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Abstract: Mathematical methods provide useful framework for the analysis and design of complex systems. In newer contexts
such as biology, however, there is a need to both adapt existing methods as well as to develop new ones. Using a combination
of analytical and computational approaches, the authors adapt and develop the method of describing functions to represent the
input–output responses of biomolecular signalling systems. They approximate representative systems exhibiting various
saturating and hysteretic dynamics in a way that is better than the standard linearisation. Furthermore, they develop analytical
upper bounds for the computational error estimates. Finally, they use these error estimates to augment the limit cycle analysis
with a simple and quick way to bound the predicted oscillation amplitude. These results provide system approximations that can
add more insight into the local behaviour of these systems than standard linearisation, compute responses to other periodic
inputs and to analyse limit cycles.

1௑Introduction
Design of biomolecular systems can enable applications in
agriculture, medicine and manufacturing [1]. Complementarily,
analysing how naturally occurring biomolecular interactions
determine cellular behaviour is a fundamental problem in biology
[2]. Mathematical frameworks are useful for both these objectives.
These provide system representations to test and compare different
design choices as a guide to the actual implementation. These also
help to develop useful insight into how system interactions can
combine to generate the overall behaviour. Mathematical models
used in these cases are typically complex, both due to their large
scale as well as the inherent nonlinearity, making their analysis
challenging. Therefore, there is a need to adapt existing
mathematical methods as well as develop these and new ones for
the study of such problems.

Biomolecular systems are frequently represented as ordinary
differential equations, formulated based on the principles of mass
action. The variables in these equations are the concentrations of
various biomolecular species that evolve in time depending on their
interactions with each other. One approach to study these
mathematical models is exhaustive numerical computations, which
can catalogue all possible system behaviours, complemented with
simpler calculations to understand the key underlying principles [3,
4]. Another approach is theoretical, exploiting the inherent
structure to infer system behaviour. An example is the theory of
monotone systems [5]. Intermediary approaches may also exist
using various approximations to understand system behaviour.
Indeed, methods of linear systems theory have often been used to
characterise biomolecular system behaviour such as impulse
responses in bacterial chemotaxis [6] as well as frequency
responses in the osmolarity pathway of the yeast Saccharomyces
cerevisiae mediated by the mitogen-activated protein (MAP)
kinase cascade [7–9] and in the galactose metabolic pathway, also
in the yeast S. cerevisiae [10]. Another example of such an
intermediary approach is the describing function technique [11,
12], where the frequency response of a nonlinear system to a
sinusoidal input of a particular amplitude is approximated by the
first harmonic of the resulting output response. This is widely used
in classical control engineering to estimate limit cycle behaviour as
well as to replace nonlinear input–output responses with
corresponding linear approximation. These linear approximations
can then be analysed using the well-developed tools of linear

systems theory. In fact, this technique has been applied to analyse
biomolecular oscillations [13] and to approximate input–output
maps in biomedical contexts [14]. These results present important
early work in using this technique for biological systems.

There are at least three striking aspects related to using a
describing function-based linearisation to approximate the input–
output response of a biomolecular signalling system. One,
describing functions naturally allow the analysis of finite amplitude
inputs, as opposed to infinitesimal amplitude inputs in the standard
linearisation. These may be more relevant to actual biomolecular
contexts such as in the experimental studies of frequency response
mentioned above [7–10] and provide additional insight into the
system behaviour. Two, nonlinearities typically analysed using
describing functions in the classical contexts are static
nonlinearities such as saturation or hysteresis. Contrastingly, the
same nonlinearities in biomolecular contexts can have a dynamic
character because of the underlying nonlinear biomolecular
interactions are embedded in the overall system dynamics. Three,
there may be error involved in the approximation that may depend
both on input frequency as well as inherent system parameters,
which may be important to quantify. Given these, the describing
function-based approximation of these input–output responses
including the dependence on system parameters and the nature of
approximation error is generally unclear.

Here, we aim to approximate these systems and estimate the
resultant error. For this, we used the technique of describing
functions, analytically, where possible, as well as computationally.
We computed approximations for representative systems with
input–output responses exhibiting saturation dynamics with
different slopes as well as hysteretic dynamics (formed the basis of
preliminary investigation [15]). Next, we computed the
approximation error and developed a theoretical error bound for
these kinds of systems. Finally, we used these error estimates to
augment the classical describing function-based limit cycle
analysis by providing a simple way to estimate the range of
oscillation amplitudes. These results adapt the existing method of
describing functions for the study of biomolecular systems and
should be useful both in analysis and design.
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2௑Computation of describing function
approximation
2.1 Describing function method

Consider a nonlinear system governed by equations

ẋ = f (x, u)

y = Cx,
(1)

where x is a vector of species concentrations, u is input which can
be a system parameter, C is a row vector and y is the output and
typically f  is a nonlinear map. We aim to approximate the input–
output system from u to y using describing function [11]. To
compute the approximation, we set the input to be
u = u0 + b sin(ωt), where b is the forcing amplitude, ω is the
forcing frequency and u0 is the input bias. The describing function
approximation G(jω, b, u0) can be obtained by taking the first
harmonic of the output in response to sinusoidal input. This is
defined as

Re{G(jω, b, u0)} =
ω

πb∫0

2π

y(t)sin(ωt)dt

Im{G(jω, b, u0)} =
ω

πb∫0

2π

y(t)cos(ωt)dt .

(2)

The magnitude and phase of the approximation can be calculated
as

|G| = Re{G}2 + Im{G}2

∠G = tan−1 Im{G}
Re{G}

(3)

respectively.
Next, we use this technique to approximate canonical

biomolecular signalling systems. Here, (1) is an ordinary
differential equation model of the system under consideration
obtained using the law of mass action. As, biomolecular signals

cannot be negative, we use the constraint b < u0, so that the input is
always positive.

2.2 Example 1: biomolecular system with saturating input–
output map

One of the simplest signal transduction mechanisms that is
representative of diverse signalling contexts is of a biomolecular
species that can exist in two states [3, 16, 17]. These can
interconvert among each other (Fig. 1a inset) depending on the
input level. Typically, one of these states has biological activity and
can serve as the output. Consider a simple model of this with a
biomolecular species (A) that can interconvert between two forms
(A0 and A1) at certain forward and reverse rates (k+ and k−). In this
two-state model, the input such as temperature or pheromone levels
can be modelled as modulating the rate k+ and the output as the
concentration of A1, the active form of the protein A. A
mathematical model in the context of biomolecular signal
transduction can be obtained using mass action kinetics

dA1

dt
= k+(AT − A1) − k−A1 . (4)

Here, the total concentration of the protein is AT = A0 + A1 ,
which is constant in the simplest scenario considered here. Owing
to the presence of the term k+A1, where the input term and the
output multiply each other, this is a nonlinear equation. The input–
output response at steady state can be obtained by setting
dA1

dt
= 0 ⇒ A1 = AT

k+

k+ + k−
 (Fig. 1a).

To compute the approximation of the overall response, we set
the input to be k+ = k+0 + b sin(ωt) and describing function
approximation is computed using the output obtained numerically
from MATLAB ode23s solver in response to the above input from
(2). The results of this computation are shown in Figs. 1b and c.

To obtain an analytical approximation, we set
A1 = A10 + A1b sin(ωt + θ) [11] in (4) and collect the like terms to
obtain expressions for A10, A1b and θ (the detailed steps are in
supplementary material S1)

A10 = AT
k+0 − α

k− + k+0 − α
α =

1
2

b
2 k+0 + k−

ω
2 + (k+0 + k−)2

A1b = AT − A10
b

ω
2 + (k+0 + k−)2

θ = − tan−1 ω

k+0 + k−
.

(5)

The describing function approximation is (Figs. 1b and c)

G(jω, b, k+0) =
A1b

b
ej(ωt + θ) .

The analytical and computational results match well converging to
the linearised frequency response (Figs. 1b and c) as b → 0

lim
b → 0

G jω, b, k+0 =
ATk−/(k− + k+0)

ω
2 + (k+0 + k−)2

ej(ωt + θ),

with the operating point (k+ = k+0, A1 = ATk+/(k+ + k−)).
Parametric dependence of approximation: We note that the

phase of the approximation is independent of the forcing amplitude
b and coincides with that of linearisation. At frequencies lower
than crossover frequency ω0 , the output is in phase, whereas at
higher frequencies the output lags the input by π /2. The magnitude,
on the other hand, depends on forcing amplitude b, in an increasing
manner (5). This is a counterintuitive result as steady-state solution
of (4)

A1 = AT
k+

k+ + k−
,

Fig. 1௒ Approximation of the simple biomolecular system and error
estimate
(a) Black line is the steady-state input–output response for parameters AT = 100 nM,
k− = 100/h, k+0 = k− and b = k+0/2. Blue dot is the operating point used for
computation of linearisation. Schematic representation of biomolecular system is
shown in the inset, (b) Red triangle shaped, blue pentagon shaped and green circle
shaped markers are the magnitude plots of analytical, computational describing
function-based approximations and direct linearisation, respectively, for same
parameter set, frequency is varied logarithmically in the range 0.1–104/h, (c) Phase
plots corresponding to b, (d) Corresponding error plots
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is increasing and then saturating function of k+. However, A1b itself
decreases as b is increased. This is because A10 decreases as the
forcing amplitude b increases (5). Increasing either k+0 or k−

increases the crossover frequency ω0 = k+0 + k− , making the
output phase similar to input phase. In the following two limits:

ω0 ≪ ω ⇒
A1b

b
= AT

k−

ω0ω
,

ω0 ≫ ω ⇒
A1b

b
= AT

k−

ω0
2 − b

2/2
,

magnitude decreases with k+0. However, in the high-frequency
limit, magnitude increases with k−, whereas in the low-frequency
limit, the magnitude first increases and then decreases as k− is
increased.

Finally, AT, the total protein concentration scales the magnitude
but does not change the phase.

This presents an overview of how the describing function
approximation depends on system parameters. We note that these
relations are more accurate than when obtained by standard
linearisation and cannot be achieved through numerical simulation.

Approximation error: It is important to quantify the error in any
approximation as a measure of its accuracy and to compare
different approximation methods. We computed the relative mean-
square error

e =
1

A1b

1
T ∫

0

T

(y(t) − y
~(t))2dt, (6)

where y(t) is the numerical solution of (4) with sinusoidal forcing
and

y
~(t) = A10 + A1b sin(ωt + θ),

which can be found analytically from (5) or can be computed using
(2) through computer simulation. A comparison of relative error
for different approximations (Fig. 1d) shows that the computational
describing function-based approximation matches reasonably well
with the analytical approximation especially at lower frequencies
and is better than the approximation obtained by the standard
linearisation.

These results provide a describing function-based
approximation of a simple system as well as a quantification of the
error involved.

2.3 Example 2: biomolecular covalent modification system
with switch-like input–output map

As a second example of a biomolecular signalling system, we
investigated a covalent modification scheme that is present in
multiple cellular pathways [18]. This is similar to the example
considered above, with enzyme-catalysed interconversion
reactions. Depending on parameter regime of operation, the steady-
state input–output response may have different sensitivities. The
reaction scheme for this system is

A + E1

a1

⇌

d1

AE1 →
k1

A
∗ + E1

A
∗ + E2

a2

⇌

d2

A
∗
E2 →

k2
A + E2 .

The forward and backward conversions between the two forms A
and A

∗ are catalysed by enzymes E1 and E2, respectively. As such,
these reactions have intermediates [AE1] and [A

∗
E2], giving overall

conservation relations as

AT = [A] + [A
∗] + [AE1] + [A

∗
E2]

E1T = [E1] + [AE1]

E2T = [E2] + [A
∗
E2],

where AT is the total substrate concentration and E1T and E2T are
the total enzyme concentrations. Using these the mathematical
model can be obtained as

d[A]
dt

= − a1[A](E1T − [AE1]) + d1[AE1]

+k2(AT − [A] − [A
∗] − [AE1])

d[A
∗]

dt
= − a2[A

∗](E2T − AT + [A] + [A
∗] + [AE1])

+d2(AT − [A] − [A
∗] − [AE1]) + k1[AE1]

d[AE1]
dt

= a1[A](E1T − [AE1]) − (d1 + k1)[AE1] .

(7)

As before, we model k1 as the input and the concentration of A∗ as
the output. The input–output response at steady state can have
different sensitivities depending on the parameter regime of
operation. Two such choices with a low sensitivity and a high
sensitivity are shown in Figs. 2b and c. The nonlinearities are
distributed through the system and arise due to the principles of
mass action. We aim to approximate the overall input–output
response with a describing function-based linearisation. Therefore,
while this is similar to a saturation nonlinearity [12], there are
inherent dynamics. 

Calculation of approximation: The describing function
approximation is obtained computationally (Fig. 2b – blue-solid
line and Fig. 2c – blue dashed line), as described previously. We
also computed, for comparison, the standard linearisation (Fig. 2b
– red-solid line and Fig. 2c – red-dashed line).

Fig. 2௒ Approximation of the biomolecular covalent modification system
and error estimates
(a) Solid-black line represents the steady-state normalised input–output map for
parameters AT = 200 nM, E1T = E2T = 20 nM, d1 = d2 = 1/h, k2 = 1/h, k10 = k2,

b = k10/2 and a1 = a2 = 10−2/h, corresponding to a less steep transition. Dashed-black
line represents the steady-state normalised input–output map which corresponds to a
steeper transition, with a1 = a2 = 1/h and other parameters are kept constant. Blue dot
represents operating point used for computation of linearisation, (b) Blue-solid line
and red-solid line represent the magnitude plots of computational describing function-
based approximation and linearisation approximation of less steep transition,
respectively, frequency is varied logarithmically in the range 0.1–104/h. Inset shows
corresponding phase plots, (c) Blue- and red-dashed lines represent magnitude and
phase plots for both approximations in steeper transition case, (d) Corresponding error
involved in both approximations for both sensitivity regimes
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Parameter dependence: The describing function-based
approximations in both regimes have a similar low-pass nature.
The DC gain for the higher sensitivity regime (Fig. 2c) is higher
than that of the lower sensitivity regime (Fig. 2b), consistent with
the slope of the operating point. For the low sensitivity regime, the
describing function-based approximation is similar to that of the
standard linearisation. Interestingly, however, the DC gain in the
higher sensitivity regime is lower than that of the corresponding
standard linearisation, while the bandwidth is larger. This shows
that, for finite inputs, the gain may not be as high as the standard
linearisation predicts. Similarly, the bandwidth may not decrease to
a large extent. Therefore, analysis of the describing function-based
approximation provides insight into how the system may behave in
case of finite inputs. We emphasise that this realisation is not
possible through numerical simulations and the describing function
technique provides a better approximation than standard
linearisation.

Approximation error: On the basis of the computation (Fig. 2d),
it can be observed that the error in the describing function-based
approximation is lower than that obtained from the standard
linearisation in both parameter regimes considered.

2.4 Example 3: biomolecular system with hysteretic input–
output map

Another example of a biomolecular input–output response, often
encountered in developmental contexts, is hysteresis. One of the
simplest ways through which this can be achieved is, through the
addition of transcriptional positive feedback in the circuit showed
in Example 1. The resulting all-or-none behaviour has been
experimentally observed during maturation of Xenopus oocytes

[19, 20]. Here, we consider a simple system to illustrate the
hysteretic input–output map (Fig. 3a inset)

d[A1]
dt

= k+(AT − A1) − γA1 − k−A1

d[AT]
dt

= f (A1) − γAT,
(8)

where the feedback is f (A1) = α0 + ((α(A1)
n)/(Kn + (A1)

n)) and
there is the conservation law AT = A0 + A1. The addition of the
nonlinear ultrasensitive (n > 1) positive feedback can generate a
hysteretic response (Fig. 3a). In the hysteretic regime, there are
three steady states, two of which are stable and one is unstable. As
input parameter k+ is varied, a pair of stable–unstable steady states
coalesce causing a monostable high or low steady state. Our aim is
to develop an approximation of the entire input–output map from
k+ to A1. While the hysteretic map looks like the classical ones
analysed, the difference here is that there are inherent dynamics in
the hysteresis nonlinearity. 

Calculation of approximation: The describing function
approximation is computed by setting the input, k+, as a biased
sinusoid and taking the first harmonic approximation of the output
A1. We analysed parameter regimes where hysteretic response is
present as well as the one in which it is not present (Figs. 3b and c).
In fact, due to the presence of multiple steady states in the
hysteretic regime, it is unclear which point to take for the standard
linearisation. For the describing function-based approximation,
however, there is no such ambiguity.

Parameter dependence: The frequency response shows low-
pass filter nature in both regimes. We note that the frequency
response in the hysteretic regime can have a low-frequency part,
where the magnitude is constant and the phase is decreasing
(Fig. 3b – solid-red line). This is exactly the characteristic
associated with a pure delay (transfer function
H(jω) = e− jωT ⇒ |H(jω) | = 1, ∠H(jω) = − ωT). Therefore,
this method of approximating a positive feedback loop adds insight
to system analysis by providing a direct map to a pure delay as well
as an estimate of the quantitative parameters associated with it.
This is consistent with other studies relating positive feedback with
a delayed action, for example [21]. With lower-input amplitude, we
still observe two humps in the magnitude and phase plot (Fig. 3b),
possibly owing to the presence of two time scales – that of protein
production and covalent modification. An attenuated version of this
trend is also visible in the case when hysteretic response is absent
(Fig. 3c). Although, the higher- and lower-input amplitude
responses do not have much difference when there hysteresis is not
expected (Fig. 3c).

Approximation error: We calculated the error involved (Fig. 3d)
in approximation for the hysteretic input–output map for different
regimes and different input amplitudes chosen in the input–output
plot of Fig. 3a. The error is higher for higher-input amplitude in the
hysteretic regime owing to the presence of strong nonlinearity.

3௑Analytical error bound
As with any approximation method, it is important to estimate the
associated error. As the describing function technique essentially
approximates a dynamical system by the first harmonic of its
output, when a sinusoidal input is applied, we develop an error
bound using methods associated with Fourier series. The Fourier
series of a periodic signal is

f (t) = a0 + ∑
n = 1

∞

(ak cos nω0t + bk sin nω0t) .

This can also be represented in exponential form

f (t) = ∑
n = − ∞

∞

Cne
jnω0t

ω0 =
2π

T
,

where

Fig. 3௒ Describing function approximation and error estimate for hysteretic
system
(a) Solid-red line represents the steady-state normalised input–output map for
parameters α0 = 1/15, α = 5 nM/h, n = 2, γ = 1/h, K = 1 nM, k− = 100/h,
corresponding to a hysteretic response. Solid-blue line represents the steady-state
normalised input–output map when α = 1 with other parameters same as above. Solid-
black vertical line corresponds to the upper limit of the area where describing function
approximation is done for higher-input amplitude k+0 = b = 375. Dashed-black
vertical lines correspond to the upper and lower limits of the area where describing
function approximation is done for lower-input amplitude, k+0 = 375, b = 300.
Schematic representation of the system is shown in inset, (b) Red-solid line and
dashed line represent the magnitude plot of computational describing function-based
approximation for hysteretic response with higher and lower-input amplitudes,
respectively, and inset shows phase plot, frequency is varied logarithmically in the
range 10−5–105/h, (c) Blue-solid and dashed line show the magnitude and phase plots
for non-hysteretic regime with higher and lower-input amplitudes, respectively, (d)
Corresponding error associated with the approximation in both regimes for both higher
and lower-input amplitudes
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Cn =
1
T ∫

−T /2

T /2

f (t)e− jnω0t dt . (9)

From the convergence of Fourier series, we know that signals that
are continuous or have a finite and bounded discontinuity over a
period satisfy [22]

lim
m → ∞

∥ f − f m ∥ = 0,

where f m(t) = ∑n = − m
m

Cne
jnω0t is the Fourier series taken up to mth

harmonic. For the describing function case, we need to estimate

ϵ1 = ∥ f − f 1 ∥ = ∫
−π

π

| f − f 1 |2 dt,

which is basically a scaled version of the error defined in (6). For
Fourier series, an upper bound of this error can be obtained using
the principle of bounded variation [23].
 
Definition 1: [24]: Let f : [a, b] → ℝ be a function and
M = {x0, x1, …, xn} be a partition of [a, b]. We define the total
variation of f over the [a, b] as

Va
b( f ) = sup

M
∑
k = 0

n − 1

| f (xk + 1) − f (xk)| ,

where the supremum is taken over all partitions of f. The function
is said to have bounded variation if Va

b( f ) is finite in [a, b] and we
write f ∈ V[a, b].
The following properties are useful in calculating the total variation
[24]:

i. If f : [a, b] → ℝ is monotone in [a, b], then f ∈ V[a, b] and
Va

b( f ) = | f (b) − f (a)|.
ii. Let f : [a, b] → ℝ be of bounded variation in [a, b]. Then

c f ∈ V[a, b] for any c ∈ ℝ and Va
b(c f ) = |c |Va

b( f ).

iii. Let f : [a, b] → ℝ and c is an arbitrary point in [a, b]. Then
f ∈ V[a, b] if and only if f ∈ V[a, c] and f ∈ V[c, b].
Furthermore, Va

b( f ) = Va
c( f ) + Vc

b( f ).

 
Theorem 1: [23]: If f(t) is periodic with frequency ω0 and the total
variation over one period is bounded by V, then the mean-square
error in approximating up to mth harmonic is

ϵm
2 ≤

V
2

πω0m
.

We use this result to develop an error bound for the describing
function approximation. We apply this to classically known static
nonlinearities and then illustrate how this can be applied to the
dynamic nonlinearities such as the biomolecular systems discussed
in Section 2.

3.1 Example 4: static saturation nonlinearity

Consider a saturation nonlinearity with a and k denoting the range
and slope of saturation. To obtain the describing function
approximation, we use a sinusoidal input A sin ωt to the
nonlinearity and calculate the first harmonic [12] of the output. The
output of the nonlinearity is described as

f (t) =
kA sin ωt if 0 ≤ ωt ≤ δ

ka if δ < ωt ≤
π

2
where δ = sin−1 a

A

Using the properties of bounded variation

V0
δ( f ) = f (δ) − f (0) = kA sin δ − 0 = ka,

Vδ
π − δ = 0,

Vπ − δ
π = ka . ⇒ V0

2π = 4ka .

In fact, for any real periodic signal, the total variation over a period
is bounded and is four times of the amplitude of the signal.
Therefore

ϵ1
2 = ∥ f − f 1 ∥2

2 ≤
(4ka)2

πω(1)
,

for approximation up to first harmonic. We find that the calculated
mean-squared error in the first harmonic approximation is bounded
by the theoretical error bound for static saturation nonlinearity as
frequency is varied (Fig. 4a). 

3.2 Example 5: static hysteresis nonlinearity

A relay exhibiting hysteresis is another commonly encountered
static nonlinearity [12]. Parameters δ and D denote the hysteretic
angle and the range of saturation, respectively. It works like a
simple relay with a phase shift of δ. The error bound in this case is

ϵ1
2 = ∥ f − f 1 ∥2

2 ≤
(4D)2

πω(1)
. Fig. 4b shows the mean-square error

between actual output and the first harmonic approximation, which
is bounded by theoretical error bound for all ω. It can be noted that
the error bound for both cases are similar if the maximum
magnitude of the output is set to be same in both cases, i.e. ka = D.
However, it is observed that the maximum mean-squared error for
the relay with hysteresis is more than that of static saturation
nonlinearity. The maximum mean-squared error increases for
saturation case if the slope of saturation increases and tends to the
error of relay with hysteresis when k approaches ∞.

Fig. 4௒ Error in describing function approximation and corresponding
error bounds
(a). Blue-solid line and red dotted line represents mean-squared error in describing
function approximation and corresponding error bound, respectively, for static
saturation, when ω is varied. The same is shown in decibels scale in the inset, (b)
Similar plots for static hysteresis case, (c) For the input–output map in Example 1,
solid-blue line represents the mean-square error in the describing function
approximation. Red-dashed line represents the theoretical error bound when total
variation is taken as AT/2. Dashed-blue line represents the bound when total variation
is calculated computationally
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3.3 Example 1: continued

The nonlinearities encountered in biomolecular systems often have
a dynamic character, as analysed in the previous section. To find an
error bound for these kinds of nonlinearities, we first need to
determine the total variation. We illustrate this for the first
example, where we bound the maximum variation for the output A1

to be AT, the total concentration. Furthermore, the steady-state
input–output response for static saturation case does not take
negative values. Comparing these, we find that the total variation
of periodic output in this case is V = AT/2 and the error bound is
V

2/πω. Computationally, we find the total variation from the time
trajectory of simulated output. The theoretical as well as
computational error bounds for describing function approximation
are shown in Fig. 4c. Both of these bound the mean-square error of
describing function approximation.

These results provide an error bound for describing function
approximation using the concept of total variation and a general
way, using the maximum allowable concentration of the output
species, obtain these error bounds for biomolecular systems.

4௑Error estimates in limit cycle analysis
Finally, we investigate the use of the error analysis developed
above in the analysis of limit cycles, a classically important
application of the describing function technique. Although this
technique is widely used in control engineering for limit cycle
prediction, a treatment of errors involved is relatively less common
[25]. Here, we aim to incorporate the simple error estimate
developed above to augment the standard analysis.

4.1 Example 6: Van der Pol oscillator

We begin with the Van der Pol oscillation, a benchmark nonlinear
oscillator and commonly used to illustrate the describing function-
based limit cycle analysis [12]. This oscillator was first analysed in
the context of vacuum tube triode circuits and termed as ‘relaxation
oscillation’ by Van der Pol [26]. This class of oscillators has
multiple applications in physical as well as biological sciences such
as in the Fitzhugh–Nagumo oscillator [27, 28]. The dynamical
equations of Van der Pol oscillator are

ẍ + μ(x2 − 1)ẋ + x = 0 (10)

This can be separated in a linear and a nonlinear part as shown in
Fig. 5a. 

Describing function approximation with error estimate: We
computed the describing function of the nonlinear part (Fig. 5b).
This is denoted as N. We also computed the error (e) in this
approximation to get an uncertainty model N(1 ± e), where the  + 
and – signs give, respectively, the upper and lower limits. Next, we
used the condition for sustained oscillation, 1 + NG = 0, where G is
the transfer function of the linear part of the loop. We did this for
all three cases – nominal (N), upper limit N = N(1 + e) , lower
limit N = N(1 − e)  – to get the corresponding values of the
oscillation amplitude (A).The Nyquist plot corresponding to the
nominal describing function approximation touches the −1 + j0
point at ω = 1 rad/s for A = 2. This is consistent with the classical
describing function analysis that predicts an oscillation frequency
of ω = 1 rad/s and an oscillation amplitude of 2. Incorporating the
error information N(1 ± e)  in the condition of oscillation, we
obtain two other values of oscillation amplitude, A = 1.529 and
3.718. These suggest that the actual oscillations might lie in this
uncertainty band.

To check this, we computed the actual solution of the Van der
Pol oscillator along with the solution obtained from the nominal as
well as the error analysis for μ = 0.4 and μ = 1 (Figs., 5c and d).
At lower values of μ, the actual solution matches the nominal
describing function prediction, though the extent of deviation
increases as μ increases. In fact, the upper and lower amplitudes
provide bounds for the variation of the actual amplitude over a
period for these parameter choices. Therefore, these error estimates
can be used in predicting an uncertainty band of oscillation
amplitudes, providing a larger range of parameters where the
describing function approximation can help in the limit cycle
analysis.

We note that [25] has also performed a general error calculation
of limit cycle, which in this case yields error bounds on amplitude
and frequency for a larger range of parameter values. Their
approach is based on analysing approximation error and its
propagation in the entire closed loop. Here, we focus on the bounds
simply obtained due to the uncertainty representation of the
nonlinearity.

4.2 Example 7: biomolecular ring oscillator

The repressilator is a biomolecular oscillator consisting of three
proteins that repress each other in a ring [29]. It is a benchmark
oscillator in the field of synthetic biology – design using
biomolecular substrates – for its demonstration of engineering rich
dynamic behaviour inside cells. The dynamical equations for the
repressilator are

dm1

dt
= − γmm1 + α0 +

α

1 + (p3/K)n

dp1

dt
= − γpp1 + βm1

dm2

dt
= − γmm2 + α0 +

α

1 + (p1/K)n

dp2

dt
= − γpp2 + βm2

dm3

dt
= − γmm3 + α0 +

α

1 + (p2/K)n

dp3

dt
= − γpp3 + βm3 .

(11)

The form of these equations and the nominal parameters are taken
from [29]. Briefly, mi and pi (i = 1, 2, 3) represent the
concentrations of mRNA and protein, respectively. For simplicity,
the production and degradation parameters are assumed to be same
for all three mRNA–protein pairs. γp and γm represent the
degradation rate constants for protein and mRNA, respectively. β is
the translation rate constant. The repression function for the ith
mRNA (α0 + (α/(1 + pj/K)n)), models the repression of mi as pj

increases (j = 2 for i = 1, j = 3 for i = 2 and j = 1 for i = 3). This is a

Fig. 5௒ Limit cycle analysis of Van der Pol oscillator using describing
function technique
(a) Block diagram of Van der Pol oscillator. (b) Solid-blue line represents nominal
describing function approximation, whereas upper and lower limits for the
approximation is represented by cyan and red lines, respectively, (c) Black line
represents the actual solution for Van der Pol oscillator. Blue, red and cyan line
correspond to the solution considering nominal, upper and lower limits of describing
function approximation for μ = 0.4, (d) Same is repeated for μ = 1
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special case of a general cyclic gene regulatory network which may
give rise to oscillations and the existence criteria and general
oscillation profiles are given in [30] using harmonic balance
analysis. To apply the describing function technique and associated
error analysis, we separate the system to linear and nonlinear parts
(Fig. 6a). There are three transcriptional modules, each of which
has one linear and one nonlinear part which is
F(p) = α0 + {α/[(1 + pj/K)n]} (j = 1, 2, 3). The gain of the
describing function approximation for a single nonlinear element is
denoted as N. The input to each nonlinear part is concentration of a
protein and thus it is set to a biased sinusoidal input,
pi = a + b sin(ωt). Unlike the previous case, the input has a bias
part. This is because the concentrations in biomolecular systems
concentrations cannot be negative b ≤ a . 

4.2.1 Calculation of frequency and describing function: From
the condition of sustained oscillation

1 + N
3
G

3(s) = 0, (12)

where G(s) = (1/((1 + Tγms)(1 + Tγps))) is the linear element in one-
transcriptional module. From this we get one magnitude and one
angle condition

|(1 + Tγm
s)(1 + Tγp

s) | = N

3∠[(1 + Tγm
s)(1 + Tγp

s)] = π,
(13)

where Tγm
= (1/γm) and Tγp

= (1/γp). This yields

ω =
− Tγm

+ Tγp
± Tγm

+ Tγp

2
+ 4Tγm

Tγp
tan2(π /3)

2Tγm
Tγp

tan(π /3)
, (14)

and

N = 1 − Tγm
Tγp

ω
2 2

+ ω
2

Tγm
+ Tγp

2 (15)

4.2.2 Calculation of the input bias: The simulation suggests that
there is no unique input bias and amplitude pair (a, b) which gives
rise to sustained oscillation. So, we need to fix the input bias.
Considering the first transcription module in (11), the nonlinear
part can be approximated to, F(p3) = N0 − N p3. N0 is the bias term

in the approximation and the negative sign suggests 180∘ phase for
describing function approximation (Fig. 6b). N is calculated from
(15). Now, putting p3 = a + b sin(ωt + δ) and
m1 = am + bm sin(ωt + ϕ), we get

ωbm cos(ωt + ϕ) = N0 − N(a + b sin(ωt + δ))

−γm(am + bm sin(ωt + δ)),

and

ωb cos ωt = β(am + bm sin(ωt + ϕ)) − γp(a + b sin ωt)

Equating the constant terms we get

N0 = N +
γmγp

β
a, (16)

which gives an equation of straight line, where every point
corresponds to the condition of sustained oscillation. Now, from
simulation also we can compute the value of N0 when input bias a
is varied which produces a family of curves with varying
dependence of input bias a on input amplitude b. The intersection
points correspond to the value of input bias. The simulation results
are closest to the intersection points found by this method for a = b,
when n = 2.

4.2.3 Describing function approximation with error
estimate: The magnitude of the describing function approximation
with the upper and lower error limits is shown in Fig. 6b. We find
the frequency of oscillation from (14) and this matches with
simulation result. The describing function gain is calculated from
(15) and corresponding input bias is calculated from (16). From the
sustained oscillation condition, we get the nominal amplitude of
oscillation. The upper limit of the error gives an upper limit of
amplitude. The lower limit of error does not give a clear result as
the error magnitude is larger than the nominal value. As we have
taken same production and degradation constants for all three
transcription module, we assume that the phase difference between
each protein concentration profile is 2π /3. The actual simulation of
the repressilator system is compared with the oscillation profiles
obtained from this analysis in Figs. 6c and d for different parameter
values. We conclude that such as in the case of the Van der Pol
oscillator, the use of the describing function technique with the
simple error model adds to the limit cycle analysis by providing an
estimate of the variation in the oscillation amplitude.

5௑Discussion
Describing functions can be used to approximate a nonlinear input–
output map with its linearisation. Here, we have adapted this
method for investigations of biomolecular systems and presented
the following three results. First, we used this technique to
approximate representative input–output responses, both saturating
and hysteretic, and mapped the dependence of the approximation
on system parameters. Second, we estimated the approximation
error, which was smaller than that of a standard linearisation, and
theoretically developed a way to obtain an upper bound of this
error. Third, we used the computed error estimate to augment the
standard limit cycle prediction by providing a simple way to
estimate range of oscillation amplitudes possible. These results
should help to augment a framework for approximating
biomolecular signalling systems with linearised versions.

It is interesting to note the additional insight that can be
obtained by contrasting the describing function-based linearisation
with the standard linearisation. For example, in the high sensitivity
regime of the enzymatic signalling system (Fig. 2c), standard
linearisation at the operating point would point to a dynamic
response which is very slow and has a high gain. However, an
analysis using a finite amplitude input, as in the describing function
approximation here, adds insight to the fact that the slow response
is present only if the amplitude is infinitesimal. For more realistic
inputs, where the amplitude may be finite, the response is not

Fig. 6௒ Limit cycle analysis of repressilator using describing function
technique
(a) Block diagram of repressilator. (b) Solid-blue line represents nominal describing
function approximation, whereas upper and lower limits for the approximation is
represented by solid-red and dashed-red line, respectively, for parameter values
α = 0.4995 nM/s, α0 = 5 × 10−4 nM/s, γm = log 2/120 s−1, γp = log 2/600 s−1,
β = log 2/6 s−1, K = 40 nM and n = 2, (c) Black, blue and red lines represent the actual
solution, nominal describing function solution and describing function solution
considering the upper error limit for repressilator when γp = 20 log 2/600 and other
parameters are same as b, (d) Same is repeated for γp = 14 log 2/600
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significantly slower than in the low sensitivity regime (Fig. 2b),
though the gain is still higher. This provides a holistic
understanding of this signalling system. In case of positive
feedback systems, describing function approximation gives an
account of the delay (Fig. 3b) associated with it in the hysteretic
regime. In the presence of multiple steady states, when standard
linearisation is not well-defined, describing function approximation
gives a quantitative measure of this delay and can further aid in the
design of biomolecular oscillators based on this.

An important task for the future is to obtain describing function
approximations for different systems, both for building blocks such
as analysed over here, as well as for analysis of larger systems
obtained by combining such smaller systems. Furthermore, it may
be useful to compare these representations with relatively recent
experimental data on the response of such systems to periodic input
[7–10]. For example, we have computed describing function
approximation for the input–output map of the galactose
metabolism pathway in S. cerevisiae using a model described in
[10] consisting of 18 differential equations. This is reported in
supplementary material S2. We find that for this case also
describing function serves as a better approximation than standard
linearisation and can aid the analysis of frequency response data
obtained experimentally. It may also be useful to analyse such
complex networks by dividing them into multiple stages and
replacing each with their linear approximations. Such a cascade
network where each stage is a two component signalling system is
analysed in supplementary material S3. We have shown how each
stage can be approximated with a describing function-based
approximation and the overall approximation has lower error than
standard linearisation. Similar approach can be adopted for larger
biomolecular systems with the aim of enhancing ease of analysis.
Finally, the use of random inputs to obtain such describing function
approximations may help in treating biomolecular noise that can be
potentially important [31].

A mathematical framework can help to understand the
behaviour of large complex systems and as a tool for design.
Additionally, an appreciation of the limitations of the framework
undeniably aids these aims. Here, we have adapted the method of
describing functions for approximating biomolecular systems and
estimated the corresponding error. These can be also used, for
example, in estimating the output response to other periodic inputs
such as square waves (Fig. 7). To illustrate, we compare the output
with a square wave to the one obtained by decomposing the square
wave into three (fundamental, third and fifth harmonics) Fourier
components and then adding the output response of these
components as predicted by the describing function. The output
achieved through these two approaches is reasonably similar.
Finally, it should aid in developing a framework for analysis and
design of larger, more complex biomolecular systems through
systematic interconnections of smaller components. 
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