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Abstract

Conformer-RL is an open-source Python package for applying deep reinforcement

learning (RL) to the task of generating a diverse set of low-energy conformations for

a single molecule. The library features a simple interface to train a deep RL conformer

generation model on any covalently bonded molecule or polymer, including most

drug-like molecules. Under the hood, it implements state-of-the-art RL algorithms

and graph neural network architectures tuned specifically for molecular structures.

Conformer-RL is also a platform for researching new algorithms and neural net-

work architectures for conformer generation, as the library contains modular class

interfaces for RL environments and agents, allowing users to easily swap components

with their own implementations. Additionally, it comes with tools to visualize and

save generated conformers for further analysis. Conformer-RL is well-tested and

thoroughly documented with tutorials for each of the functionalities mentioned

above, and is available on PyPi and Github: https://github.com/ZimmermanGroup/

conformer-rl.
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1 | INTRODUCTION

Reinforcement learning (RL) is a machine learning technique where an

intelligent agent is trained by being given a “reward” or “penalty”
based on the outcome of its actions. Historically, these methods have

seen great success in strategy games like chess1 and StarCraft II.2 Sev-

eral recent works have applied deep RL to tasks in computational

chemistry as well.3–5 One task where deep RL has shown promising

results is conformer generation, which involves finding an ensemble

of unique low-energy three-dimensional orientations, or conformers,

for a given molecule.6 Efficient and accurate prediction of low-energy

conformers is integral to molecular modeling, with wide applications

from drug development to 3D QSAR.7

Since molecule conformations are determined by the rotation of

their single bonds, the number of possible conformations grows expo-

nentially as the number of bonds increases. This situation makes it dif-

ficult to come up with efficient algorithms for conformer generation.

For example, existing advanced chemoinformatic methods for con-

former generation, such as molecular dynamics (MD), or the enhanced

self-guided molecular dynamics (SGMD)8 simulations, which uses a

gradient descent method with momentum and adaptive bias to find

several local minimums in the energy surface of the conformer space,

can take several days to sample conformers with 20+ rotatable

bonds.9

Gogineni et al.9 found that defining the task of conformer genera-

tion as a RL problem leads to models that can generate a diverse set
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of conformers more efficiently than methods like MD and other

machine learning methods like generative algorithms. To evaluate the

conformers, the study used a metric that incorporates both the energy

of each conformer and the diversity across the generated conformers

(this metric is also implemented in Conformer-RL as the “Boltzmann

Factor Reward” in section RL Environments). Using this metric, the

study found that a trained RL agent is highly effective, even when

compared to specialized sampling methods like SGMD. On the task of

generating conformers for a 8-monomer lignin molecule, the trained

RL model consistently performed better than SGMD (and even better

than MD, in terms of finding low-energy conformers), while sampling

10x fewer conformers and requiring less than 1% of the cpu runtime.

Nevertheless, building and training these models from scratch can

be difficult and time consuming. While libraries already exist that con-

tain implementations of RL algorithms and benchmarking tasks, such as

RLlib10 and OpenAI gym,11 respectively, these packages do not work

out of the box with chemical applications and require significant modifi-

cation and programming knowledge to work with molecule structures.

In this paper, we introduce Conformer-RL, a comprehensive

and modular Python library for applying deep RL to conformer gener-

ation and other related tasks, using PyTorch12 for deep learning and

RDKit13 for chemoinformatic capabilities. Conformer-RL provides a

set of tools to train models for generating conformers without the

need for extensive knowledge of RL and programming. It includes a

simple interface where users can train and save an RL agent given

only a molecule file and configurable options for hyperparameters as

input. A sequence of molecule files can also be used as input to train a

model that can better generalize to a specific class of molecules (see

Curriculum Learning). Currently, Conformer-RL works with any

covalently bonded molecule, though torsions within rings will be con-

sidered rigid when sampling conformers. The software will then out-

put the trained model, which can generate conformers for the same

or structurally similar molecules as the one used in training. When

generating conformers using the trained model, Conformer-RL will

output the .mol files for each of the generated conformers, which can

be used for further downstream tasks.

Due to the modular nature of Conformer-RL's source code, it is

also a framework where custom agents, training algorithms, neural

networks, and other model components can be built and evaluated for

conformer generation and similar tasks. As the state-of-the-art tech-

niques in deep RL are changing rapidly, this framework makes it easy

to develop and test new RL ideas on this specific task. Specifically,

Conformer-RL includes a modular class to easily build interfaces for

custom RL tasks for further exploration within conformer generation

and for custom tasks like reaction prediction. Within Conformer-RL,

we include a general agent base class for building agents compatible

with conformer generation tasks, as well as several baseline RL

algorithms. Conformer-RL provides analysis and logging modules for

recording and visualizing training results, including conformer-

generation specific metrics and visuals.

This software is open-source and free of charge for all users. The

source code for the library can be found at https://github.com/

ZimmermanGroup/conformer-rl, and installation instructions and full

documentation can be found at https://conformer-rl.readthedocs.io/

en/latest/. The project is maintained by graduate students in the

Tewari and Zimmerman groups at the University of Michigan, who will

provide support for external users and continue to build upon the

platform described here. For contributing to Conformer-RL and for

feature requests or bug reports, please see the developer documenta-

tion at https://conformer-rl.readthedocs.io/en/latest/developer.html.

2 | METHODS

In this section, we discuss how Conformer-RL frames conformer

generation as a RL problem, as well as the implementation details for

each component of the training framework. The architecture of Con-

former-RL is shown in Figure 1.

2.1 | Reinforcement learning

A RL system involves an “RL environment,” which is the software

interface for simulating the task, as well as an “agent,” which learns by

interacting with the RL environment. Before any interaction, the RL

environment will have some starting “state,” which we denote as s0.

The agent interacts with the RL environment by sequentially selecting

an “action” on the environment, which we will denote as ai, represent-

ing the ith action performed so far. After each action, the RL environ-

ment will update its internal state based on the action, leading to a

new state si. The RL environment will also calculate a “reward” ri

depending on the action and the previous state. The RL environment

will then send the new state and reward (si,ri) back to the agent, which

the agent will use to determine the next action to take ai+1. The goal

of the agent is to maximize the total reward achieved.

2.1.1 | RL for conformer generation

Conformer-RL makes several assumptions when converting the con-

former generation task into a RL problem. First, we assume that the

bond lengths and bond angles are constant across conformers, so that

each conformer is only determined by its torsion angles. This same

assumption is used by other conformer generation algorithms, such as

Confab.14 We further assume that all ring torsions are rigid, so we only

sample torsion angles from non-ring torsions. Finally, we assume that

for each non-ring torsion angle, all low-energy conformers with differ-

ent angles for that torsion will have a difference in angle of at least 60�

for that same torsion. Using this assumption, we can sample each tor-

sion angle from discrete “buckets” of 60�, instead of a continuous

range of angles. The angle variations can be easily changed if needed,

and future work will address sampling of ring conformers as well.

We now describe the full details for the RL system (Figure 2). Sup-

pose that we want to generate C conformers for a molecule, which has

n rotatable torsions. We will number the torsions as [t1,t2,…tn] where tj

represents the jth torsion. The state of the RL environment corresponds
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to a conformation of the molecule. The initial state of the RL environ-

ment is a random conformer for the molecule whose conformer struc-

ture has been optimized using a molecular force field. We will denote

this initial state as m0. The reward function, which we will denote as

f, depends on the energy of the current molecule conformation, and in

this case f(m0) is the reward associated with the initial state/conformer.

Conformer-RL implements several different reward functions, which

are detailed in the RL Environments section. In the ith iteration of the

RL environment, the agent is first given the current state and reward

(mi,f[mi]). The agent outputs the next action ai+1, which is a vector of

length n, where each element of the vector is a multiple of 60 within the

interval [0,360]. We can write ai+1 as [ai+1,1,ai+1,2,…,ai+1,n]. Given this

action, the RL environment will generate a new conformer by setting the

torsion angle of torsion tj to ai+1,j for all 1 ≤ j ≤ n. Then, the resulting con-

former structure is further optimized using a force field, and the resulting

conformer will be the next state mi+1, and the corresponding reward will

be f(mi+1). This cycle repeats until C cycles are completed, after which

exactly C conformers will have been generated. A diagram of a single

iteration of interaction between the agent and RL environment is shown

in Figure 2.

Potential use cases for Conformer-RL include a variety of types

of organic molecules including most drug-like molecules, and also

F IGURE 1 Architecture of Conformer-RL

F IGURE 2 Illustration of an agent interacting with the reinforcement learning environment in a conformer generation task for a simple
molecule with two torsions. At iteration i, the environment state is the conformation of the molecule with each torsion at 0�. After the agent
interacts with environment with the action [0,120], the environment sets the first torsion angle to 0� and the second torsion angle to 120�. The
conformer is optimized using a molecular force field to get to the conformer state for the next iteration, where generally the angles will not be
exactly equal to the action-specified angles.
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includes linear or branched organic polymers. Molecules may contain

rings but the torsions within these rings are not currently sampled.

Potential future extensions include explicit sampling of ring torsions

and sampling of intermolecular interactions between non-covalently

bonded molecular species.

2.1.2 | RL environments

A conformer generation RL environment can be created with any

covalently bonded molecule as input, and also includes configurable

options. The molecular structure is specified as an RDKit13 molecule

object. As a mature cheminformatics library, RDKit offers a standard

means of representing and manipulating molecules, and can interface

across different formats from a number of computational chemistry

packages including the MOL file format. RDKit is also at the core of

a broad ecosystem of other cheminformatics packages, including

Open Babel, which has extensive conversion capabilities for over

100 formats.15

RL environments are initialized with a MolConfig object, which

specifies the RDKit molecule to be used in the RL environment and

any molecule-specific parameters. For convenience, Conformer-RL

contains scripts for generating MolConfig objects for several classes

of molecules and polymers with conformer generation benchmarks

found in Gogineni et al.,9 such as branched alkanes and lignin poly-

mers. Molecule generation scripts utilize several libraries depending

on the molecule, including stk,16 stko17 and Lignin-KMC,18 with

options for varying molecule size and structure. The library also

includes convenience functions to automatically convert a molecule in

a MOL file into a MolConfig object.

Conformer-RL includes several configurable options for each

component of the RL environment. Due to the flexibility of the

design, different component implementations can be mixed and

matched depending on the user's specific task, and new RL environ-

ments for tasks related to conformer generation, such as protein

folding and chemical reaction optimization,19 can be easily built by

implementing custom variations of the components. The main com-

ponents include:

• Action Handler determines how the molecular structure is modified

given an incoming action. The implementation discussed above,

where the action is a list of integers that are multiples of 60, is

included. Other implementations include torsion angle “buckets”
of finer granularity than 60 degrees, as well as the option for the

angle to be set to any real number in the continuous range [0,360].

After the torsion angles of the molecule are set, the conformer

structure is further optimized using the MMFF9420 force field.

• Reward Handler specifies the function for the reward based on the

current molecule conformation. Conformer-RL includes several

reward implementations derived from the energy of the current

molecule conformation, such as (but not limited to):

� Basic Energy Reward—reward that is inversely correlated with

the energy of the current conformer. Formally,

f mð Þ¼�E mð Þ

where f is the reward function, m is the molecule conformer,

and E(m) is the energy of the conformer.

� Pruning Energy Reward—reward that “prunes” (returns a

0 reward) any conformer generated from an action already seen

in the current episode.

� Boltzmann Factor Reward—uses the Boltzmann factor of the

conformer as the reward, and prunes conformers that are too

similar to previously generated conformers using a torsional fin-

gerprint distance (TFD)21 metric. Formally,

f mð Þ¼
0 min TFD m, xð Þ : x� Sf g< threshold
e
� E mð Þ�E0ð Þ

kT otherwise

(

where f is the reward function, m is the conformer of interest,

S is the set of all previously generated conformers, E(m) is the

energy of m, E0 is a normalizing factor, and TFD(m,x) is the tor-

sional fingerprint distance between conformers m and x.

• Observation Handler returns a graph representation for the current

molecule conformation and specifies what features of the molecule

conformation will be sent to the agent. Conformer-RL contains sev-

eral methods for extracting features from molecules and converting a

conformation into a PyTorch Geometric graph structure, such as:

� Node Feature Extractors—extracts information about atoms in a mol-

ecule which can be included in the nodes of the graph representa-

tion, such as atom element and three-dimensional coordinates.

� Edge Feature Extractors—extracts information from molecules

that can be represented as edges in the graph reperesentation,

with options for including bonds between atoms, bond type,

Euclidean distances, and more.

� Graph Normalizers—normalizes the graph representation of

molecules in terms of translation, rotation, and/or scaling.

Conformer-RL also includes options for executing multiple envi-

ronments in parallel for faster performance on systems with multiple

CPU cores.

2.1.3 | Agents and models

In deep RL, agents are trained on an RL environment by an RL algo-

rithm, which learns from the RL environment by interacting with it

and receiving feedback (in the form of a reward). Using this interac-

tion, the agent develops a policy, or strategy for choosing actions, that

leads to higher rewards. Conformer-RL implements several state-of-

the-art RL algorithms using deep neural networks that can be used to

train agents on any of the conformer generation RL environments

described above. The RL algorithms include advantage actor critic

JIANG ET AL. 1883



(A2C)22 and proximal policy optimization (PPO).23 Both algorithms are

policy gradient algorithms, which search for better policies by estimat-

ing the gradient of the total reward with respect to the policy. Both

algorithms have been shown to perform well on the conformer gener-

ation task.9 The software also includes implementations of several

modern graph neural network architectures modified to be compatible

with molecular inputs, including versions of the model from the work

of Gogineni et al.,9 which are used by the agent to learn the RL envi-

ronment. The networks are built using PyTorch Geometric24 and are

compatible with molecules of variable size.

2.2 | Curriculum learning

Curriculum learning is a machine learning technique similar to transfer

learning, where a model is trained on easier tasks initially, and then

gradually more difficult tasks when the model has started to learn the

current task. Recent empirical results have shown that curriculum

learning significantly improves agent performance of RL agents in

game tasks like Ms. Pac-Man.25 Although transfer learning, which

involves reusing a model trained on a task on a different task, has

been used for chemistry applications like drug discovery,26 the use of

curriculum learning is not widely explored.

Conformer-RL allows users to utilize curriculum learning when

training agents, simply by inputting a list of molecules when creating the

RL environment rather than a single molecule. The agent will be first

trained on the first molecule in the list, and then sequentially move to con-

secutive molecules once a performance threshold is reached. An example

of curriculum learning is discussed in the section Example Usage.

2.3 | Model selection and evaluation

Conformer-RL contains tools for monitoring training progress and eval-

uating trained models, to aid in the selection of model hyperparameters.

During training, the software's TrainLogger module logs information

from the agent, such as total reward per episode, training loss, runtime,

etc., and supports logging data directly to TensorBoard,27 where the data

can be visualized in real time. To assess the generalization capabilities of

the model during training, the system can also take a second RL environ-

ment as input. The model will not directly train on the second RL envi-

ronment, but in every set number of training iterations, the model will be

evaluated on the second RL environment. This can be useful for deter-

mining whether the trained model is able to generalize to other mole-

cules besides the one it is training on, and which training iteration yields

the best model on the evaluation RL environment.

2.4 | Molecule visualization and analysis

When evaluating a trained model, Conformer-RL's EnvLogger

module records RL environment information across a single RL envi-

ronment interaction/episode, such as the conformers generated and

conformer energies. EnvLogger supports saving the per-episode

data and each generated molecule conformer as a MOL file, so that

the generated conformers can be used in further downstream analy-

sis. It further contains an analysis toolkit for calculating and visualizing

results in a Python notebook. The toolkit provides convenient

methods for generating figures, charts, and interactive 3D visuals for

molecule conformers. An example is shown in Figure 3.

3 | EXAMPLE USAGE

We now demonstrate an example setup of how Conformer-RL can

be used to generate conformers for a lignin polymer containing eight

monomers. Since the polymer is quite large and contains over 50 rotat-

able bonds, training an RL agent directly on the lignin polymer can

take several days to achieve similar performance as SGMD. This is the

case even when using a Nvidia Tesla V100 GPU and running 20 RL

F IGURE 3 Example of using
the toolkit to visualize a
generated conformer in a Jupyter
notebook
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environments in parallel, since the number of possible actions scales

exponentially with increasing number of rotatable bonds. One solu-

tion to this is to utilize curriculum learning. We will first train an RL

agent on lignin polymers containing only 2–3 monomers. When the

agent reached a performance threshold on the current polymer, it will

be able to advanced and train on lignin polymers with sequentially

larger number of monomers, up to six monomers total. The action

space for these smaller lignin polymers are exponentially smaller than

the action space for an eight monomer lignin, and our experiments

indicate that less than 1 day of training is required for the RL agent to

achieve similar performance using the same hardware. Thus, to utilize

curriculum learning, we create an RL environment using Conformer-

RL by inputting a list of five lignin polymer structures, with the first

structure containing two monomers, the second structure containing

three monomers, and so on with the last structure containing six

monomers. We then train a RL agent on this environment using the

PPO algorithm.

According to experiments reported by Gogineni et al.9 the model

trained using this curriculum learning method is able to generalize well

and successfully generate conformers for a lignin polymer with eight

monomers, even outperforming SGMD. We can further use the saved

.mol files dumped by the environment during evaluation to analyze

the conformers generated for the 8-lignin. An example is seen in

Figure 4.

4 | CONCLUSION

Conformer-RL is a comprehensive library for training and testing

deep RL agents in the conformer generation task. Conformer-RL's

modular interfaces can increase research reproducibility and stimulate

discovery in conformer generation. We hope the availability of this

library will bolster the computational chemistry community to engage

advanced machine learning techniques for conformational sampling.

Full documentation can be found at https://conformer-rl.readthedocs.

io/en/latest/.
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