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Vascular aging plays a pivotal role in the morbidity and mortality of elderly people.
Decrease in autophagy leads to acceleration of vascular aging, while increase in
autophagy leads to deceleration of vascular aging. And emerging evidence indicates
that acetylation plays an important role in autophagy regulation; therefore, recent
research has focused on an in-depth analysis of the mechanisms underlying this
regulation. In this review, current knowledge on the role of acetylation of autophagy-
related proteins and the mechanisms by which acetylation including non-autophagy-
related acetylation and autophagy related acetylation regulate vascular aging have
been discussed. We conclude that the occurrence of acetylation modification during
autophagy is a fundamental mechanism underlying autophagy regulation and provides
promising targets to retard vascular aging.
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INTRODUCTION

Aging is a process of functional decline of life and is associated with an increase in age-related
diseases (Lopez-Otin et al., 2013). With increase in the life expectancy of humans, the incidence
of age-related pathologies is also increasing and exceeds the sustainability of economy and society.
As a matter of result, it is urgent to find effective interventions to prevent the deterioration of age-
associated conditions. Therefore, research is being performed on identifying potential mechanisms
underlying aging and effective ways to retard aging.

Post-translational modifications (PTMs) play a pivotal role in determining the structure,
destination, activity, and function of proteins. PTMs includes phosphorylation, glycosylation,
ubiquitination, lipidation, methylation, and acetylation (Wani et al., 2015). Various factors, for
example, nutrient availability, and proper organellar function determine the kind of PTMs that
a protein undergoes, and different PTMs are tightly regulated (Wani et al., 2015; Xie et al., 2015).

Abbreviations: Ac-CoA, acetyl-CoA; AD, Alzheimer’s disease; AMPK, Adenosine 5′-monophosphate-activated protein
kinase; ATG, autophagy-related gene; Ang II, Angiotensin II; α7nAChR, α7 nicotinic acetylcholine receptor; aPWV, brachial-
ankle pulse wave velocity; BAT3, HLA-B–associated transcript 3; BECN1, beclin1; CMA, chaperone-mediated autophagy;
ECs, endothelium cells; eNOS, endothelial nitric oxide synthase; EDD, endothelium-dependent diastole; EP300, E1A binding
protein p300; ER, endoplasmic reticulum; FIP200, FAK family kinase-interacting protein of 200 kDa; FOXO, fork head box O;
GCN5, general control non-derepressible 5; GSK3β, glycogen synthase kinase-3β; HATs, histone acetylases; HDACs, histone
deacetylases; hnRNPK, heterogeneous nuclear ribonucleoprotein K; HSP, heat shock protein; KAT, lysine acetyltransferase;
KAP1, KRAB-ZFP-associated protein 1; LC3, microtubule-associated protein light chain 3; LKB1, liver kinase B1; mTOR,
mammalian target of rapamycin; MMP, matrix metalloproteinase; NMN, nicotinamide mononucleotide; NO, nitric oxide;
PIK3C3, phosphoinositide-3-kinase class 3; PPAR α, peroxisome proliferator-activated receptor α; PGC-1α, peroxisome
proliferator-activated receptor gamma coactivator-1 alpha; PTMs, post translational modifications; SIRT, sirtuins; TGF,
transforming growth factor; TIP60, Tat-interactive protein 60 kDa; TRIM, tripartite motif; TMAO, trimethylamine-N-oxide;
ULK1, unc-51-like kinase 1; VPS, vacuolar protein sorting; VSMCs, vascular smooth muscle cells
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An increasing number of recent studies have indicated that
acetylation, a kind of PTMs, is an important regulator
of autophagy. Autophagy is a predominantly cytoprotective
process, and the autophagic rate decreases with increase in
age (Rubinsztein et al., 2011). Emerging evidence shows that
autophagy plays a prominent role in life span determination and
age-related conditions, including those involving the respiratory
system (Kuwano et al., 2016) or the immune system (Zhang
et al., 2016) and conditions such as cardiovascular diseases (Stern
et al., 2003; Shirakabe et al., 2016; Humphrey and Milewicz,
2017; Ren and Zhang, 2018), neurodegeneration (Fivenson et al.,
2017; Plaza-Zabala et al., 2017), and bone aging (Ma et al., 2018).
Autophagy is a multistep process involving autophagosome
formation and content degradation by lysosomes. Researchers
are focusing on whether regulating the acetylation of autophagy-
related proteins can enhance autophagy, thereby partly reverting
aging and age-related conditions including vascular aging.

Bánréti et al. (2013) has summarize how previously identified
histone acetylases (HATs) and deacetylases (HDACs) modify key
autophagic effector proteins, and discussed how they play a
role in neurodegenerative diseases and cancer. In the current
article, we have added the research of acetylation modification
during the multistep process of autophagy in the recent years,
discussed the existed researches about acetylation in vascular
aging, and suggested regulating the acetylation of autophagy may
be a potential way to retard vascular aging.

AUTOPHAGY AND VASCULAR AGING:
AN OVERVIEW

Autophagy is a cytoprotective process and includes three
different types, which are macro-autophagy, micro-autophagy,
and chaperone-mediated autophagy (CMA). Macro-autophagy is
the principal and most commonly studied type of autophagy, and
is commonly referred as autophagy (Ktistakis and Tooze, 2016).
Classical autophagy involves five steps: initiation, nucleation,
vesicle elongation, autophagosome maturation and lysosome
infusion, degradation, the detailed processes have been shown in
these literatures (Khan et al., 2016; Leidal et al., 2018; Dossou
and Basu, 2019). In the recent years, the effects of autophagy
in vascular aging have been extensively studied. A growing
number of studies have provided evidence that autophagy is
a fundamental process to ensure vascular health during aging,
and compromised autophagic functions may be important in the
development of aging (Jiang, 2016; Abdellatif et al., 2018). Thus,
regulating autophagy in vessels is a promising way to prevent
vascular aging and age-related vascular diseases.

ACETYLATION MODIFICATION DURING
THE DIFFERENT PROCESSES OF
AUTOPHAGY

Acetyl-CoA (Ac-CoA), acetyltransferases, deacetyl transferases,
and targeted protein sites are the three main elements of
acetylation modification. Ac-CoA is the only source of acetyl

(Pietrocola et al., 2015), and acetyltransferases and deacetyl
transferases transfer or remove the acetyl to or from the
targeted proteins. HATs and HDACs comprise acetyl–deacetyl
transferase pairs (Peserico and Simone, 2011). Acetylation was
first detected nearly 50 years ago, histones containing lysine were
the first and extensively studied target proteins of acetylation
modification, while some non-histones including transcription
factors and cytoplasmic proteins were also targeted proteins (N-
termini of target proteins),which regulate energy metabolism,
endocytosis, and cytoskeleton (Deribe et al., 2010). Bánréti
et al. (2013) reviewed different classes of HATs and HDACs.
HATs fall into three major classes: lysine acetyltransferase
(KAT)2/general control non-derepressible 5 (GCN5)-related
N-acetyltransferases (GNAT family), E1A-binding protein p300
(EP300; CREBBP family), and the MYST family. Deacetylases
are also divided into several classes: class I, IIa, IIb, and
zinc-dependent class IV enzymes; class III family, which uses
NAD+ to complete deacetylation reactions. Class I consists of
HDAC1-3 and HDAC8; class IIa includes HDAC4, HDAC5,
HDAC7, and HDAC9; class IIb includes HDAC6 and HDAC10;
class IV includes HDAC11; and the class III family comprises
sirtuins (SIRT), including SIRT1–7 (Sadoul et al., 2011;
Narita et al., 2019).

Acetylation and Autophagy Initiation
In mammalian cells, autophagy is induced by unc-51-like kinase
1 (ULK1) [Autophagy-related gene 1 (ATG1), yeast homolog)],
which interacts with ATG13, FAK family kinase-interacting
protein of 200 kDa [FIP200 (ATG17, yeast homolog)], and
ATG101 (no known yeast homolog) (Hosokawa et al., 2009;
Zachari and Ganley, 2017; Mercer et al., 2018). ULK1 is mainly
regulated by mammalian target of rapamycin (mTOR) (Dossou
and Basu, 2019). Under growth factor deprivation, human
immunodeficiency virus (HIV) Tat-interactive protein 60 kDa
(TIP60), an acetyltransferase can regulate autophagy by activating
ULK1 (Lin et al., 2012a,b). Under endoplasmic reticulum (ER)
stress, autophagy can also be modulated through the same way
(Nie et al., 2016). Under both growth factor deprivation and
ER stress, the glycogen synthase kinase-3β (GSK3β)/TIP60/ULK1
pathway is engaged to increase autophagy. In these studies,
it was found that GSK3β first phosphorylated TIP60-Ser86
and activated TIP60. Then, the activated TIP60 directly
acetylated ULK1 and activated the protein kinase. The acetylation
sites on ULK1 are located at K162 and K606. Researchers found
that in ULK1−/− mouse embryonic fibroblasts, the acetylation-
defective mutant ULK1 showed decreased kinase activity and
failed to rescue autophagy, which further proved that acetylation
is vital to ULK1 activation (Lin et al., 2012b). These studies
revealed that induction of autophagy on ULK1 activation
integrates phosphorylation and acetylation modification.

Acetylation During Nucleation in
Autophagy
On specific membranes, phosphoinositide-3-kinase class 3
(PIK3C3) or vacuolar protein sorting 34 (VPS34) combines
with its regulatory proteins to form the PIK3C3/VPS34-Beclin1
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(BECN1)-PIK3R4/VPS15/p150 core-based complex. This
process is essential for PIK3C3/VPS34 to exert its lipid kinase
activity in cells, thus promoting the nucleation of autophagy.
Through interacting with PIK3C3/VPS34 or recruiting it to the
specific membranes, these regulatory proteins affect nucleation
of autophagy. Both in vitro and in vivo trials, evidence shows that
EP300-dependent acetylation turns PIK3C3/VPS34 off, while
deacetylation turns PIK3C3/VPS34 on, wherein deacetylation
site K771 is required for its full activation. The PIK3C3/VPS34
activation mechanism referred above happens not only in
starvation-induced autophagy but also in the process of
autophagy that does not involve Adenosine 5′-monophosphate-
activated protein kinase (AMPK), mTORC1, or ULK1 (Su et al.,
2017; Kary, 2018; Su and Liu, 2018).

A study found that the phosphorylation of BECN1 at S409
is required for the subsequent BECN1 acetylation, which is
mediated by p300 at lysine 430, and SIRT1 can reverse acetylation
of BECN1 at lysine 437 (Sun et al., 2015). BECN1 is also
regulated via several different types of ubiquitination (Boutouja
et al., 2017). Acetylated inducible heat shock protein (HSP)70
increases under autophagy-inducing stress, and HSP70 binds to
the BECN1-VPS34 complex. The mechanism is that acetylated
HSP70 recruits KRAB-ZFP-associated protein 1 (KAP1), an E3
ligase, for SUMOylation, thereby inducing Lys840 SUMOylation
and increasing the activity of VPS34 bound to BECN1 (Yang
et al., 2013). TRIM (Tripartite motif), an E3 ligase protein
family, enhances the binding of BECN1 with ULK1 and promotes
autophagy activities via BECN1 ubiquitination; The Lys-372
residue of TRIM50, critical for its acetylation, is also necessary
for its E3 ligase activity controlling BECN1 ubiquitination;
this reveals acetylation–ubiquitination-dependent control of
autophagy modulation (Fusco et al., 2018). Similar to the
phosphorylation–acetylation cascade in ULK1 acetylation, the
acetylation–ubiquitination cascade is vital for the regulation of
autophagy by BECN1. In summary, BECN1 acetylation inhibits
autophagosome maturation, leading to impairment of autophagic
flux (Esteves et al., 2019). Studies targeting BECN1 found that
supplementation of omega-3 polyunsaturated fatty acid induces
the autophagy pathway through upregulation of SIRT1-mediated
deacetylation of BECN1, thus attenuates neuronal apoptosis in
traumatic brain injury (Chen et al., 2018). In colorectal cancer
cells, aspirin induces autophagosome formation, while aspirin-
mediated BECN1 acetylation blocks autophagic degradation
(Sun et al., 2017). The result indicates that if deacetylation
in autophagy is enhanced, aspirin-induced autophagy will
also be enhanced.

Acetylation Modification During
Autophagy Vesicle Elongation
In yeast, researchers found that ATG3 is deacetylated by HDAC
Rpd3, which controls its interaction with ATG8 and regulate
autophagy by affecting the dynamics, flux, and duration of
autophagy shortly after induction of starvation; KAT5/TIP60
(mammalian homolog of Esa1) can also regulate autophagy by
ATG3 acetylation (Yi and Yu, 2012). Under the condition of
nutrient deprivation, nuclear microtubule-associated proteins

light chain 3 (LC3); LC3 deacetylation by SIRT1 deepens its
communication with the nuclear factor TP53INP2/DOR; As
a result, It causes the distribution of nuclear LC3 to the
cytoplasm, LC3 then interacts with ATG7, leading to LC3
lipidation and autophagosome biogenesis (Liu and Klionsky,
2015). This process referred above is highly regulated by the
nuclear deacetylase SIRT1 (deacetylation at K49 and K51),
which helps LC3 translocated from nuclear to cytoplasm
(Huang et al., 2015). In HepG2 cells, enhanced binding of
SIRT1-LC3 reduces the endogenous LC3 acetylation and SIRT1
inactivation inhibits autophagy (Li X. et al., 2016). Increased
SIRT1 expression decreases ATG5 acetylation on lysine residues
and increases autophagy (Jiang et al., 2016). While preventing
p300 autoinhibition and promoting LC3 acetylation impedes
LC3 lipidation (Wan et al., 2017). HLA-B–associated transcript 3
(BAT3) increases p53 acetylation and the expression of its target
gene; while it limits p300-dependent acetylation of ATG7; Thus,
we conclude that BAT3 highly regulate autophagy by modulating
the localization of intracellular p300, thereby affecting the p300
targeted on its substrates, p53 and ATG7 (Sebti et al., 2014).
In summary, SIRT1 and p300 comprise a key pair of regulators
in acetylation modification during autophagy vesicle elongation.
During this stage, protein deacetylation activates autophagy,
whereas acetylation inhibits autophagy.

Acetylation Modification During
Autophagosome Maturation
Acetylation occurring upstream of autophagy also affects
the later stages of autophagy. BECN1 acetylation negatively
regulates autophagosome maturation by inhibiting Rubicon
recruitment (Matsunaga et al., 2009; Zhong et al., 2009).
Although lysosomal biogenesis seems to be triggered as a
compensatory response when BECN1 acetylation impairs
autophagic flux, autophagosome fusion with lysosomes is
compromised, contributing to Alzheimer’s disease (AD)
neurodegeneration (Esteves et al., 2019). The GSK3-TIP60
pathway (Lin et al., 2012a,b; Nie et al., 2016), involved in
an early stage of autophagy, also regulates autophagosome
maturation mediated by autophagy regulator–RUBCNL/pacer
acetylation (Cheng and Sun, 2019; Cheng et al., 2019), which
is the opposite of the regulating results for RUBCN/Rubicon.
RUBCNL and RUBCN compose a dual molecular switch model
controlling autophagosome maturation (Cheng and Sun, 2019).
Furthermore, LC3B-II deacetylation, which is partly mediated
by HDAC6, increases the degradation of p62/SQSTM1 and is
involved in autophagic degradation during serum starvation
(Liu et al., 2013).

Researches have proven that HDAC6 deacetylase domain
is also required for aggresomal formation, autophagosome–
lysosome fusion, and autophagic turnover (Kawaguchi et al.,
2003; Iwata et al., 2005; Pandey et al., 2007). And researchers
also found that SIRT1 may compensate for the function of
HDAC6. Cortactin deacetylation mediated by cytosolic HDAC6
is required for autophagosome–lysosome fusion (Lee et al.,
2010). SIRT1 is predominantly located in the cytosol (Li et al.,
2008), where SIRT1 interacts with cortactin and deacetylates it.
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Both HDAC6 and SIRT1 have been found that they can bind
and deacetylate cortactin independently. However, depending
on specific cell types or tissues, HDAC6 and SIRT1 can also
work cooperatively or competitively (Zhang et al., 2009). For
example, in HeLa cells, either HDAC6 or SIRT1 can bind
and deacetylate cortactin independently, and they can also
work cooperatively toward cortactin (Zhang et al., 2007). Either
SIRT1 or HDAC6 binds to the same domain of cortactin, thus,
researchers speculate that SIRT1 and HDAC6 may compete for
the domain to bind cortactin in OV2008 cells (Zhang et al.,
2009). Moreover, ATP13A2 can recruit HDAC6 to lysosomes
to deacetylate cortactin, thereby promoting autophagosome–
lysosome fusion and autophagy (Wang et al., 2019).

There is evidence that reversible acetylation of α-tubulin
can regulate microtubule stability and function, which is
also essential for the fusion of autophagosomes to lysosomes
(Kochl et al., 2006; Xie et al., 2010). In acidic pH–dependent
autophagy in cardiomyocytes, decreasing α-tubulin acetylation
impairs autophagy maturation and causes cardiomyocyte injury
while increasing α-tubulin acetylation can revert the process
(Yang et al., 2019). Reactive oxygen species (ROS)–mediated
hyperacetylation of microtubule was reported to stimulate
autophagy under stress and nutrient starvation (Geeraert et al.,
2010; Mackeh et al., 2014). Hyperacetylation of microtubule
is mediated by acetyltransferase MEC17 at the residue of
lys40 (Mackeh et al., 2014). Spermine increases microtubule
acetylation and facilitates selective autophagic degradation of
prion aggregates by binding to the microtubule protein Tubb6A
(Phadwal et al., 2018). A recent study reported that zinc oxide
nanoparticles (a nanomaterial) inhibited autophagy by blocking
autophagosome–lysosome fusion, while microtubule acetylation
helped promote the autophagic degradation process (Liu J. et al.,
2019). Chen et al. (2015) found that potassium bisperoxo (1,10-
phenanthroline)oxovanadate [bpV(phen)] suppresses acetylated
microtubule–dependent degradation of autophagosomes by
disrupting the HDAC6 interacted with p62.

Other researchers have obtained contrasting results. They
found that HDAC6-mediated α-tubulin deacetylation was
also important for autophagosome maturation. Heterogeneous
nuclear ribonucleoprotein K (hnRNPK) deficiency was found
to decrease α-tubulin K40 acetylation by HDAC6, consequently
enhancing autophagosome–lysosome fusion in the 293-cell
line (human renal epithelial cell line) (Li et al., 2018).
The ROS pathway has also been reported to reduce the
fusion of autophagosome and lysosome by increasing tubulin
acetylation (Bonet-Ponce et al., 2016). These findings show
that tubulin acetylation does not always enhance autophagy
and hyperacetylation of tubulin might impair autophagy flux.
The factors leading to the differences in findings between
these studies are still not clear. Autophagosomes are usually
delivered along the microtubule tracks by dynein to the
centrosomes where lysosomes are usually gathered (Geeraert
et al., 2010). Since the acetylation during this stage is complex,
we speculate that no matter tubulin is acetylated or deacetylated,
decreased autophagosome–lysosome formation is due to the
disturbed stability of the microtubule system. Thus, balancing
the acetylation/deacetylation of tubulin is a key aspect to be

considered for autophagy regulation during this phase. Based
on these findings, we can conclude that acetylation participates
in the entire process of autophagy, from the initial step to the
completion of autophagosome degradation.

During the early stages, p300/SIRT1 seems to be the major
regulator pair, while HDAC6 seems to be the major regulator in
the later stages. Therefore, if an p300/SIRT1/HDAC6 inhibitor or
activator is used to regulate autophagy, the acetylation condition
of the entire process of autophagy will be affected. Because
autophagy is a constant process, blocking or activation of any key
protein in the process will influence the effective autophagy flux,
further indicating that acetylation modification is an important
mechanism for regulating autophagy (Figure 1).

Acetylated FOXO1 and Autophagy Flux
The autophagy process is affected not only by direct acetylation
but also by the acetylation of some transcription factors. Fullgrabe
et al. (2014) reported several transcription factors related to the
transcriptional control of autophagy. Of these, acetylation of
transcription factors is best illustrated in the case of forkhead
box O (FOXO) family members. FOXO1 is frequently reported to
be closely associated with autophagy. Activated FOXO1 enhances
autophagy by increasing the expression of numerous autophagy-
related genes in various cells (Zhao et al., 2007, 2008; Sengupta
et al., 2009; Xu et al., 2011; Warr et al., 2013; Chi et al., 2016;
Wang et al., 2018; Liu Y. et al., 2019). Activation of the FOXO
family is regulated by complex mechanisms in various cells and
tissues, while acetylation is one of them.

SIRT1 directly influences autophagy by deacetylating key
components of autophagy-related proteins, including the
products of ATG5, ATG7, and ATG8 (Lan et al., 2008). SIRT1
localizes in the nucleus and activates transcription factor from
FOXO family, which is also a classic way to induce the expression
of autophagy-related proteins (Xiong et al., 2013). Under glucose
deprivation conditions, SIRT1 increases FOXO1 deacetylation,
thereby increasing the expression of Rab7, which is a small
GTP-binding protein that mediates autophagosome–lysosome
fusion in the later stages (Hariharan et al., 2010). This is also the
mechanism by which resveratrol reverses myocardial oxidative
stress injury in diabetic mice (Wang et al., 2014), and by which
curcumin protects HUVEC survival from oxidative stress
damage (Han J. et al., 2012). The SIRT1/FOXO1/Rab7 axis is
also important for maintaining left ventricular function during
starvation (Hariharan et al., 2010) and preventing podocyte
injury (Majumder and Advani, 2015; Wang et al., 2016) in
the same manner. Researchers have found that autophagy
induced by cytosolic FOXO1 is capable of suppressing tumor
(Zhao et al., 2010) and that, in pancreatic cancer, miR-138-5p
inhibits autophagy by blocking the SIRT1/FoxO1/Rab7 axis
(Tian et al., 2017). The SIRT1/FOXO1/Rab7 axis comprises a
classical pathway that is targeted by researchers to modulate
autophagy and to attenuate diseases. Acetylated FOXO1 was
found to mediate high glucose induced autophagy in H9C2
cardiomyoblasts as well (Liu et al., 2014).

Another study reported that in QBC939 cells, FOXO1
acetylation and its subsequent interaction with ATG7 regulate
basal and serum starvation–induced autophagy, as evidenced by
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FIGURE 1 | Acetylation modification during the process of autophagy. ATG, autophagy-related protein; BECN1, beclin1; EP300, E1A binding protein p300; FIP200,
FAK family kinase-interacting protein of 200 kDa; GSK3β, glycogen synthase kinase-3β; HDAC, histone deacetylase; KAT, lysine acetyltransferase; LC3,
microtubule-associated protein light chain 3; PIK3C3, phosphoinositide-3-kinase class 3; RB1CC1, RB1-inducible coiled-coil protein 1; TIP60, Tat-interactive protein
60 kDa; ULK1, unc-51-like kinase 1; VPS, vacuolar protein sorting.

LC3 accumulation and p62 degradation. These findings identify
FOXO1 as a potential therapeutic target for treating human
cholangiocarcinoma via regulating autophagy (He et al., 2018). In
the case of myocardial infarction, total cardiac FOXO1 expression
is downregulated at first and partly recovers after 7 days, which
is accompanied by fundamental PTMs in FOXO1, particularly
acetylation, suggesting that FOXO1 acetylation contributes to
cardiac remodeling in post-ischemic heart failure (Kappel et al.,
2016). Moreover, Akt2 ablation can protect against cardiac aging
through restoring FOXO1-related autophagy (Ren et al., 2017).
Liver-specific knockout of glucose-6-phosphatase-α (G6Pase-
α; L-G6pc-/-) causes downregulation of SIRT1 signaling and
deacetylation of the FOXO family, leading to inactivation of
autophagy, which in turn transactivates autophagy genes (Cho
et al., 2017). Li J. et al. (2016) found that SIRT3 activation
is also essential for reducing the acetylation modification on
FOXO1, which in turn alleviates myocardial hypertrophy with
chronic angiotensin II (Ang II) infusion through improving
autophagy flux.

Targets for Regulating the Acetylation
Modification in Vascular Aging
Vascular aging is one of the main aspects of aging. Endothelial
cells (ECs) and vascular smooth muscle cells (VSMCs) are the
main structure of blood vessels. The properties of ECs and
VSMCs change greatly during vascular aging, gradually leading

to compromised vascular function and progressive vascular
diseases. Mistriotis and Andreadis (2017) performed an in-
depth analysis of the molecular mechanism underlying vascular
aging concerning two categories, that is, extrinsic and intrinsic
changes. The former category includes chronic inflammation,
atherosclerosis, hypertension, vascular wall stiffness, and vascular
cell communication. The latter includes telomere attrition,
mitochondrial dysfunction, DNA damage, epigenetic changes,
nuclear organization loss, and cellular senescence. The role of
acetylation in vascular aging, which is the focus of the current
review, was not specifically discussed in that study.

From the literature that we reviewed, the existing research
on acetylation modification in vascular aging focused on SIRT1.
Decreased SIRT1 activity leads to increased lysine acetylation
of important targets including p53, endothelial nitric oxide
synthase (eNOS), peroxisome proliferator–activated receptor
gamma coactivator (PGC)-1α, and matrix metalloproteinase
(MMP)-14 at gene or protein level (Cencioni et al., 2015).

Ameliorating EC Senescence Through
Non-autophagy Acetylation Regulation
In H2O2 induced senescence models of human umbilical vein
endothelial cells (HUVECs), 2,3,5,4′-tetrahydroxystilbene-2-O-
β-D-glucoside increases blood flow and partly reverse vascular
senescence by increasing SIRT1 activity and eNOS expression,
thereby decreasing p53 acetylation at the K373 site (Han X. et al.,
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2012); Ginsenoside Rb1 protects against endothelial senescence
and dysfunction through stimulating the expression of SIRT1,
which decreases eNOS acetylation and promotes NO production;
Furthermore, when SIRT1 is knocked down, the effect of Rb1
on endothelial senescence decreases (Song et al., 2014). On
the contrary, elevated trimethylamine-N-oxide (TMAO) levels
may induce the EC senescence through decreased SIRT1, which
promotes acetylation of eNOS and decreases the level of NO (Ke
et al., 2018).

A study using aorta segments isolated from young Wistar
rats assessed three different kinds of inhibitors of SIRT1:
nicotinamide, sirtinol, and EX527 (Zarzuelo et al., 2013).
Inhibitors causes endothelial dysfunction and increases
NADPH oxidase–derived ROS in the vascular wall by
impairing activities of SIRT1, leading to vascular aging.
Moreover, SIRT1 activation decreases PGC-1α acetylation
and subsequent PPARα activation, both NADPH oxidase–
driven ROS production and NO inactivation decreases, and
endothelial function is improved as a result (Zarzuelo et al.,
2013). Supplementation with nicotinamide mononucleotide
(NMN) in old mice restores endothelium-dependent diastole
(EDD) and NO-mediated EDD, reduces brachial-ankle pulse
wave velocity (aPWV), normalizes O2 production, decreases
nitro tyrosine levels, reverses collagen-I deposition, increases
elastin levels, and restores vascular SIRT1 activity. And
(-)-epicatechin partially restores NO to the levels as in
young cells by stimulating SIRT1 binding to the eNOS and
decreasing synthase acetylation levels (Ramirez-Sanchez
et al., 2018). These findings further prove that SIRT1-
mediated deacetylation plays a protective role in vascular
aging (de Picciotto et al., 2016).

SIRT1 and liver kinase B1 (LKB1)/AMPK are the two
key molecules for regulating the function of EC. In high
glucose-induced senescence in mouse microvascular ECs,
SIRT1 downregulation plays a crucial role. Reduction of
SIRT1 increased FOXO-1 and P53 acetylation, P21 expression.
Metformin can protect HG-induced endothelial dysfunction
through regulating SIRT1 expression/activity directly or
partly via LKB1/AMPK pathway (Arunachalam et al., 2014).
What’s more, the protective activities of SIRT1 may also be
achieved partly by regulating the acetylation/deacetylation
status and stability of LKB1 protein (Zu et al., 2010). In
another study, selective overexpression of SIRT1 in the
endothelium prevents hypertension and age-related adverse
arterial remodeling in mice without eNOS; knockdown of
HERC2 abolishes the protective effects by increasing the
interaction between LKB1 and transforming growth factor
(TGF)-β1 (Bai et al., 2016). From all above, SIRT1 cannot only
regulate EC senescence through eNOS/NO pathway but also via
LKB1/HERC2 pathway.

Ameliorating VSMC Senescence Through
Non-autophagy Acetylation Regulation
In VSMC cells, Ang II was usually used to induce senescence. Ang
II stimulates PGC-1α phosphorylation, leading to the binding
of GCN5 to PGC-1α and for its lysine acetylation; Acetylated
PGC-1α by Ang II interrupts the PGC-1α-FOXO1-SIRT1
feed-forward signaling circuit, leading to SIRT1 and catalase
downregulation and vascular senescence; Thus, endogenous
PGC-1α improves vascular hypertrophy by upregulating catalase
expression and reducing ROS levels (Xiong et al., 2013). And

TABLE 1 | The acetylation modification in vascular aging.

Interventions Senescence induction HAT/HDAC Acetylation substrate Senescence regulation References

EC senescence

2,3,5,4′-
tetrahydroxystilbene-2-O-β-
D-glucoside

H2O2 SIRT1 p53 Ameliorates senescence Han X. et al., 2012

Ginsenoside Rb1 H2O2 SIRT1 eNOS Ameliorates senescence Song et al., 2014

TMAO SIRT1 eNOS Increases senescence Ke et al., 2018

SIRT1 inhibitors
(nicotinamide, sirtinol, and
EX527)

SIRT1 inhibition SIRT1 PGC-1α Ameliorates EC dysfunction Zarzuelo et al., 2013

(-)-epicatechin Replicative SIRT1 eNOS Ameliorates senescence Ramirez-Sanchez et al., 2018

Metformin Hyperglycemia SIRT1 FOXO1&p53 Ameliorates senescence Arunachalam et al., 2014

MCM SIRT3 ATG5 Induces dysfunction Liu et al., 2018

– – HDAC4 FOXO3a Induces inflammation Yang et al., 2018

Ginsenoside Rb1 Ox-LDL SIRT1 BECN1 Ameliorates senescence Shi et al., 2020

VSMC senescence

– Ang II GCN5 PGC-1α Increases senescence Xiong et al., 2013

α7nAChR Ang II SIRT1 p53 Ameliorates senescence Li D.J. et al., 2016

Neuregulin-1/Erb4 H2O2 unknown P53 Ameliorates senescence Shakeri et al., 2018

Exendin-4 Ang II EP300 Nrf2 Ameliorates senescence Chen et al., 2016

– – KAT2A/GCN5 α-Tubulin Inhibits VSMC migration Ouyang et al., 2020

EC, endothelial cell; VSMC, vascular smooth muscle cell; HAT, histone acetylases; HDAC, histone deacetylases; TMAO, Trimethylamine-N-oxide accelerates; Ang II,
Angiotensin II; MCM, macrophage-conditioned medium.
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a new study found that PGC-1α can ameliorate senescence
by inducing autophagy in an SQSTM1-dependent manner
(Salazar et al., 2020). α7 nicotinic acetylcholine receptor
(α7nAChR) alleviates VSMC senescence induced by Ang II by
promoting the NAD(+)-SIRT1 pathway, thereby decreasing p53
acetylation (Li D.J. et al., 2016). Neuregulin-1 markedly inhibits
H2O2-induced premature senescence of VSMCs by decreasing
p53 acetylation both in vitro and in the aorta of mice with
diabetes in vivo (Shakeri et al., 2018). Exendin-4 increases the
acetylation of Nrf2 in a dose-dependent way and the recruitment
of the transcriptional coactivator CREBBP to Nrf2; CREBBP
silencing attenuates the suppressive effects of exendin-4 on
Ang II-induced VSMC senescence and decreases super-oxidant
production (Chen et al., 2016). The summarizations are detailed
in the following table (Table 1).

Targets for Regulating the Acetylation of
Autophagy in Vascular Aging
Regarding the acetylation of autophagy in vascular aging,
Liu et al. (2018) reported that SIRT3 in macrophages form
a molecular complex with ATG5 and acetylation of ATG5
inhibits autophagosome maturation, thus promoting NLRP3
inflammasome activation. The incubation of human aortic ECs
with macrophage-conditioned medium induced endothelial
dysfunction. These findings revealed that SIRT3-deficient
macrophages displayed impaired autophagy and accelerated
NLRP3 inflammasome activation and endothelial dysfunction.
While another report demonstrated that HDAC4 inhibited
vascular inflammation by regulating autophagy in vascular ECs
(Yang et al., 2018). This result provides the first evidence that
HDAC4 increased rapidly in response to Ang II, and HDAC4
deficiency suppresses activation of autophagy by inhibiting
FOXO3a deacetylation, leading to reduced inflammation in Ang
II-induced vascular ECs. These evidences indicate SIRT3 or
HDAC4 may alleviate vascular aging via regulating acetylation of
autophagy. Moreover, Shi et al. (2020) reported Ginsenoside Rb1
alleviated ox-LDL-induced vascular endothelium senescence by
regulating SIRT1/BECN1/autophagy, and inhibiting autophagic
degradation of KAT2A/GCN5 preventd directional migration
of VSMCs (Ouyang et al., 2020). Taken together, regulating
the acetylation of autophagy may be a potential way to
prevent vascular aging.

CONCLUSION AND FUTURE
PERSPECTIVES

Autophagy is a classical pathway involved in many physiological
processes, including the elimination of cellular organelles,
stimulation of different stress factors, and remodeling of
tissues during development. Decreased autophagy creates diverse
cellular dysfunctions that exacerbate the aging process, whereas
enhanced autophagy generally promotes cellular homeostasis
and function to prolong life span and improve health span.
Acetylation acts as a novel regulator of autophagy and
participates in the whole process of autophagy. Therefore,
targeting the acetylation modification during autophagy may be
a promising approach for preventing aging and aging-related
conditions, such as vascular aging.

The existing research on acetylation modification in vascular
aging mainly focuses on SIRT1-mediated non-autophagy–related
acetylation of proteins, including acetylation of p53, eNOS, PGC-
1α, and Nrf2. Several studies indicate that regulating acetylation
of autophagy can also ameliorate vascular aging. Thus, our review
aims to provide an integrated view of acetylation modification
during the multistep process of autophagy and provide evidence
for that regulating autophagy acetylation may be potential
therapeutic targets for vascular aging. Finding a way to attenuate
vascular aging by modulating autophagy acetylation can provide
a bright future (e.g., by helping in increasing their life span,
health span, or quality of life) for aging individuals, including
prematurely aging people.
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