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1 Introduction

In recent years, new high-throughput measure-
ment technologies for biomolecules such as DNA,
RNA, and proteins have enabled unprecedented
views of biological systems at the molecular level.
The fields of research associated with obtaining
and understanding such measurements – for in-
stance, genomics, transcriptomics, and proteomics
– are sometimes referred to in aggregate as omics.
Given molecular measurements taken from a bio-
logical system, a natural goal is to develop a statis-
tical model that uses these measurements to pre-
dict a clinical outcome of interest, such as disease
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status, survival time, or response to therapy. In this
paper, we will discuss the process of using omics
data to discover a molecular signature. Here, we de-
fine a molecular signature as a set of biomolecular
features (e.g. DNA sequence, DNA copy number,
RNA, protein, and metabolite expression) together
with a predefined computational procedure that ap-
plies those features to predict a phenotype of clinical
interest on a previously unseen patient sample. A sig-
nature can be based on a single data type [1–4] or
on multiple data types [5–8]. The overall process of
identifying molecular signatures from various
omics data types for a number of clinical applica-
tions is summarized in Fig. 1.

Many possible clinical phenotypes might be
predicted by a molecular signature; a few examples
include prediction of disease risk and progression
[9–11], response to therapeutic drugs [12–14] and
their physiological toxicity [15, 16], and time to dis-
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ease recurrence or death [17, 18]. A successful case
of the clinical utility of omics-derived molecular
signatures is MammaPrint [19], a diagnostic test
approved by the Food and Drug Administration for
clinical use. MammaPrint is a 70-gene expression
signature used to predict breast cancer prognosis
and to determine the appropriate therapeutic reg-
imen for lymph node negative breast cancer pa-
tients with either ER positive or negative. The list of
70 genes was selected based on correlation with
clinical outcome (distant metastasis vs. no metasta-
sis), and underwent successful validations on inde-
pendent patient cohorts [20, 21].

Despite a few notable exceptions such as
MammaPrint, the successful discovery of molecu-
lar signatures has largely been hampered by limit-
ed reproducibility and variable performance on in-
dependent test sets [22–28], as well as difficulty in
identifying signatures that outperform standard

clinical measurements like the cardiovascular dis-
ease risk C-reactive protein (CRP) [29]. These dif-
ficulties can be attributed in large part to the low
S/N inherent to omics datasets, the prevalence of
batch effects in omics data, and molecular hetero-
geneity between samples and within populations
[30]. These issues are exacerbated by the fact that
the datasets used to develop molecular signatures
tend to have small sample sizes relative to the num-
ber of molecular measurements [31]. Moreover, im-
proper study design, inconsistent experimental
techniques, and flawed data analysis can lead to
further challenges in the process of molecular sig-
nature discovery. Though there has been marked
progress in the field of molecular signature discov-
ery in recent years, there remains a clear need for
further improvements in the discovery process in
order for omics-based technologies to begin to
achieve their full clinical potential.

2  The four stages of molecular signature
discovery

Roughly speaking, the process of molecular signa-
ture discovery on the basis of omics data consists of
four major stages:
(i) Defining the scientific and clinical context for

the molecular signature;
(ii) Procuring the data;
(iii) Performing feature selection and model build-

ing; and
(iv) Evaluating the molecular signature on inde-

pendent datasets.
In the sections that follow, we will discuss each of
these stages in turn.

2.1  Stage 1: Defining the scientific 
and clinical context

We first consider the problem of selecting a suit-
able omics data type for a molecular signature. A
signature intended to distinguish between cancer
and normal tissue could be based upon a number
of omics data types; for instance, one might base the
signature upon gene expression measurements, if
it is believed that this type of cancer shows altered
expression of some genes relative to normal tissue,
or upon DNA sequence data, if samples from this
cancer are characterized by particular mutations or
copy number changes. However, given a clinical
phenotype of interest, certain types of omics data
might not form the basis for a sensible molecular
signature. For instance, it would not be reasonable
to attempt to create a molecular signature to screen
for adult onset (type II) diabetes on the basis of

Figure 1. Overview of the discovery and application of molecular signa-
tures from omics data. Molecular signatures can be derived from a broad
range of omics data types (e.g. DNA sequence, mRNA, and protein ex-
pression) and can be used to predict various clinical phenotypes (e.g.
 response to therapy, prognosis) for previously unseen patient specimens.
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DNA sequence data alone because an individual’s
DNA sequence remains essentially static through-
out his or her lifetime, but risk of developing the
disease may change.

We now consider the clinical context of the mo-
lecular signature. A gene expression-based signa-
ture that can distinguish between cancer and nor-
mal tissues would be of little practical use if a
physician can easily make the same distinction us-
ing standard (and less expensive) clinical ap-
proaches. Similarly, a signature that can distinguish
between two subtypes of cancer is useful only if
those two subtypes differ in some clinically rele-
vant way, such as in survival time or response to
therapy, since otherwise the information about
cancer subtype provided by the molecular signa-
ture may not serve a practical purpose. As an ex-
ample, gastrointestinal stromal tumors (GISTs)
and leiomyosarcomas (LMSs) are remarkably sim-
ilar morphologically and were originally classified
as being the same cancer. However, it was found
that they respond very differently to distinct ther-
apies, and thus a signature that can distinguish be-
tween these two diseases based on gene expression
in tissue samples can be useful [3]. An example
outside of cancer involves the use of metabolomic
information from human serum to noninvasively
diagnose and monitor Alzheimer’s disease (AD)
progression [32–34].

2.2  Stage 2: Data procurement

The development of a molecular signature requires
the availability of adequate omics data for which
the clinical phenotype of interest is available. In
general, there are two ways in which such data can
be procured: new data can be collected experimen-
tally for the specific purpose of molecular signature
discovery, or else existing data (collected previous-
ly for other purposes, and generally publicly avail-
able) can be used. There are pros and cons of either
approach. Collecting new data has a major advan-
tage, in that all aspects of the experiment can be
carefully controlled. On the other hand, data col-
lection is expensive, and given the large sample
sizes necessary for successful molecular signature
discovery, using existing datasets may be a more
feasible approach. There are a number of public
data repositories from which omics data and asso-
ciated clinical phenotypes can be obtained. For in-
stance, a useful source of gene expression data is
NCBI Gene Expression Omnibus (GEO), a reposi-
tory of over 26000 studies that continues to grow at
a rapid pace. Other public data repositories include
ArrayExpress [35] and Sequence Read Archive
[36]. Regardless of how the data are procured, it is

crucial that the samples correspond to the scientif-
ic and clinical context of interest, as described in
the previous section.

In order for a dataset to be suitable for molecu-
lar signature discovery, the samples must be col-
lected under appropriate experimental and analyt-
ical conditions. As an example, any biological fac-
tors (such as gender, age, or ethnicity) that may be
associated with the clinical phenotype of interest or
with the omics measurements should be taken into
consideration in the process of data procurement.
In addition, to reduce the prevalence of batch ef-
fects, factors such as sample collection and pro-
cessing procedures, laboratory personnel, study
run-dates, reagent sources, measurement instru-
ments, and data processing methods should be
carefully controlled [37–39]. Deviations in these
protocols can have a surprisingly large effect on the
omics measurements obtained, often larger than
the effect of the clinical phenotype of interest [40].
Ideally, there should be no association between the
clinical phenotype of interest and these factors. For
instance, in the case of a molecular signature that
classifies tissue samples into tumor versus normal,
there should be no difference between the tumor
and normal samples in terms of the laboratory per-
sonnel who performed the sample preparation, or
the sample run-dates. If experimental and analyti-
cal procedures are not carefully controlled, they
can result in confounding with the clinical pheno-
type of interest, leading to the development of a
classifier that performs very well on the data used
in its development, but that will perform poorly on
independent test samples.

To the extent that analytical and experimental
factors do vary among the samples, these factors
should be explicitly included in the model used to
develop the classifier. Normalization procedures
have been proposed that are intended to reduce the
effect of measured and unmeasured external fac-
tors on omics data [41]; however, good experimen-
tal design remains the best strategy [42]. Ex-
ploratory data analysis techniques, such as hierar-
chical clustering (Fig. 2A) and principal compo-
nents analysis (Fig. 2B) can be useful tools to assess
the extent to which covariates that are not of pri-
mary interest may have affected the data.

When existing data is used for omics-based mo-
lecular signature discovery, it is particularly impor-
tant that sufficient information about the experi-
ment is available to ensure that good experimental
design was followed (this will be discussed further
in Section 4). For instance, if the run date for each
sample is not given, then one cannot be certain that
the clinical phenotype of interest is not highly con-
founded with run date.
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Unfortunately, many omics studies have sample
sizes substantially smaller than would be required
for the successful identification of molecular signa-
tures. A molecular signature that is developed on
the basis of a small number of samples is more like-
ly to be sensitive to technical and biological sources
of noise and variation, and less likely to capture the
aspects of the data that are truly associated with the
phenotype of interest. This exacerbates the risk of
over-fitting, wherein the signature performs well
on the samples used for signature development but
fails to correctly predict the clinical phenotype of
interest in previously unseen samples. In contrast,
global molecular characteristics of a particular
phenotype may become more apparent as sample
size increases. Therefore, having a large sample
size, while by no means a cure-all, will greatly im-
prove the odds that a given attempt at molecular
signature discovery will prove fruitful. Integrating
across multiple datasets of the same phenotypes
from different labs can also help to amplify the pri-
mary biological signal of interest relative to noise.
Of course, whether a given sample size is “large” or
“small” depends the type of omics data being used
for signature discovery, the clinical phenotype of
interest, and many other factors.

2.3  Stage 3: Feature selection and model building

Once a scientific and clinical context has been es-
tablished and one or more datasets have been iden-
tified, we can develop a molecular signature
through (i) feature selection; and (ii) model build-
ing. These two tasks can be performed together or
separately.

We first consider the task of feature selection. A
typical omics experiment simultaneously measures
thousands or even millions of biological features
(e.g. single nucleotide polymorphisms, RNA tran-
scripts, protein levels) on each patient sample.
However, just because thousands of molecular

measurements are obtained does not mean that
thousands of molecular measurements should be
used in the molecular signature. Since financial
cost, technical practicality, and measurement ro-
bustness are important criteria to select signatures,
then if all else is equal, a signature that could be ul-
timately measured via PCR or Western blot is fa-
vored over a signature that requires a technique in-
volving many more protocol steps, such as in omics
measurements. In order to reduce the number of
features used in molecular signature development,
feature selection is performed. Feature selection
can be performed in a supervised manner (e.g. the
20% of features that are most associated with the
clinical phenotype of interest are selected), or in an
unsupervised manner (e.g. the 20% of features with
the highest variance are selected). Once a set of
features has been selected, only those features are
used in the model building process, which is de-
scribed next.

We now consider the task of model building – i.e.
the process of developing a specific computational
procedure that can be applied to the omics meas-
urements from a future patient sample in order to
predict the unknown clinical phenotype of interest
for that sample. There are many possible ap-
proaches to building such a model, and in particu-
lar, the type of model used will depend on the clin-
ical phenotype of interest. For instance, if we wish
to develop a molecular signature to predict time to
cancer recurrence, then a Cox proportional hazards
model might be appropriate. On the other hand, to
develop a molecular signature that can distinguish
between cancer and normal tissue, one could use a
classification approach, such as logistic regression,
support vector machines, neural networks, or lin-
ear discriminant analysis. Some approaches for
model-building involve first performing an unsu-
pervised technique, such as clustering or principal
components analysis, followed by a supervised
procedure, such as logistic regression.

Figure 2. Two hypothetical scenarios in
which (A) hierarchical clustering and (B)
principal components analysis reveal that
covariates other than the clinical outcome
of interest have resulted in considerable
discrepancies between patient populations.
Here, batch characteristics and not group
labels (cancer versus normal clinical speci-
mens) are responsible for most of the ob-
served variation among the samples. Such
batch effects can arise due to changes in
experimental protocols, data-processing
techniques, or laboratory personnel at any
point in the experimental process.
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Once we have developed a model, how can we
determine whether it is any good? Despite certain
drawbacks [43, 44], the most popular approach for
evaluating model performance in this context is
cross-validation. (Cross-validation is also often
used for tuning parameter selection, though that
application is outside of the scope of this paper.)
Cross-validation involves repeatedly splitting the
samples in the dataset into training and test sets,
performing all aspects of feature selection and
model building on the training set, and evaluating
the model’s performance on the test set. Cross-val-
idation can also be used to select from among a
small number of possible models: the model with
the smallest cross-validation error rate should be
chosen.

Cross-validation is a simple and intuitive ap-
proach to estimating the error rate associated with
a model, but it must be performed with care. Most
importantly, within each cross-validation fold, no
information about the test set can be used in build-
ing the model on the training set. For instance, sup-
pose that one performs feature selection by select-
ing the 10% of features whose t-statistics between
cases and controls are largest. One then performs
logistic regression, using only these features, to de-
velop a classifier to distinguish between cases and
controls. How should the cross-validation error
rate be calculated? Consider the following two ap-
proaches:

Approach 1 (incorrect): identify the 10% of fea-
tures that differ most between cases and controls,
and use only those features henceforth. Perform
cross-validation by repeatedly splitting the sam-
ples into training and test sets, fitting a logistic re-
gression model on the training set (using just the
10% of features previously identified), and then
evaluating the model’s performance on the test set.

Approach 2 (correct): perform cross-validation
by repeatedly splitting the samples into a training
set and a test set. Within each training set, identify
the 10% of features that differ most between cases
and controls, and use those features to fit a logistic
regression model. Then, evaluate the performance
of this model on the test set.

The difference may seem subtle, but it is in fact
crucial. Approach 1 will yield a woeful underesti-
mate of the true error rate, because the 10% of fea-
tures that differ most between cases and controls
were identified using all of the samples, including
those in the test set, rather than simply the training
samples. In effect, if Approach 1 for cross-valida-
tion is taken, then perfect error rates can potential-
ly be obtained even on datasets in which the “case”
and “control” labels were assigned randomly! On
the other hand, in Approach 2, feature selection is

performed using the training set within each cross-
validation fold, and so the resulting cross-valida-
tion error rate is valid. Unfortunately, the differ-
ence between Approaches 1 and 2 is often over-
looked, and the literature is rife with papers in
which extraordinarily low, but grossly inaccurate,
cross-validation error rates are reported because
some variant of Approach 1 has been performed.
The key principle is that in computing cross-vali-
dation error rates, within each cross-validation fold
only training observations can be used in any as-
pect of feature selection or model development.
Deviations from this principle, even if seemingly
innocuous, may result in dramatic underestimates
of error.

At the end of the feature selection and model
building process, the molecular signature must be
locked down – i.e. the precise computational proce-
dure used to convert a new omics sample into a
prediction of the clinical phenotype must be com-
pletely specified. Only then can the molecular sig-
nature be fairly evaluated on independent datasets,
as described next.

2.4 Stage 4: Evaluation on independent datasets

Once a promising molecular signature has been
identified, its performance needs to be evaluated
on completely independent patient samples. Un-
like cross-validation, wherein the test set is drawn
from the same population as that of the training set,
an independent sample is one that is completely
separate from the set of samples used for feature
selection and model building. In particular, this
means that the test set is not simply a random split
from a large dataset (even if sequestered and not
used in any training sets). If a molecular signature
performs well on a truly independent set of sam-
ples, then this provides evidence that it will likely
generalize to future patient samples. However, the
amount of evidence for a molecular signature’s
performance based on independent data depends
critically upon specific characteristics of the inde-
pendent dataset.

Lower level of evidence. Good performance on an
independent dataset collected at the same institution
using carefully controlled protocols. This provides
evidence that the molecular signature works well
in this particular setting, with these protocols, with
the patient profile at this institution, etc. However,
it may not hold up elsewhere. At the very least, its
ability to work in other settings has not been
demonstrated.

Higher level of evidence. Good performance on
multiple independent datasets collected at multiple
institutions. Success in this setting is the best evi-
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dence that a molecular signature will perform well
on future patient samples. This indicates that the
signature is robust to the kinds of things that might
change between locations: namely, aspects of the
biology of the populations that tend to go to partic-
ular hospital, sample preparation and measure-
ment techniques used, and so forth.

Evaluation of a molecular signature on fully in-
dependent patient samples is the gold standard for
assessing its performance. Unfortunately, it often is
the case that molecular signatures that seem prom-
ising in the feature selection and model building
stage (i.e. that have very low cross-validation error
rates) exhibit poor performance on independent
data.

3  Disclosing all experimental protocols,
datasets, and source code

A key principle of science is that other researchers
must be able to reproduce the results. In order for
a molecular signature to be reproduced, three es-
sential pieces of information are required: (i) the
experimental and analytical protocols; (ii) the raw
data; and (iii) the source code used to develop the
signature. We discuss each of these points in turn.

In order for a molecular signature to be fully un-
derstood by other researchers, detailed informa-
tion on the experimental protocol, including the
patient selection criteria and experimental and an-
alytic procedures, must be made available. Without
this information, one cannot determine the scien-
tific or clinical contexts in which the molecular sig-
nature is intended, appropriate, or useful.

Second, in order for a molecular signature to be
reproduced, the omics data used in its develop-
ment, as well as the associated metadata and clini-
cal data, must be made available. If the data are not
released, then it simply is not possible for other re-
search groups to determine whether the molecular
signature is valid.

Finally, even if the data are made available, oth-
er research groups will not be able re-derive the
molecular signature based on the same data used
for its discovery, and confirm that the signature
does truly work well on independent data, unless
all data processing techniques and all analytical
and computational methods are made available.
Unfortunately, in practice this information often is
not provided in sufficient detail. For instance, there
is a tendency for authors to publish a list of the fea-
tures (e.g. genes) involved in the signature, without
the detailed mathematical formulas required to un-
derstand precisely how the omics measurements
are used in order to predict the clinical phenotype

of interest. This is a major obstacle to progress in
the field, as other research groups cannot repro-
duce or validate – much less build upon – research
that is not sufficiently reported. In order to address
this problem, the source code used to develop the
molecular signature should be released. Ideally,
this code should encompass all aspects of signature
development, from processing and normalization
of the raw omics data, to feature selection to model
building to evaluation on an independent dataset.

4  Using multiple datasets for molecular
signature discovery

Thus far, we have described the development of a
molecular signature on the basis of a single dataset,
followed by evaluation of the signature on one or
more independent datasets. However, in principle,
multiple datasets can be used for molecular signa-
ture discovery. In fact, this can often lead to more
accurate and more broadly applicable molecular
signatures.

When a molecular signature is developed on the
basis of a single dataset and then tested on an in-
dependent dataset, its performance tends to de-
grade severely in the independent dataset relative
to its cross-validation error rate in the dataset used
for development. This drop in performance can
stem from heterogeneity between studies due to
underlying variance in the biology of the patients
studied, as well as from technical variations in
measurement, normalization, and analysis. That is,
a signature developed using a single dataset may
overfit certain aspects of the dataset that are not of
primary scientific interest, leading to poor per-
formance on independent data. This problem can
be partially overcome by developing the signature
on the basis of multiple datasets, collected at dif-
ferent institutions and at different time points
[45–47]. (However, the primary clinical phenotype
of interest, such as tumor versus normal, must be
balanced between the datasets in order to avoid
confounding between the datasets and the clinical
phenotype.)

5  Using multiple data types for molecular
signature discovery

Given the complexity of biological systems in gen-
eral and pathological processes in particular, there
is an upper limit to how well a molecular signature
developed on the basis of a single data type (e.g.
genome-wide expression on DNA microarrays) can
predict disease phenotypes and clinical outcomes.
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Integrating multiple types of omics data may allow
for the development of increasingly accurate and
robust molecular signatures. For example, gene ex-
pression data can be combined with copy number
variation data or DNA sequence data. Successful
multi-scale integration of different types of biolog-
ical information is one of the current challenges in
systems biology [48, 49]. In Fig. 3, we provide brief
summaries of a few recently published studies
[48–55] in which multiple data types were used for
molecular signature discovery.

A number of methods to combine diverse types
of omics data across different measurement plat-
forms and laboratories have been proposed [48, 49,
56], in order to more accurately select clinically rel-
evant features or to develop better molecular sig-
natures. For example, English and Butte evaluated
data from 49 obesity-related studies that used dif-
ferent experiment types, including DNA microar-
rays, genome-wide association, proteomics, and
RNAi knockdowns [51]. The investigators found
that the biomolecules reported to be associated
with obesity in individual studies had little overlap
with previously known obesity-related genes. The
investigators then determined a gene to be obesity-
related if five or more studies reported the gene to
be obesity-related. Using this approach of feature
selection, they were able to identify a higher pro-
portion of known obesity related genes than from
any of the 49 individual studies, and also discov-
ered new genes for which there was compelling
support of association with obesity [51]. This
demonstrated that even straightforward integra-
tion of multiple omics data types can substantially
improve the feature selection process. In a study by

Lu et al. [52], the investigators integrated data types
in order to perform more effective feature selec-
tion: they identified 475 genes that were differen-
tially expressed between lung adenocarcinoma and
normal tissue, and that were also located in copy
number varying regions. This gene set was used to
create a predictive model for patient survival,
which was then shown to be accurate on three in-
dependent patient cohorts. Advances in integrating
diverse omics data types may lead to a reduction in
spurious signal caused by technical limitations of
individual platforms, and an increased ability to
identify molecular signatures associated with the
underlying mechanistic roles in disease pathogen-
esis.

6  A network-based approach to molecular
signature discovery

The use of network-based approaches is a promis-
ing avenue for molecular signature discovery.
These networks represent a complex web of inter-
actions among diverse components in a cell, and
can be used to develop more reproducible and ac-
curate molecular signatures by exploiting the un-
derlying biology of the system. Network-based ap-
proaches extend beyond simple integration of dif-
ferent omics data types, and can involve evaluating
complex interactions that can vary due to disease
or other perturbations.

Most statistical methods for feature selection
and model building do not take a network-based
approach: they implicitly assume that the features
are independent, or that they are only weakly de-
pendent, though this has begun to change in recent
years [57–59]. However, in most biological contexts,
the assumption of independent features is certain-
ly violated. For instance, genes regulated by the
same set of transcription factors, or genes encoding
enzymes for the same metabolic pathway, will tend
to show correlated expression. Therefore, rather
than treating each feature in an omics dataset indi-
vidually, it may be preferable to map from the high-
dimensional molecular space to a much smaller
number of (possibly curated) functional biological
networks. Mapping features into functional sets re-
duces dimensionality, increases the statistical pow-
er to detect small but coordinated disease pertur-
bations, and improves the interpretability of the re-
sulting molecular signatures.

In order to identify features that are associated
with a clinical phenotype of interest, features can
be mapped onto a priori defined and manually cu-
rated modules or “pathways”. Gene Set Enrichment
Analysis (GSEA) [60] is a very widely used ap-

Figure 3. Combining different types of data across different measurement
platforms can lead to more accurate molecular signatures for characteriz-
ing or predicting clinical phenotypes. Rows and columns of the checkered
box correspond to data types and published studies, respectively. The col-
lection of gray boxes in each column represents the combination of data
types used in a particular study. The arrows designate the objective of
each study.
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proach to investigate pathway-level changes in
gene expression data, and more recent proposals
have also been made. One recently developed ap-
proach to identifying pathway-based molecular
signatures for phenotype classification is the Dif-
ferential Rank Conservation (DIRAC) method [61].
Unlike GSEA or other enrichment methods that
usually return p-values for gene set enrichment,
DIRAC builds a network-based molecular signa-
ture that identifies robust differences in pathway
activity between two disease states.

However, one major caveat to such pathway-
based approaches is that a priori defined pathways
do not fully represent the complexity of the under-
lying biology, and may not be accurate within the
particular physiological context. To overcome this
limitation, molecular features can be mapped into
more comprehensive interaction networks, such as
protein-protein or protein-DNA interaction net-
works, which can be much more comprehensive
and unbiased, as well as disease and context spe-
cific. Specifically, biological networks can be used
as a structured framework to integrate omics data
for the purpose of molecular signature develop-
ment. For example, Chuang et al. [53] integrated
microarray gene expression data with protein–pro-
tein interaction networks to identify network-
based prognostic biomarkers for breast cancer
metastasis, and generated novel hypotheses re-
garding cancer progression. The average sub-net-
work activity, defined in this study as a function of
expression levels of genes that compose the sub-
network, was used to predict clinical outcome of
breast cancer specimens. The network-based
markers displayed better predictive accuracy on an
independent dataset than markers selected with-
out network information. In another study, Nibbe et
al. [62] used proteins that were differentially ex-
pressed between normal and cancer colon tissue
from proteomics experiments as seeds to identify
sub-networks enriched in these differentially ex-
pressed proteins from the human protein interac-
tion network. Then, the mRNA expression profiles
of the components of these sub-networks were
used as input features to a support vector machine
in order to classify colorectal cancer and normal
samples. The prevalence of these networks being
perturbed in colon cancer was demonstrated by
these features alone being sufficient to achieve 90%
classification accuracy in independent validations.

In the particular case of prion disease, a set of
neurodegenerative disorders caused by the mis-
folding of prion proteins in the brain, Hwang et al.
[55] analyzed the dynamic network perturbations
during the onset and progression of disease. In this
study, infectious prion proteins were delivered into

the brains of living mice, and were harbored with-
in the tissue for different time-spans of disease
progression. At the end of each time-point, gene
expression measurements were taken from har-
vested diseased brain tissue, and subsequently
mapped onto physical protein interaction networks
for comparative analysis. Intriguingly, this study
showed reproducible perturbations that occurred
in core networks that could be monitored prior to
the manifestation of disease symptoms.

In the work summarized above, thousands of
feature measurements for static biological states
were used to characterize molecular networks.
However, a more complete understanding of mo-
lecular networks requires perturbing the biological
system under study in order to understand how the
network components, as well as the clinical pheno-
type of interest, are affected by those perturba-
tions. For example, stimulating one or more signal-
ing pathways using in vitro cytokine assays can
lead to different immunologic and metabolic re-
sponses in different diagnostic phenotypes [63],
such as different disease progression levels. In a
study by Hale et al. [64], the investigators used a
cocktail of cytokines and mitogens to stimulate
whole blood cells from patients with different
stages of systemic lupus erythematosus, an autoim-
mune disease. They then used flow cytometry to
measure multiple signaling responses at the sin-
gle-cell level, generating a highly multiplexed view
of intracellular signaling network activity during
disease progression. They found that robust
changes in signaling protein interactions in re-
sponse to stimuli were good indicators of disease
stage. Therefore, evaluating cell response after an
activating stimulus may serve as a compelling ap-
proach for incorporating perturbations into patient
classification going forward.

7  Are my features truly correct?

Given that two molecular signatures seem to per-
form well on independent datasets, how can we de-
cide which is better? If all else is equal, we should
prefer the molecular signature for which there is a
plausible biological mechanism, as such a signa-
ture is much more likely to hold up in future patient
samples as opposed to having overfit the data used
in its development. Ideally, if sufficient numbers of
samples were available, then a molecular signa-
ture’s performance on one or many independent
datasets would be the preferred way of assessing its
suitability, regardless of whether or not a mecha-
nism for its performance is known. But in reality,
sample sizes are limited, and thus a molecular sig-
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nature for which there is a plausible biological
mechanism tends to be more convincing than one
for which no such mechanism is known. Such bio-
logically motivated signatures can also hold great
promise to be developed as companion diagnostics
for therapies, which may be motivated by the un-
derlying mechanism. Thus, while lack of a known
biological mechanism underlying a molecular sig-
nature certainly does not preclude its use provided
that it works well in practice on independent sam-
ples, mechanistic information can increase our
confidence that the signature will hold up to fur-
ther scrutiny.

8  Pervasive bias in reported results

Another major challenge in omics-based molecular
signature discovery is the prevalence of overly op-
timistic accuracies in reported results. This prob-
lem is not unique to omics research but is prob-
lematic in many data-driven research settings [65].
Such bias can occur for a number of reasons: (i) re-
search groups tend to report only the best results

among many attempted approaches; and (ii) only
positive results are published. Consequently,
across the literature there is an overly optimistic
view of how well molecular signatures perform.
This pervasive bias is not necessarily the result of
faulty science in any particular lab, but rather is a
consequence of the way in which science is con-
ducted and reported. This is responsible, in part, for
the fact that many reported molecular signatures
have not held up in follow-up studies.

9  Conclusions

In this paper, we have discussed some of the key
considerations and challenges facing the discovery
of omics-based molecular signatures of clinical
phenotypes, such as good experimental design,
careful data procurement, avoidance of over-fit-
ting, validation on independent datasets, and inte-
gration of multiple datasets and data types. For
guidance to the reader, Box 1 summarizes the key
steps in molecular signature discovery that were
discussed throughout this paper. We hope that this

Step 1. Establishing the scientific and clinical context
• Clearly define clinical phenotypes of interest
• Ensure that, if discovered, a molecular signature has the potential to

be useful in the clinic
• Only use types of omics data that are suitable for addressing the

task of interest
• Determine acceptable sensitivity and specificity

Step 2. Collecting omics data for molecular signature discovery
When collecting new experimental data, ensure that:
• sufficient sample size can be obtained
• all aspects of the experimental and analytical procedures are care -

fully controlled to avoid batch effects
• no confounding occurs between datasets of different phenotypes

from factors unrelated to phenotype of interest

When using existing data, ensure that:
• sufficient sample size can be obtained
• sufficient patient information is available for omics samples
• proper normalization is implemented to make samples comparable

across different datasets

Consider integrating multiple datasets and data types:
• approach with caution
• can lead to molecular signatures that are more accurate and robust

Step 3. Developing molecular signatures through feature selection 
and model building
• Perform feature selection in either a supervised or an unsupervised

manner
• Choose models that are well-suited for the context of the study and

nature of phenotypes of interest

• Consider mapping features onto biological pathways or more
 comprehensive interaction networks

• Consider choosing models that show clear insight into plausible
 biological mechanisms

• Ensure that all cross-validation steps are performed correctly
• Approach favorable cross-validation results with caution

Step 4. Evaluating performance on independent datasets
• Test promising molecular signatures on independent datasets
• Independent test sets are not created equal. The strength of evi-

dence from an independent test is based on the characteristics of
the independent dataset used (i.e. evaluating on data from multiple,
different sites is a more stringent test than evaluating on data from
only the same institution)

Step 5. Disclosing information on all aspect of study to enhance
 reproducibility
• Encourage the evaluation of the molecular signature by independent

research groups
• Disclose: information on the clinical context in which molecular sig-

nature is intended, patient selection criteria, clinical data (i.e. patient
information), raw data, meta-data (if applicable), data processing and
normalization methods, feature selection and model building meth-
ods, experimental protocols, records on study run-dates, lab techni-
cians, reagent sources, etc., analytical methods, and source code

Step 6. Reporting all performance results to mitigate bias in public
 literature
• Encourage the objective assessment of molecular signatures by

 reporting both positive and negative outcomes (i.e. correct and
 incorrect predictions, respectively)

• Make data publicly available after publication

Box 1. Steps for the development of molecular signatures on the basis of omics data.
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methodological checklist will aid investigators in-
terested in identifying omics-based molecular sig-
natures.

Since the emergence of the field of omics-based
molecular signature discovery, researchers have
developed an improved understanding of how to
discover (and how not to discover!) such signa-
tures. The field is still young, and as time passes,
best practices in this area will continue to evolve.
Currently, the number of validated and useful mo-
lecular signatures is disappointingly (but not sur-
prisingly) small relative to the number of signa-
tures that have been reported in the literature.
However, we remain optimistic that as experimen-
tal and analytical practices improve, as sample
sizes increase, and as techniques for data type in-
tegration continue to develop, omics-based molec-
ular signatures will indeed transform the practice
of medicine.
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