson’s correlation coefficient values, with green and red indicative of positive and negative correlations, respectively.
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Figure 2: Hazard ratios for DMFS for one-unit increase in module score in a Cox regression model with the data 
set as stratum indicator for all patients A. and the basal-like B. luminal A C. luminal B D. and HER2+ E. subtypes. Horizontal 
bars represent the 95% CIs, the dimension of the square in inverse proportion to the SE of HRs; Modules with significant association 
(FDR<0.05) are shown in orange. FDR, false discovery rate.
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this process, modules with 70, 60, 20 and 150 genes for 
basal-like, luminal A, luminal B and HER2+ subtypes 
were identified (Supplementary Figure S2). The HRs of 
DMFS for the four subtype-specific modules were listed in 
Supplementary Table S6. Compositions and weights of the 
modules are listed in Supplementary Table S2.

The patients were divided into high and low 
risk using the median cutoff of the subtype-specific 
module scores, and survival risk prediction analysis 
was performed. To evaluate patient prognosis, Kaplan-
Meier survival curves were drawn and the log-rank test 
showed significant differences in DMFS for the basal-
like (p=1.2×10−6; Figure 4A), luminal A (p=1.4×10−9; 
Figure 4B), luminal B (p=1.4×10−9; Figure 4C) and 
HER2+ (p=3.9×10−7; Figure 4D) subtypes.

GO biological process analysis showed that the basal-
like, luminal A and HER2+ specific modules contained 
genes enriched in the immune response, cell cycle process 
and response to chemical stimulus, respectively (Table 3). 
Genes in the luminal B module were not significantly 
associated with any specific processes.

DISCUSSION

To identify biological processes, oncogenic path-
ways and prognosis signatures associated with DMFS 
in PAM50 BC subtypes, an extensive analysis of 
gene expression data generated from 2027 BC patient 
samples was conducted. We have shown that molecular 
subtype-specific modules contain distinct prognostic 

Table 2: Multivariate Cox regression model for DMFS in patients with complete clinical and genomic data according 
to breast cancer subtypes

Cohort Characteristic HR 95% CI P-value

All patients(n=1045) cN (Positive vs. 
Negative) 1.74 1.32–2.31 1.03×10−4

Histologic grade 
(2 vs. 1) 2.81 1.57–5.03 4.82×10−4

Histologic grade 
(3 vs.1) 3.82 2.11–6.89 9.17×10−6

Treatment (chemo vs. 
both) 1.97 1.34–2.89 5.72×10−4

Treatment (endo vs. 
both) 1.79 0.75–4.23 1.88×10−1

Treatment (no adjuvant 
vs. both) 5.20 1.15–23.49 3.22×10−2

Basal (n=276) Age (>=50 vs. <50) 1.55 1.00–2.42 4.96×10−2

Treatment (chemo vs. 
both) 3.14 1.12–8.76 2.91×10−2

LumA (n=261) Histologic grade 
(2 vs. 1) 2.24 0.96–5.25 6.31×10−2

Histologic grade 
(3 vs. 1) 5.89 2.04–16.99 1.02×10−3

LumB (n=362) cN (Positive vs. 
Negative) 1.69 1.07–2.67 2.41×10−2

Abbreviations: In the Cox regression model, the clinicopathologic factors, age, histologic grade, node status and treatment 
were included as covariates, and only the significant (P<0.05) factors are shown in this table.
cN, clinical nodal status; chemo, chemotherapy; endo, endocrine therapy; both, both endocrine therapy and chemotherapy; 
no adjuvant, did not receive systematic adjuvant.
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information. Further, we identified four subtype-specific 
prognosis signatures that successfully predict high-risk 
BC patients with poor survival outcomes.

In the entire study population, low ER signaling, 
PIK3CA and Gene76 module scores, and high AURKA, 
E2F3, IGF1, MYC, PTEN, RAS, OncotypeDX, GGI and 
Gene70 module scores were associated with poor DMFS. 
It was previously reported that low ER signaling and high 
RAS module scores were associated with poor DMFS 
[31]. Moreover, it is not surprising that the proliferation-
related modules (AURKA, OncotypeDX, GGI and 
Gene70) are involved in BC prognosis, since increased 
expression of proliferation-related genes was associated 
with poor outcome [33].

In the luminal A subgroup, the E2F3 and PTEN 
pathways appeared to predict DMFS both at the univariate 

and multivariate levels. High E2F3 and PTEN loss module 
scores were associated with poor outcome. Similarly, 
Hollern, et al. reported that the E2F transcription factors 
play important roles in regulating tumor development 
and metastasis in a mouse module of metastatic BC [34]. 
Schade, et al. found that tumors from PTEN-deficient/NIC 
mice showed histopathological and molecular features of the 
luminal subtype of primary human BC, and PTEN deficiency 
in this type of mouse model leads to dramatic acceleration of 
mammary tumorigenesis and metastasis. Functional studies 
still need to be conducted to determine whether E2F3 and 
PTEN loss actually mediate tumorigenesis and metastasis, 
and affect prognosis of luminal A BC.

Our study also found that in the luminal B subgroup, 
high expression of the RAS pathway was significantly 
associated with poor clinical outcome. Zhang, et al. reported 

Figure 3: Hazard ratios for DMFS for one-unit increase of module score in a Cox regression model with the data set as 
stratum indicator for all patients after adjustment for clinical nodal status, histologic grade and treatment A. basal-like 
subtype after adjustment for age and treatment B. luminal A subtype after adjustment for histologic grade C. and luminal B subtype after 
adjustment for clinical nodal status D. Horizontal bars represent the 95% CIs, the dimension of the square in inverse proportion to the SE 
of HRs; Modules with significant association (FDR<0.05) are shown in orange. FDR, false discovery rate.
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that RAS GTPase-activating protein SH3 domain-binding 
protein 1 (G3BP1), an essential RAS mediator, participates 
in the progression of BC via activation of the epithelial-
to-mesenchymal transition, and that it could be a potential 
therapeutic target for metastatic human BC [35]. In addition, 
a recent study suggested that RAS signaling activation was 
a key determinant for metastatic dissemination and was 
strongly linked to poor survival of luminal BC patients [36].

These findings emphasize the need for additional 
prognostic markers for molecular subgroups, specifically for 
the HER2+ and basal-like subgroups, which are associated 
with limited therapeutic options and poor prognosis. In our 
integrated study, four subtype-specific prognosis signatures 

were identified, with some overlaps between the genes 
within different modules (Supplementary Figure S3). The 
luminal A-specific gene module contains genes involved 
in the cell cycle process, which is correlated with clinical 
outcomes of BC [33]. The HER2+ specific gene module 
contains genes involved in response to chemical stimulus. 
It has been reported that an expression signature enriched 
in response to chemical stimulus was related to acquired 
anthracycline resistance in human BC cells [37]. The 
basal-like specific module contained genes enriched in the 
immune response. Interestingly, Desmedt, et al. [4] and 
Teschendorff, et al. [38] reported that immune response 
might be linked with development of distance metastases 

Figure 4: Kaplan-Meier curves of significant module scores in the univariate analysis for the PAM50 molecular 
subgroups. Patients were grouped according to the median of the module score: basal subgroup A. luminal A subgroup B. luminal B 
subgroup C. and HER2+ subgroup D. P-values were obtained from the log-rank test.
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of BC. Moreover, tumor-infiltrating lymphocytes, routinely 
used as immune response markers, are most frequently 
found in triple-negative BC, and their higher presence at 
diagnosis is associated with better clinical outcomes after 
adjuvant chemotherapy in this subtype [39, 40].

There are several caveats to our study. First, as a 
retrospective study, heterogeneous patient cohorts were 
included. Second, we did not attempt to identify an optimal 
cutoff, but rather used a continuous value for the various 
modules based on their associations with DMFS. Because 
different gene expression-based platforms and protocols 
were used in each study, standardization of a module 
cutoff value may be unreliable. Third, the prognostic 
discriminative power of our defined four subtype-specific 
signatures should be validated in prospective clinical trials.

Despite these limitations, our observations may 
have potential implications for the clinical management 
of BC. First, we provide additional evidence that 

different biological processes and oncogenic pathways 
are associated with DMFS in different BC subtypes. 
Second, our results generate hypotheses that should be 
tested in BC subtype–focused trials of targeted agents. 
Specifically, it may be worth combining RAS pathway-
targeted therapeutics, like Mek inhibitors, together with 
routine therapy for luminal B BC patients. For luminal 
A subtypes, PTEN loss modules and E2F3 activation 
are associated with poor DMFS, suggesting that these 
patients are likely to benefit from poly (ADP-ribose) 
polymerase (PARP) inhibitors [41]. For the HER2+ 
subtype, our prognosis signature included genes involved 
in response to chemical stimulus. As for basal-like 
subtype tumors, our results emphasize the importance 
of immune response in relation to DMFS, and suggest 
that routine assessment and quantification of tumor-
infiltrating lymphocytes could provide meaningful 
prognostic information in a clinical setting.

Table 3: List of the GO term in the significant DAVID functional cluster for basal-like, luminal A and Her2+ 
subtype-specific modules

Module Biological process 
term

Gene count % P-value

Basal-like specific 
module

immune response 18 24 1.45×10−8

immune system 
process

20 27 1.08×10−7

antigen processing and 
presentation

5 7 6.43×10−4

response to stimulus 29 39 1.65×10−3

taxis 5 7 7.00×10−3

Luminal A specific 
module

cell cycle 15 25 5.13×10−7

cell cycle phase 11 18 2.22×10−6

M phase 10 17 2.77×10−6

microtubule-based 
process

9 15 3.63×10−6

cell cycle process 12 20 5.20×10−6

Her2+ specific module response to chemical 
stimulus

26 17 1.43×10−4

regulation of myeloid 
cell differentiation

6 4 3.98×10−4

regulation of 
biological quality

27 18 4.84×10−4

regulation of 
multicellular 
organismal process

20 13 6.32×10−4

regulation of cell 
proliferation

17 11 1.70×10−3
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In conclusion, we show that different BC tumor 
characteristics significantly influence DMFS of patients 
in different PAM50 subtypes. Moreover, the four new 
prognosis signatures developed in this study for different 
molecular subgroups could help to further advance 
personalized medicine for BC patients.

MATERIALS AND METHODS

Patients and gene expression data

We searched the Gene Expression Omnibus 
(GEO) databases (http://www.ncbi.nlm.nih.gov/geo/) 
using the following key words: breast cancer, GPL96 
or GPL570. From all retrieved abstracts, studies that 
analyzed genome-wide gene expression data generated 
with Affymetrix U133A or U133Aplus2 gene chips 
using pretreatment biopsies from BC patients who did 
not receive primary systemic therapy were identified. 
Only studies that provided DMFS data were used, and 
all DMFS data were censored at 10 years. Based on the 
above criteria, 2027 BC patients from 13 studies [16, 
19–30] were selected (Figure 5). Detailed informa tion 
about each study is provided in Supplementary Table S4.

Normalized gene expression data were downloaded 
from the GEO data repository with accession numbers: 
GSE7390 [19], GSE9195 [16], GSE16446 [20], GSE45255 
[21], GSE20685 [22], GSE6532 [23], GSE11121 [24], 
GSE12093 [25], GSE2603 [26], GSE25066 [27], 
GSE42568 [28], GSE17907 [29] and GSE12276 [30]. 
The accession numbers were used to name these datasets. 
Characteristics of the cohorts are summarized in Table 1. 
We used the probe set 205225_at for ER, 216836_s_at 
and 234354_x_at for HER2 with Affymetrix U133A 

and U133Aplus2 platforms, respectively, as previously 
reported [42]. The cutoffs for ER and HER2 expression 
were derived from fitting two normal distributions to the 
observed distribution of expression values for each study 
separately using the MCLUST function in R. Probes were 
mapped to gene symbols, and the ones without known 
gene symbols were filtered. When multiple probes were 
mapped to the same gene, the average expression of these 
probes in a particular data set was selected to represent the 
gene with the collapsedRows function [43] in R.

Breast cancer molecular subtypes

We assessed the molecular subtypes for each tumor 
based on the PAM50 algorithm [44] with the “genefu” R 
package (http://www.bioconductor.org/packages/release/
bioc/html/genefu.html). Samples belonging to the basal-
like, HER2+, luminal A, and luminal B subtypes were 
included for subtype-based analysis.

Module scores

To compute module scores derived from gene 
signatures for each sample within different datasets, we 
calculated module score as follows:

Module Score = 

where n is the gene number in a specific module, xi 
was the expression level of the gene, and gene-specific 
weights wi were equal to -1 or +1 depending on the 
direction of their association with the phenotype in the 

Figure 5: Study flow chart. DMFS, distant metastasis free survival.
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original publication. Each module score was robustly 
scaled within a study so that the 2.5%, 50% and 97.5% 
quintiles equaled −1, 0 and +1, respectively, allowing for 
comparison between different datasets generated with 
different microarray technologies and normalization 
procedures. Compositions and weights of the gene mo-
dules are provided in Supplementary Table S1.

Development of molecular subtype-specific 
prognostic survival modules

For each BC molecular subtype, the following 
two steps were included in the identification of the 
subtype-specific prognostic signature: (1) determination 
of the association between each gene and DMFS and 
(2) determination of the module with the optimal gene 
number, with high prognostic prediction ability between 
gene expression and DMFS. The Cox regression analysis 
was used to evaluate the association between DMFS and 
the expression level of each gene after divided by its 
median; we estimated the HRs of each gene within each 
dataset separately and combined them using inverse-
variance weighting within a fixed effect model. As for 
prognostic prediction, we ranked the DMFS-associated 
genes according to their p values of HRs, then defined 
20 candidate modules with the number of top ranked 
prognostic genes:

  

where n was 1 to 20, and computed module scores. As 
described in the Module scores section, if the combined 
HR of a specific gene was larger than 1 then its weight 
was 1, or else its weight was -1. Finally, the module that 
was most closely correlated with DMFS in univariate and 
multivariate analyses, that is, with the largest HR value 
for one unit increase of the module score, was identified.

Statistical analysis

Statistical analyses were performed using the R 
statistical software version 3.2.0 [45] with our customized 
functions. Modeling strategy is described in Supplementary 
Table S5. Within the entire cohort, we performed pair-
wise correlations between the different modules using the 
Pearson’s correlation. All reported p-values were two sided.

Survival analysis

We considered DMFS as the survival end point. 
Survival analysis was conducted via the ‘survival’ R package. 
Survival curves were based on Kaplan-Meier estimates.

To study the univariate association relationships 
between gene modules and DMFS across different 
datasets, HRs and 95% CIs for one unit increase in module 
score were computed using a Cox regression model with 

the dataset as stratum indicator, allowing for different 
baseline HRs between different cohorts. This kind of 
analysis was also performed within PAM50 subtypes.

For multivariate analysis between gene modules 
and DMFS, a Cox regression model with the independent 
variables, age (>=50 or <50), clinical nodal status 
(negative or positive), histologic grade (1, 2 or 3) and 
treatment (chemotherapy, endocrine therapy, both 
endocrine therapy and chemotherapy, or no adjuvant 
therapy) was used to select the covariates significantly 
related to DMFS (p<0.05) for adjustment. We calculated 
adjusted HRs for DMFS for one-unit increase in module 
score with the data sets as stratum indicator.

For multiple module testing adjustment, the false 
discovery rate (FDR) values were computed with the 
p.adjust R function with the fdr option.

Gene ontology and functional analysis

Gene ontology (GO) analyses to test modules for 
enrichment of genes associated with particular biological 
processes were done using DAVID (http://david.abcc.
ncifcrf.gov/) [46], a web-delivered application that enables 
the discovery, visualization, and exploration of molecular 
interaction networks in gene expression data.
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