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Abstract: Location-aware services are one of the key elements of modern intelligent applications.
Numerous real-world applications such as factory automation, indoor delivery, and even search
and rescue scenarios require autonomous robots to have the ability to navigate in an unknown
environment and reach mobile targets with minimal or no prior infrastructure deployment.
This research investigates and proposes a novel approach of dynamic target localisation using
a single RF emitter, which will be used as the basis of allowing autonomous robots to navigate
towards and reach a target. Through the use of multiple directional antennae, Received Signal
Strength (RSS) is compared to determine the most probable direction of the targeted emitter, which
is combined with the distance estimates to improve the localisation performance. The accuracy of
the position estimate is further improved using a particle filter to mitigate the fluctuating nature of
real-time RSS data. Based on the direction information, a motion control algorithm is proposed, using
Simultaneous Localisation and Mapping (SLAM) and A* path planning to enable navigation through
unknown complex environments. A number of navigation scenarios were developed in the context
of factory automation applications to demonstrate and evaluate the functionality and performance of
the proposed system.

Keywords: autonomous service robots; industrial automation; indoor localisation; robot localisation;
automated mapping

1. Introduction

As the prevalence of autonomous vehicles and robots (collectively referred to as robots in this
paper) increases, the challenge of navigation in new and unknown environments (both indoor and
outdoor) is a critical barrier to widespread adoption of these systems [1,2]. There are two key
components that allow a robot to know where it should go—some form of mapping is required
to know the positions of boundaries and obstacles to be avoided, and localisation is needed to
allow the robot to know where it is relative to those movement constraints and how to best reach
the target location. Simultaneous Localisation and Mapping (SLAM) techniques enable robots to
achieve both of these tasks at the same time while operating within the environment [3]. Given a
distant objective or goal location, using SLAM enables path planning and overall navigation of the
system by dynamically improving the quality of the path over time to account for obstacles and
other constraints [4,5]. The majority of existing indoor navigation systems [6,7] rely on vision-based
approaches, which demand high computational power, costly equipment, and a stable environment
without significant environmental changes over time. In cases where these obstacles cannot be visually
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seen using cameras or human vision due to a lack of line-of-sight, methods involving wireless signals
need to be investigated instead, such as the use of the radio spectrum [8], sonar [9], or fixed points as
virtual landmarks. However, this generally means that we need to deploy significant infrastructure to
support these methods, such as multiple powered beacons with known positions. This is sometimes
not possible in real-world applications, for instance, in factory or warehouse automation where raw
materials or products may be placed at random locations and need to be delivered to other locations
according to dynamic production schedules. In these ad-hoc cases, we still need to allow autonomous
robots to perform some level of localisation in order to achieve tasks that otherwise may be challenging
or time-consuming for humans, such as locating and fetching materials from a multi-storey warehouse
or removing newly discovered hazardous waste from a construction site. Global Positioning Systems
(GPS) may not always be available for localisation, particularly in an indoor context where the accuracy
of GPS is much lower than in outdoor scenarios, or in a natural or human-caused disaster where
satellite communications may be disrupted.

In this work, we propose a new approach of using a single emitter as a reference position in
a global map, building on our previous work [10]. Such an emitter could be battery-powered and
attached to a target object, giving an autonomous robot a target destination from its current location.
In comparison to traditional RF-based approaches, we process the broadcasted messages to extract
direction estimates relative to the robot’s current position in addition to the distance estimates. This is
achieved primarily through a novel method that utilises multiple directional antennae to determine
the direction of a single emitter beacon, relative to the robot, based on the Received Signal Strength
(RSS). The direction estimates compensate for the inaccuracy of traditional RSS-based approaches that
rely only on distance estimates. When combined with SLAM and our motion control algorithm, this
enables a robot to manoeuvre towards that target without prior knowledge of the environment or
any additional infrastructure deployment. Importantly, the emitter may not be in a fixed position,
such as in a factory automation [11] or indoor delivery [12–15] context where targets may be mobile.
We use a Pioneer 3-DX mobile robot [16] as a testbench for our method, with the goal of enabling the
Pioneer robot to perform navigation by mapping a cluttered or unknown environment while localising
itself relative to a single emitter of non-fixed position. Additionally, in order to enable navigation in a
complex environment, there are situations where a robot needs to follow a path that initially moves
away from the emitter to avoid large obstacles. This is achieved by integrating a heuristic A* path
planning algorithm with our motion planning algorithm and SLAM to construct ideal paths to the
target, while avoiding deadlock scenarios where the robot is trapped in a loop or stops navigation
early before reaching the target destination.

The rest of the paper is organised as follows: Section 2 describes a target motivating scenario in
the context of industrial automation in our work. Section 3 describes the proposed architecture of our
navigation system and presents the Pioneer platform used for this research in more detail. Section 4
discusses works related to existing RF-based localisation, explains our unique approach that utilises a
single emitter, and explores the use of filtering of the raw radio input data to improve target localisation.
Section 5 covers our motion control algorithm that enables robots to manoeuvre without hitting obstacles.
Section 6 covers the use of mapping and path planning for improved navigation in complex environments,
and Section 7 presents the experiments and results along with full descriptions of the test cases and
experimental settings. Section 8 concludes the paper and suggests future work for this research.

2. Motivating Scenario: Autonomous Factory Service Robot

Our proposed emitter-based localisation and navigation approach can be applied to many
real-world applications such as indoor delivery and industrial automation. In this research, we
target a factory automation application as our motivating scenario. The main feature of this application
is the requirement to navigate within a dynamically changing environment with minimal infrastructure
deployment due to physical and/or financial reasons. Figure 1 shows a typical factory setting where
items such as raw materials and final products need to be fetched from or delivered to different
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locations in a dynamic setting, depending on production schedules and logistics flow. In the vision
of Industry 4.0 and the Industrial Internet of Things (IIoT), it is critical to be able to track the source
materials and final products through technologies such as active RFID. In this context, it is not
uncommon to assume that an RF emitter could be attached to a target object. Robots will need to have
the ability to map and manoeuvre in a complex environment with multiple mobile and non-mobile
obstacles. However, typically in a warehouse or production facility, the environment is structured in
such a way that robots only need to travel in straight lines with 90◦ turns. It is also likely that there
may be dead-ends in the environment, such as when rows of shelves are positioned against a wall.
This means that there are cases where a robot could be in close physical proximity to a target object,
but due to the presence of shelves or other obstacles, the robot cannot take a straight-line path and
must move between different corridors or lanes in order to reach the target. This is beyond the ability
of basic motion planning and manoeuvring, requiring long-term path planning. These requirements
will be used to guide the design of our navigation system as well as the set of tests and experiments
that are conducted for evaluating the system performance in Section 7.
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Figure 1. A diagram showing a factory automation application where raw materials and products
need to be fetched from and delivered to different locations according to production schedules.

3. Autonomous Robot System Design

Navigation for mobile platforms has been investigated extensively in the existing literature.
In [17], a typical approach of combining computer vision, infrared range finders, and dynamic path
planning is presented. In the context of industrial automation, [11] describes the use of 3D laser
range finders, inertial measurement units (IMU), and a point cloud technique to dynamically map the
environment and perform navigation. In [5], using laser range finders to detect artificial landmarks
for localisation is investigated. Research such as [18] looks specifically at advancing long-term path
planning in similar contexts.

In order to achieve robust and accurate navigation towards a target object, we need hardware to
support the goals of target localisation (identifying where the target is), robot localisation (identifying
where the robot itself is), and environmental sensing (identifying where obstacles are). With this
information, we are able to use software to generate a map of the environment, perform path planning,
and determine how to control the robot’s actuators through motion planning in order to move the robot
towards the target destination. The interaction between these different modules is shown in Figure 2a.
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In this paper, we will present two versions of this system. In the preliminary (basic) navigation
system, only the target localisation and motion planning modules are used, which are capable of
navigating towards the target in simple scenarios but can become trapped in complex environments.
In the full navigation system, all four modules are used so that the robot is capable of mapping the
environment, constructing a long-term path plan to reach the final target, and manoeuvering to avoid
obstacles in order to satisfy all requirements of the motivating scenario. The performance of these two
navigation systems will be compared in Section 7.
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Figure 2. (a) System block diagram of the autonomous robot and (b) Prototype implementation on a
Pioneer 3-DX research robot (© 2017 IEEE from [10]).

In terms of sensing hardware, our system primarily uses a single wireless emitter (on the target)
and four receivers (on the mobile robot) to perform the key task of target localisation, and some
environmental sensors (i.e., a laser range finder and contact sensors) are used for basic obstacle
avoidance. A simple method of obstacle detection is available through contact or touch sensors: when
the robot comes into contact with an obstacle, it is detected and the system can react accordingly
(generally by reversing and marking the obstacle in a map). However, this approach requires the
robot to move slowly so that it has time to stop if it encounters an obstacle, and is still risky as a
failed detection can lead to the robot colliding with an obstacle. Generally, range finding is more
appropriate as it is a passive form of sensing that does not require physical interaction with the obstacle.
By using some form of wireless signal, the distance between the robot and an obstacle can be detected
by processing the signal in some way. There are a variety of methods that determine the distance to
an obstacle [3,4]. The use of image processing with a camera allows for detailed information to be
provided in a 3D space. Stereo vision can be used to find the depth of an area by comparing images
of the environment from multiple points of view. In [19], a single camera is used in conjunction with
odometry information from the mobile platform to compute depth information. However, vision-based
methods are computationally expensive and may not be suited for embedded systems with limited
computing resources available [4]. Alternative methods of range finding include sonar and laser
range finding, which calculate the distance to an object based on the time of flight for an emitted
signal to be reflected by the object and return to the emitter. Laser range finding provides higher
resolution and accuracy than sonar for a greater initial cost of purchase. LIDAR systems can produce
even higher resolution data [20], but these sensors generally attract a high cost, both computationally
and financially [21]. In our system, we primarily use a laser range finder (Hokuyo, Osaka, Japan
URG-04LX-UG01) for obstacle detection, with contact/touch sensors as a failsafe in the event that the
laser range finder fails.



Sensors 2018, 18, 585 5 of 22

Since we assume that GPS is unavailable in the targeted indoor factory automation context, there
is no global object tracking system available to keep track of the position of the robot, so we must
use another form of robot localisation [2]. As the Pioneer robot used in our research has wheel-based
locomotion, we can use wheel encoders to provide odometry data for this purpose. Finally, we require
some form of actuation so that we can move the wheels in a way that allows the robot to make progress
towards the target destination. This is provided by two electric motors inside the robot, driving the
wheels on each side.

This system has been implemented on a Pioneer 3-DX research robot, which is shown in Figure 2b
with four radio receivers and parabolic reflectors. The robot has an HP Mini 110-3627TU N570 netbook
with a 1.66 GHz processor and 1 GB of RAM on board with Ubuntu 14.04.1 LTS, which runs the
software for this robot. Robot Operating System (ROS) [22] was used to interface with the robot itself,
which runs as a series of nodes that communicate using messages. The robot itself and each sensor
were abstracted into ROS nodes, and each of the four software modules exists as an individual node to
allow for greater modularity and reduced coupling.

4. RF-Based Target Localisation

4.1. Related Works

In order to effectively determine the location of the RF emitter as a navigation goal, a method of
RF ranging was chosen. Traditionally, RF-based ranging includes Received Signal Strength (RSS), Time
Of Arrival (TOA), Time Difference Of Arrival (TDOA), Angle of Arrival (AOA) and Phase Difference
Of Arrival (PDOA) [23,24]. Each of these has its own advantages and disadvantages. RSS works by
using the amount of power lost over a distance by an RF signal. It has the advantage of giving an
estimate in almost all cases and being easy to implement, but it is known to fluctuate and is heavily
affected by multipath effects and interference [25,26]. Time of Arrival is implemented by measuring the
time taken for a signal to propagate between two nodes. This is typically more accurate than RSS when
the two nodes have a clear line-of-sight, but accuracy decreases significantly without line of sight [27].
TDOA compares the time of arrival between a node with a known location and the node to be localised.
This is accurate if well calibrated, but requires a sufficiently large distance between the two nodes
for the difference in arrival time to be perceptible for fast moving signals [9]. The phase difference
of arrival measures the phase at the node to be ranged and a known node, and uses the difference
between these two to calculate the distance [23]. In this work, we use AOA, which is measured by
using one of these methods of ranging over an array of antennae, and then apply basic trigonometry
to work out the angle of origin [24]. The number of antennae needed can be reduced through the
use of directional antennae. When these antennae are oriented in different directions, the difference
in RSS between them can then be used to find the AOA. Using directional antennae is only needed
when using RSS to determine range, as the other ranging methods are not affected by the type of
antenna [26]. Summaries of various localisation technologies with their measurement techniques and
accuracy are available in [23,28].

There are a number of existing studies that use RF media for localisation. One example provided
in [29] uses the RSS of Wi-Fi signals to track a moving object by detecting changes in the signal strength.
In [30], three systems that use Radio Frequency Identification (RFID) tags for 3D real-time localisation
are presented. In [8], a pseudo-Doppler method is used to locate RF emitters using a sensor platform
that detects the line of bearing (LOB) to the emitter. Rapid switching between multiple antennae is
used to find the phase difference which is then converted into a directional angle. By using multiple
autonomous platforms, they can communicate and send information to each other in order to optimise
their paths and determine the location of the emitter. This project aims to achieve a similar goal;
however, multiple robots can be very costly and unsuitable for some applications. Therefore, we aim
to achieve the goal of determining the angle to the emitter using a single robot by measuring the RSS in
multiple directions and using the strongest, and therefore most likely, signal as the direction of origin.
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4.2. Design Concept and Methodology

A common issue with RSS-based signal analysis is the potential for multipath interference [25,26],
i.e., interference caused by reflections of the transmitted signal resulting in ghosting and fading of
the signal. Reflections additively interfere with the underlying signal, which can be constructive
or destructive depending on the phase of the signals, artificially increasing or decreasing the signal
strength away from the true value. This makes it challenging to determine the true distance to an
emitter under environments where there is no line-of-sight, or where there are many obstacles or
reflective surfaces that cause reflections, as this affects the signal strength.

In our approach, we focus on estimating the direction of the emitter relative to the receiver to
compensate for inaccurate distance estimations from an RSS-based approach. In [31], directional
antennae are used to determine the angle of arrival based on the RSS of a signal. We form a
rudimentary directional antenna by using a parabolic reflector dish with an omnidirectional antenna.
The reflector dish concentrates the signal and focuses the gain in a single direction towards the
receiver. Parabolic gain, G, is proportional to the ratio of the area, A, of the dish over the square of the
wavelength, λ, following the Equation:

G = [4πA/(λ2)]eA (1)

where eA is a dimensionless, catch-all parameter between 0 and 1 called the aperture efficiency.
This parameter accounts for any and all imperfections in the aperture including the curvature, spill-over
from an incomplete dish, and blockage by the antenna itself. Typical values for eA are between 0.55
and 0.70 [32]. From Equation (1) it can be seen that decreasing the wavelength by a factor of 2 requires
an increase of 4 in area to achieve the same directional gain. The RF sensor nodes used in this project
have a radio frequency of 915 MHz and a wavelength of 32.76 cm.

In this research, the longer transmission distances achieved from a higher gain are less important
than resultant directionality from the beam width of the radiation pattern. In particular, the half-power
beam width (HPBW, θ), i.e., the angle between the points of the antenna radiation pattern at which
power drops to one half (−3 dB) of its maximum value, is very important and is given for a circular
dish with diameter d by

θ = kλ/d (2)

where the k factor for a typical parabolic antenna is approximately 70, varying slightly depending on
the shape of the reflector and the feed pattern.

The beam width property of parabolic antennae leads to different readings in multiple directions
(i.e., antennae have better directionality), which allows us to better determine the angle of arrival of a
signal by comparing these values [31]. Since the gain and beam width are inversely related, we can
increase the gain to decrease the beam width and improve overall system performance.

Instead of using a single high-cost, high-resolution sensor (i.e., an RF antennae offering RSS data
stream in our case), we use a sensor array of multiple cheaper sensors to emulate the same behaviour.
Following the work of Smith et al. [33], we use multiple, overlapping sensors as an effective means of
obtaining accurate results. By using multiple antennae, this also means that we need multiple parabolic
reflectors. This creates a limitation in that we are constrained by the amount of space available on the
prototyping robot platform since each reflector requires a large amount of space, therefore limiting the
magnitude of directional gain that can be achieved.

By using paired antennae, we are able to perform simultaneous readings with 180◦ offsets,
providing two opposing points of reference. This is in contrast to using a single sensor, which could
also provide multiple points of reference, but with slight timing differences limited by mechanical
constraints. Our method has the additional benefit of improving resilience to noise and sudden changes
in the environment that can cause erroneous readings to occur when there are time offsets between
readings. Using paired antennae in this way avoids the need to determine the radiation pattern of the
antenna, as we can use the instantaneous values for mapping the RSS into a probabilistic direction.
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To provide sufficient resolution and directionality in a two-dimensional planar coordinate space, a
minimum of two pairs should be used at a 90◦ offset between each pair, meaning that there should be
a total of four antennae that are perpendicular to each other.

Based on this design concept, the proposed angle-based differential RSS localisation approach
is introduced here. Figure 3a illustrates how the two pairs of antennae with their reflectors are
arranged in the x and y axes for two dimensional localisation. Referring to Figure 3a, y1, y2, x1 and
x2 represent the individual RSS values received from the emitter, and the black arrow indicates the
current heading direction of the robot. After calculating the differential RSS value for each axis (i.e.,
x and y axis), we follow the traditional approach of mapping RSS values to distance. Parameters A1
and A2 are introduced after calibrating the differential RSS with distance mapping. The relative
angle, θ, and distance, r, between the emitter and the robot are calculated using Equations (3) and
(4), and illustrated in Figure 3b. Referring to Figure 4, the angle-based differential RSS localisation is
designed to provide reasonably accurate direction and distance estimates. The estimates are further
enhanced using a particle filter in order to reduce the inherent fluctuations of RSS-based estimation.
The differential localisation method is validated in Section 4.3, and the estimation enhancement is
explained in Section 4.4.

θ = arctan
(
(x1 − x2)

(y1 − y2)

)
(3)

r = √
(
(x1 − x2)

2 + (y1 − y2)
2
)

(4)
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Figure 3. (a) Top view illustration of the physical arrangement of two pairs of antennae with their
reflectors aligned along x and y axes, and (b) calculation of the estimated relative direction θ and
distance r based on differential RSS.

In our current prototype, we used off-the-shelf components to create a simple, low-cost directional
antenna using a 915 MHz omnidirectional antenna and a custom-made cylindrical parabolic reflector
dish. Using an emitter at a fixed location, we can verify the directionality of the antenna by running
an experiment that measures the RSS and compares it to known direction values. We used an STM32
ultra-low-power ARM-based processor with a low-power Atmel AT86RF212B transceiver to process
the signals from the antenna and provide the necessary RSS values [34].
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Figure 4. Angle-based differential RSS localisation algorithm.

4.3. Angle-Based Differential RSS Localisation Validation

A test prototype, shown in Figure 5, was constructed for the experiment. The prototype was able
to be rotated through a full 360◦ of motion, with points marked at 30◦ increments for testing RSS in
different directions. Mounting points were provided for the reflector dish and receiver such that the
receiver was both in the focal point of the dish and the centre of rotation. The parabolic reflector dish
was constructed from an aluminium sheet of 0.5 mm width, and aluminium foil was added to some
tests to provide shielding on the reverse side. Tests were carried out for a reflector of length 300 mm
and height 200 mm, shaped to radii of 80 mm, 130 mm, and 150 mm. Additional tests were also
conducted without a reflector in order to compare the improvement in directionality against a control.
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The transmitter (i.e., the emitter) was positioned in a fixed location relative to the receiver.
This allowed the test prototype to be rotated while measurements were taken and values recorded.
A number of tests were performed, varying the reflector radius as well as the positions of both receiver
and transmitter. For each test, the RSS results were tabulated and graphed against the angle. In addition
to the monopole antenna shown in Figure 6, tests were also carried out with a Splatch ISM antenna to
demonstrate the feasibility and effectiveness of this method.Sensors 2018, 18, x FOR PEER REVIEW  9 of 22 
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Figure 6. Comparative analysis of the Received Signal Strength (RSS) for an antenna with and without
a reflector. The RSS (normalised as a ratio of the mean value) shows improved directionality, with the
strongest RSS in the direction of the true angle when using a parabolic reflector.

Our test results indicate that adding a parabolic reflector improved the directionality of the
antenna, as can be seen in Figure 6, which illustrates an example case. As expected from the supporting
theory, the reflector with the largest aperture size provides better performance and was able to achieve
an error of ±15 degrees. However, this error is also due to the fact that the step size of the angle
increments was selected to be 30 degrees, so this is essentially the minimum precision.

Once these tests were completed, a second node was added for the purpose of testing two
paired receivers in order to measure the difference in signal strength. Testing of the paired receivers
included trials with no reflectors and tests where each antenna had a reflector of 130 mm radius
similar to the above. By using paired receivers, this test was more similar to the intended use of
the antennae. When reflectors were used, the absolute differences at opposing orientations (i.e.,
the difference between the two receivers aligned approximately with the transmitter) indicated a
significant difference in power received. This difference could then be used to isolate the direction of
origin of a signal, and thus the direction of the target emitter.

Using the RSS signal, we are also able to derive an approximate measure of distance to the target
emitter. However, this is very unreliable due to the presence of noise and multipath effects, so we only
use this for the purposes of path planning for setting a target destination. In the case where no path
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planning is used, the robot will simply navigate in the target direction, until the distance is sufficiently
and reliably small to give us confidence that the robot has arrived at the destination.

4.4. Enhancing Angle and Distance Estimation

The main shortcoming of using a Received Signal Strength (RSS)-based approach is that RSS is
very susceptible to multipath effects that can cause highly fluctuating and noisy readings. The situation
is further exacerbated when the source and/or emitter are moving. Therefore, we cannot use the
raw instantaneous RSS values and should filter out as much noise as possible in order to maintain a
reasonable level of accuracy while achieving real-time processing. Since we have a mobile platform,
we can take advantage of the historical values to process data points collected at different positions,
minimising the effect of localised noise and other variations in RSS. By combining the information
collected at different positions, the accuracy can be improved by attempting to isolate the underlying
true signal which should be consistent at different positions. This also reduces the likelihood of local
optima causing the system to move in the wrong direction.

There are multiple possible methods of filtering the signal for estimating the true position of the
emitter. The most basic method would be simple averaging; however, this does not take the movement
of the robot into account, so it would be less accurate [35]. Due to the nature of RSS, uncertainty will be
inherently high, so we have used a Bayesian approach. One of the most common Bayesian approaches
for localisation is the Kalman filter and its variations [36]. A Kalman filter makes predictions about
a number of possible future states based on the current state, then updates the probabilities of these
predictions based on the sensor readings at that future state [37]. An alternative to a Kalman filter is a
particle filter [36]. When used in localisation, a particle filter simulates a number of possible points in
the environment, each with a position and velocity. Each particle is weighted based on the probability
that it is the true point. Low probability particles are removed, and the remaining particles should
converge on the true point. Both the Kalman filter and particle filter determine the probability of each
possible state, given the sensor readings based on Bayes’ theorem [38]:

P(A|B) = P(B|A)P(A)

P(B)
(5)

Bayes’ theorem states that the probability of A, given B, is equal to the probability of B, given A,
multiplied by the probability of A, normalised by the probability of B. In localisation, this is typically
used as the probability of being at position A, given sensor data B. For linear Gaussian applications,
the Kalman Filter produces an exact approximation of the true point. However, in non-Gaussian
applications the Kalman filter is much less accurate [36], so for this application, the particle filter
has been chosen. The particle filter steps are illustrated as the estimation enhancement part of the
algorithm in Figure 4.

At initialisation, N particles are generated based on the starting location of the robot in the global
frame (i.e., the coordinate system offered by the path planning module). The particle positions are
updated in each iteration according to a movement model with random acceleration [35] when there are
new RSS measurements. The weight (i.e., the likelihood) of each resultant particle is calculated based
on both distance and direction. The distance and direction of the emitter based on the instantaneous
RSS readings are calculated using Equations (3) and (4), and the difference between these values and
the position of the particle determines the weight elements using Equations (6) and (7), where r is the
distance from the robot and θ is the angle offset from the robot’s current heading.

wr = 1.0− tr × (|particler − sensorr| − cr) (6)

wθ = 1.0− tθ × (|particleθ − sensorθ | − cθ) (7)

where sensorr and sensorθ are estimates of the current relative distance (in meters) and relative angle (in
degrees) of the emitter based on the instantaneous RSS measurements, tr and tθ are tolerance levels
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(set to 0.1 and 0.01 respectively for our prototype), and cr and cθ are constant offsets (set to 1.0 and
15.0 respectively for our prototype). The tolerance level represents error in these estimates, adjusted
according to our expected accuracy of the measurements. In the proposed algorithm, we focused
on using direction estimation to compensate for erroneous distance estimation, and therefore tr is
10 times higher than the value of tθ , i.e., distance estimation has a higher error tolerance. The constant
offsets represent a minimum threshold that must be crossed before the measurements start to affect
the weights in order to avoid fluctuations caused by noise. In our case, the distance difference needs to
be larger than 1 m (i.e., cr = 1) and the angle difference needs to be larger than 15 degrees (i.e., cθ = 15)
to start influencing wr and wθ respectively. These weight elements are then clamped so that any value
larger than 1 is set to 1, and any value smaller than 0.1 is set to 0.1. The particle weight is calculated
by determining the square root of the product of the two weight elements as shown in Equation (8).
The square root was taken to ensure the scale of the weight distribution is between 0.1 and 1, avoiding
extremely small weights (i.e., less than 0.1) that may cause undesirably fast convergence towards
suboptimal estimates. An example of how combining the distance and direction weight distributions
leads to more accurate overall estimates is shown in Figure 7.

weight = √(wr × wθ) (8)

Sensors 2018, 18, x FOR PEER REVIEW  11 of 22 

 

 

Figure 7. Visualisation of the particle weight functions for a ground truth location of (4, 4), meaning 

a displacement of 4 m in the x and y directions from the receiver, indicated by the dark square. The 

receiver is in the centre of each image at (0, 0). The weight function based only on distance is shown 

in the left image, and the weight function based only on the angle (direction) is shown in the middle 

image. The final combined weight function is shown in the right image. Red indicates a low 

likelihood, and green indicates a high likelihood of the emitter position matching the particle location. 

The weights of all particles are then normalised into probabilities so that the sum of all particle 

weights is equal to one, as shown in Equation (9). The final estimated direction and distance are 

calculated according to Equations (10) and (11) by calculating the weighted estimated direction and 

distance from all particles to reduce the impact of significant fluctuations caused by raw RSS 

measurements. In order to avoid a model with a very small number of high probability particles, a 

resampling step occurs [36]. This is triggered when the inverse of the sum of the squares of the 

weights is less than half the total number of particles, as indicated in Equation (12): 

𝑃𝑖 =
𝑤𝑒𝑖𝑔ℎ𝑡𝑖

∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖
𝑁
𝑖=0

⁄  (9) 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑟 = ∑ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑟
𝑖 × 𝑃𝑖 

𝑁

𝑖=0
 (10) 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝛳 = ∑ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝛳
𝑖 × 𝑃𝑖 

𝑁

𝑖=0
 (11) 

1

∑ 𝑃𝑖
2𝑁

𝑖=0

<
𝑁

2
 (12) 

After the resampling step, the number of particles remains the same, N. However, the new 

particles are sampled from the existing particles, where the probability for each existing particle to 

be sampled is the weight of that particle. This has the effect of increasing the number of higher weight 

particles and decreasing the number of lower weight particles, which leads to convergence of the 

filter. The number of particles to use is based on a trade-off between accuracy and computational 

load, with O(N) linear complexity for N particles. An increase in particles reduces error and provides 

better spread. Better spread reduces the chance of missing the true point and converging on an 

incorrect local maximum. In our case, we used 1000 particles. The target point provided by the 

particle filter and used in path planning is a weighted sum of all the particles, as shown in Equations 

(10) and (11). 

When comparing the error in the instantaneous position value calculated directly from the 

antennae, and the error in the filtered position estimate, we found that filtering reduced the average 

error by up to 50%. An example is illustrated in Figure 8, where the root mean squared error of the 

position has been plotted over the course of a benchmark test. 

Figure 7. Visualisation of the particle weight functions for a ground truth location of (4, 4), meaning
a displacement of 4 m in the x and y directions from the receiver, indicated by the dark square.
The receiver is in the centre of each image at (0, 0). The weight function based only on distance is
shown in the left image, and the weight function based only on the angle (direction) is shown in the
middle image. The final combined weight function is shown in the right image. Red indicates a low
likelihood, and green indicates a high likelihood of the emitter position matching the particle location.

The weights of all particles are then normalised into probabilities so that the sum of all particle
weights is equal to one, as shown in Equation (9). The final estimated direction and distance are
calculated according to Equations (10) and (11) by calculating the weighted estimated direction
and distance from all particles to reduce the impact of significant fluctuations caused by raw RSS
measurements. In order to avoid a model with a very small number of high probability particles, a
resampling step occurs [36]. This is triggered when the inverse of the sum of the squares of the weights
is less than half the total number of particles, as indicated in Equation (12):

Pi =
weighti

∑N
i=0 weighti

(9)

Estimatedr =
N

∑
i=0

particlei
r × Pi (10)

Estimatedθ =
N

∑
i=0

particlei
θ × Pi (11)
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N
2

(12)

After the resampling step, the number of particles remains the same, N. However, the new
particles are sampled from the existing particles, where the probability for each existing particle to be
sampled is the weight of that particle. This has the effect of increasing the number of higher weight
particles and decreasing the number of lower weight particles, which leads to convergence of the filter.
The number of particles to use is based on a trade-off between accuracy and computational load, with
O(N) linear complexity for N particles. An increase in particles reduces error and provides better
spread. Better spread reduces the chance of missing the true point and converging on an incorrect local
maximum. In our case, we used 1000 particles. The target point provided by the particle filter and
used in path planning is a weighted sum of all the particles, as shown in Equations (10) and (11).

When comparing the error in the instantaneous position value calculated directly from the
antennae, and the error in the filtered position estimate, we found that filtering reduced the average
error by up to 50%. An example is illustrated in Figure 8, where the root mean squared error of the
position has been plotted over the course of a benchmark test.Sensors 2018, 18, x FOR PEER REVIEW  12 of 22 
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5. Motion Planning

The readings from the environmental sensors (i.e., the laser range finder and contact sensors)
provide information about obstacles in the local context, which can also be placed onto a global map.
In the initial case where there is no map, these sensors play a major role in ensuring safe navigation by
avoiding obstacles while the robot drives directly towards the estimated target location and the map is
being formed.

We mounted the directional antennae and parabolic reflectors on top of the Pioneer as shown
in Figure 2b. This allowed the target localisation module to use the RSS readings while the Pioneer
moves in order to determine an approximate direction of travel. By comparing the relative strengths
along the two axes, an approximation for the distances in each axis can be found. Through simple
trigonometry, these distances can then be combined to find the distance and direction of the target
emitter from the current position. However, the derived distance is generally very inaccurate, as it is
strongly influenced by noise and multipath effects, so we primarily focus on using the direction for
motion planning purposes. Collectively, the location information and environmental sensor inputs are
used in our motion planning algorithm to control the local movements and gradually move towards
the target location.

In the initial case when the robot is first turned on, we follow a simple heuristic for safe navigation.
If there is no obstacle within 20 cm of the laser range finder, and the angle to the target is within 15◦ to
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either side of its current heading direction, then the robot will drive forward. Otherwise, the robot will
gradually turn towards the target while driving forward. If there is an obstacle within a 20 cm range,
then the system enters its obstacle avoidance mode. In this mode, the robot will continue to turn until
there are no obstacles detected within a 20 cm range of the rangefinder. When the obstacle is no longer
in front of the robot, the robot will continue to move forward if the target is in the forward direction of
the robot (i.e., target is located less than 90◦ either side relative to the current robot heading direction).
When the sum of the front and back RSS values is above a certain threshold that indicates a distance to
the target that is less than 50 cm, we consider the robot to have reached the target destination (since the
robot has a diameter of 40 cm), causing the robot to stop. An overview of this motion control algorithm
is given in Figure 9. In addition, if any of the front contact sensors detect an object then the robot will
reverse immediately to avoid the object. Similarly, if any of the rear contact sensors detect an object
then the robot will drive forwards.Sensors 2018, 18, x FOR PEER REVIEW  13 of 22 
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Figure 9. A simplified overview of the preliminary system control flow chart.

With this preliminary implementation, we verified that the wireless emitter could be used as a
point of reference, and that our RSS-based algorithm with angle approximation provided an accurate
target direction. In scenarios where there is a direct path to the emitter, this method is sufficient for
reaching the goal. In some scenarios where the direct path is partially blocked, the system is able to use
the variance in the received signal and simple local obstacle avoidance to reach the goal destination.
However, due to the simplistic nature of the motion planning, and without any memory of the position
of obstacles this system, the system is unable to recognise dead ends and is susceptible to being
trapped in corners. This is quite common in the context of factory automation, where the strength of
the emitter could be very strong indicating the target is near, but it is not actually directly reachable



Sensors 2018, 18, 585 14 of 22

due to obstacles such as conveyor lines and shelves. Therefore, introducing mapping and long-term
path planning into the system is required in order to find viable paths and avoid deadlock.

6. Mapping and Path Planning

6.1. Simultaneous Localisation and Mapping (SLAM)

In order to enable long-term decisions and allow for smarter path planning with obstacles, we
use a SLAM module to map the environment by processing the odometry data and laser range finding
provided by the Pioneer robot. By comparing the distance to detected objects at multiple locations
using the odometry information to approximate the distance between scan locations, obstacles can be
found and tracked in the environment.

Simultaneous Localisation and Mapping (SLAM) has been an active research area for many years,
with significant progress made towards universally applicable solutions [3]. Since our focus is on
ascertaining the direction of the goal destination based on a single emitter and not on localisation
or mapping of the robot itself, we used a third party tool, GMapping, for the SLAM module.
More information about the approach used in GMapping can be found in [39].

Gmapping produces an array that discretises the world into grid cells. Each grid cell is then filled
with 100, 0, or −1 representing occupied, empty, and unknown respectively. These are populated
within Gmapping based on information gained from sensor data. In our implementation, each of these
grid cells represents 400 cm2 of real-world space (20 cm on each side). A visualisation of the occupancy
grid is shown below in Figure 10.
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Figure 10. An example occupancy grid output visualisation.

The grid cell size is selected based upon a trade-off of having more information to navigate with
against a higher computational load. Since each grid cell can only be empty or occupied, if the grid size
is too large, a valid path may not be recognised, depending on the alignment of the grid. An example
of this is shown in Figure 11, where the left image shows a situation where the robot, represented
by the arrow, will determine that there is a valid path between the two obstacles. The right image,
however, will register all of the grid cells in the row above the robot as occupied, and the robot will not
believe there is a valid path. Therefore, it was necessary for the size of each cell to be slightly smaller
than what the robot can drive through.
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This can be resolved by decreasing the size of the grid cell so that it was smaller than the width of
the robot (40 cm in diameter). This reduces the number of false negatives where the robot does not
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recognise a valid path, but introduces false positives where the robot will recognise empty space that it
cannot actually fit through. This is accounted for separately by the path planning module with local
obstacle avoidance.

6.2. Path Planning

In our current system, the navigation is separated into two components representing the macro
and micro level decisions: path planning and motion planning. The path planning component
combines the local area information from the environment map and the target localisation information
from the RSS data streams together. The path planning module uses this information to determine
the path to be taken by the robot in order to reach the desired goal and avoid being trapped in dead
ends. For macro-level decisions, the map of the local environment created by the SLAM module is
used, with the current estimated target position placed on this map. The path planning module will
then attempt to find a path from the current position to the target position.

There are many different methods of path planning. The shortest path algorithms most commonly
used include breadth-first search, Dijkstra’s algorithm, and A* [40]. Breadth-first search involves
branching to all of the neighbouring cells until the goal is found [41]. Dijkstra’s algorithm behaves like
breadth first, but also calculates the cost of traversal to each point, selecting a path that has both the
shortest distance and the lowest cost [40]. This is beneficial when not all grid cells have the same cost,
such as paths that need additional manoeuvring procedures or avoiding obstacles. The A* algorithm
also uses the cost of traversal of each cell in the same manner as Dijkstra’s, but additionally determines
which neighbouring cell to explore first depending on a heuristic. This heuristic is typically an estimate
of the distance to the goal. This allows the algorithm to be directed toward the goal and is therefore
more efficient. As breadth-first search does not allow cost to be based on more than just distance,
this is not well suited to this application. Since A* with its heuristic is more efficient than Dijkstra’s
algorithm, we selected A* for the purpose of this research to find the shortest path. For simplicity,
the movement was locked to the grid cells of the SLAM occupancy grid. This means that the robot
only needs to move in one of the four cardinal directions relative to the starting point, rotating in 90◦

increments and driving straight forward or back as needed.
The A* pathfinding algorithm uses a best first style search, prioritising exploration of paths which

give the lowest total estimated cost. When calculating the total estimated cost, the algorithm sums
the current cost of a path with the estimated remaining cost. This remaining cost uses heuristics for
guiding the search to reduce the time taken to find the optimal path. The heuristic uses the Manhattan
distance between the current position of the path and the target position, giving the total difference in
x and y positions. This provides a reasonable estimate of the remaining cost when the cost of a path is
determined by the number of cells traversed and ensures the optimal known path is found.

The implemented A* algorithm takes into account a number of factors in addition to the number
of cells when determining the cost of a path. Each map cell has a cost of 100, 1, or 2, depending on
if the cell is occupied, unoccupied, or unknown, respectively. This incentivises taking a path with
known occupancy over a path with unknown cells. As each grid cell is smaller than the robot, there
is a possibility that there may be a path that is considered to be viable that the robot cannot actually
fit through. In order to mitigate this, the map should assign a higher cost to cells with multiple
obstacles near them. This is calculated by summing the cell in question, along with its four adjacent
cells. This encourages the robot to take paths that are further away from obstacles, which may lead
to slightly less direct paths but decreases the likelihood of taking an invalid path and getting stuck.
Additionally, if the space between obstacles is less than three grid cells, then the values in these cells
are essentially high enough to prevent a path from being planned through this space, ensuring that the
robot avoids those obstacles. Lastly, due to the simplified movement requiring alignment to cardinal
directions, turning to change the direction of motion requires coming to a complete stop and turning
until the correct direction is reached. This manoeuvre time is included as a type of cost in the path by
using the current orientation as a proxy, so that the robot will also prefer paths that have fewer changes
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in orientation, even if this means that the actual path is longer. Figure 12 shows a visualisation of these
different components. This includes the map, in grey and black, the particles from the particle filter in
blue, and the weighted sum of these particles in pink. The robot is represented by the red arrow, with
the arrow pointing in the target direction. The planned path from the red arrow to the pink target is
visible in green; it can be seen that there is an obstacle in front of the robot and that the path diverts
around it.Sensors 2018, 18, x FOR PEER REVIEW  16 of 22 
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During exploration of the unknown areas, the SLAM module maps these areas and assigns
values based on the occupancy of the cells. Since the path planning is executed periodically, the new
information is taken into account and the path is updated over time in a way that supports continued
exploration until a valid path is found to the target destination. The target destination is defined by
both the direction and distance to the target emitter. However, we mostly focus on the direction, as the
distance measured is often inaccurate, and so we rely on iterative improvements to the planned path
by running the module periodically to update the path as the robot progresses towards the goal.

With SLAM and path planning, the motion planning module described in Section 5 was then
expanded upon to allow for execution of the path provided by the path planning module, as shown in
Figure 2a. By providing the odometry data to the motion planning module, it is possible to determine
the current location on the map, and thus the current point in the path. By comparing the path’s
current position and next position, the robot can calculate the desired bearing of motion, turning as
necessary to reach it. Once facing the right direction, the system will continue to move forward until
this direction changes.
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In the event that the robot finds itself off of the path provided, it will fall back to the preliminary
system (i.e., using only target localisation and motion planning modules) for finding the target. This can
sometimes occur when the map output from the SLAM module experiences a discontinuity, causing a
discrete jump in the position of the robot relative to the map. This generally only occurs as a result of
drift in odometry when the robot rotates, as the drift for regular motion is much lower and does not
require the same degree of compensation.

7. Navigation Testing

7.1. Testing Scenarios

Based on the motivating scenario, a number of benchmark tests were developed in order to gauge
the performance of the system. Each test was designed to determine if the robot could complete a
fundamental task such as driving straight and navigating around obstacles, and how quickly these
tasks could be completed. These fundamental tasks indicate the ability to perform more complex
operations in our motivating scenario, which is made up of different combinations of these fundamental
tasks. These tests were performed using both the preliminary (with only target localisation and motion
planning) and full (with mapping and path planning also) navigation systems, in order to determine
if the final system outperforms the preliminary system. These tests varied in complexity to test a
range of scenarios. For each test, the robot was considered to have completed the task when the
robot was within 50 cm of the emitter (since the robot is 40 cm in diameter). These tests are presented
diagrammatically in Figure 13.

Scenario A involves a straight-line test with no obstacles as a control—it was expected that both
systems would perform identically since the robot should just drive in a straight line to the goal.
Scenario B is a similar test but with an obstacle in the way, preventing a direct straight-line path. In this
test, it was expected that the full navigation system would outperform the preliminary system as the
full navigation system should be able to find a path around the obstacle much more easily with the A*
path planning algorithm, whereas the preliminary system would need to rotate away from the obstacle
and iteratively try to find its way around the obstacle. In both scenarios, the robot drives in a direction
with increasing RSS values.

In Scenario C and D, the emitter was offset from the robot by 4 m in the x and y directions so
that the emitter was at a 45◦ angle to the robot. Without any obstacles, it would be expected that the
preliminary system would be able to drive in a straight-line to the goal, whereas the full system had
to conform to the grid structure and would therefore drive along the perimeter of the square so that
it makes a minimal number of turns. In Scenario C, we placed obstacles in the opposite corners of
the area, so that this ideal L-shaped path is not possible. It was hypothesised that the preliminary
system would be able to drive between the obstacles and arrive at the goal, whereas the full system
would have to create a more complicated path. Due to there being a cost associated with turning, it
was expected that the robot would not attempt to approximate a straight line, as this would require
many turns and would not decrease the path sufficiently to balance out the increased turning cost.
Similar to scenario A and B, the robot could reach the final target by simply driving in a direction with
increasing RSS values.

In Scenario D, the obstacles were placed so that they completely block the straight-line path to the
emitter. It was expected that the full navigation system would outperform significantly in this test as
the direct path to the goal is blocked, and the robot may need to drive away from the goal in order to
avoid the obstacle. As the preliminary system has no global map or path, it has no ability to plot a path
in what appears to be the opposite direction to the target in order to make overall progress. Due to
this, it was expected to perform poorly and could be unable to complete the task.

Lastly, in Scenario E, we created a U-turn test that required the robot to drive in the opposite
direction to the radio signal in order to avoid a large obstacle. It was expected that the preliminary
system would face significant difficulties and may not even be able to reach the goal, as it had no
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memory of the positions of previously encountered obstacles. However, the full system should be able
to find a path by exploring new unoccupied areas until the robot reached the end of the warehouse
shelves and found a valid path to the goal. In both scenario D and E, the robot was required to move
in a direction that is likely to have a lower RSS value initially, but the robot should eventually reach
the target location through long-term path planning.
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7.2. Results and Discussions

Each benchmark test was performed three times to ensure repeatability of the experiments
and averaged, as shown in Table 1. In each experiment, the range of the results was negligibly small.
In general, the hypothesis could be formulated that the preliminary system performs better in scenarios
where there is a straight line to the emitter, and the full system performs better in all other cases.
For four of the five tests, results were as expected. The unexpected result was that the preliminary
system outperformed the full system in the blocked 4 m straight-line test (scenario B). This result may
be due to small fluctuations in the estimate of the target location causing variations in the predicted
path in the full system. In the blocked straight-line test, these small changes in the target position
estimate caused the path-planning module to switch the path to go around the other side of the
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obstacle. If this fluctuation happens repeatedly, the robot may drive back and forth behind the obstacle
without making any forward progress.

Table 1. Benchmark results, with the best result in each test bolded.

Scenario Mean Time (Sec) Taken in
Preliminary System

Mean Time (Sec) Taken in
Full System

(A) 4 m straight line 89 90
(B) Blocked 4 m straight line 126 230
(C) Partially blocked 4 m right angle 252 225
(D) Blocked 4 m right angle 391 222
(E) U-turn Could not complete 455

Overall, these results support the claim that the full system is able to navigate relatively complex
environments, as it significantly outperforms the preliminary system in the two final tests. In particular,
for the fully blocked 4 m right angle test (scenario D), the robot could only complete it successfully one
time (i.e., 391 s for that single test rather than an average) when using the preliminary system, and the
preliminary system could not complete the U-turn test at all. Without long-term path planning, the
robot was not able to move away from the target emitter to find an alternative route that eventually
led back to the emitter.

In a separate test, we tried to determine the maximum range of our transmitter/receiver in ideal
conditions, and to determine if the system was still effective over long distances. This involved placing
the transmitter at the end of a long corridor, with a transmission power of 0 dBm. The transmitter
was able to be detected at a range of over 50 m, and the system was able to successfully navigate to
the target over a period of approximately 20 min. However, this maximum distance could still be
increased by using a higher transmission power.

8. Conclusions and Future Work

In this paper, we presented two main contributions: a novel algorithm for localising a single
emitter using Received Signal Strength (RSS) from multiple directional antennae to derive direction
estimates that improve upon existing localisation methods based only on distance estimates, and
a system integration that demonstrates the effectiveness of this approach on a mobile robot.
We developed a low-cost omnidirectional antennae setup with cylindrical parabolic reflector dishes that
enabled the calculation of the direction of a signal source based on the angle of arrival. The received
RSS values were processed with a particle filter in order to enable accurate target localisation, reducing
the effects of interference and variations in RSS. This was combined with a simple motion planning
system that allowed for basic obstacle avoidance while still progressing towards the end goal in some
cases. This preliminary system was able to localise and navigate to the wireless emitter in open spaces
and environments where there are minimal obstacles.

With the addition of a Simultaneous Localisation and Mapping (SLAM) module, a map of the
environment was generated that enabled long-term path planning using the A* algorithm. This enabled
the robot to perform autonomous navigation in much more complex environments with multiple
obstacles, including scenarios where the robot has to drive away from the target position in order to
move around obstacles. The improved performance is validated through a number of experimental
tests designed according to factory automation scenarios that demonstrate the superiority of the full
system when there is no straight-line path available.

The techniques described in this paper are applicable to a wide range of scenarios beyond
industrial automation, such as scenarios with frequent changes and those that require the use
of ad-hoc robotic systems. In emergency situations where successful deployment is time-critical,
approaches that reduce the setup costs and times such as ours will be preferable to those that require
significant infrastructure. Future work includes implementing more advanced forms of path planning
to reduce the stringency of the current movement grid constraints to allow for more optimal navigation,
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improving the choice of obstacle avoidance sensors to allow for range finding in multiple planes, and
potentially adapting the approach to allow for three-dimensional navigation by drones or underwater
vehicles. Multipath effects could also be better estimated by identifying the shape and material of
nearby obstacles, allowing for better correction of these effects at the receiver. This could also be
achieved by incorporating other sensor data into the existing particle filter.
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30. Gleser, A.; Ondřáček, O. Real time locating with RFID: Comparison of different approaches. In Proceedings
of the 24th International Conference on Radioelektronika (RADIOELEKTRONIKA), Bratislava, Slovakia,
15–16 April 2014; pp. 1–4.

31. Popp, J.D.; Lopez, J. Real time digital signal strength tracking for RF source location. In Proceedings of the
IEEE Radio and Wireless Symposium (RWS), San Diego, CA, USA, 25–28 January 2015; pp. 218–220.

32. Anderson, H.R. Fixed Broadband Wireless System Design; John Wiley & Sons: Hoboken, NJ, USA, 2003;
pp. 206–207.

33. Smith, R.; Self, M.; Cheeseman, P. Estimating uncertain spatial relationships in robotics. In Autonomous Robot
Vehicles; Springer: New York, NY, USA, 1990; pp. 167–193.

34. Atmel Corporation. Low Power, 700/800/900MHz Transceiver for ZigBee, IEEE 802.15.4, 6LoWPAN, and
ISM Applications. 2013. Available online: http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-
42002-MCU_Wireless-AT86RF212B_Datasheet.pdf (accessed on 11 February 2018).

http://dx.doi.org/10.1109/MESA.2016.7587137
http://www.mobilerobots.com/Libraries/Downloads/Pioneer3DX-P3DX-RevA.sflb.ashx
http://www.mobilerobots.com/Libraries/Downloads/Pioneer3DX-P3DX-RevA.sflb.ashx
http://dx.doi.org/10.1109/SECON.2017.7925315
http://dx.doi.org/10.1016/j.eswa.2017.05.059
http://dx.doi.org/10.1109/MRA.2012.2206473
http://dx.doi.org/10.1038/nphoton.2010.148
http://dx.doi.org/10.1109/TVT.2015.2403868
http://dx.doi.org/10.1109/TSMCC.2007.905750
http://dx.doi.org/10.1109/JSEN.2010.2070872
http://dx.doi.org/10.3390/s16050707
http://www.ncbi.nlm.nih.gov/pubmed/27196906
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42002-MCU_Wireless-AT86RF212B_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42002-MCU_Wireless-AT86RF212B_Datasheet.pdf


Sensors 2018, 18, 585 22 of 22

35. Evennou, F.; Marx, F.; Novakov, E. Map-aided indoor mobile positioning system using particle filter.
In Proceedings of the IEEE Wireless Communications and Networking Conference, New Orleans, LA, USA,
13–17 March 2005; Volume 4, pp. 2490–2494.

36. Gustafsson, F. Particle filter theory and practice with positioning applications. IEEE Aerosp. Electron. Syst. Mag.
2010, 25, 53–82. [CrossRef]

37. Kalman, R. A new approach to linear filtering and prediction problems. Trans. J. Basic Eng. 1960, 82, 35–45.
[CrossRef]

38. Jazwinsky, A. Stochastic Process and Filtering Theory, Volume 64; Academic Press: Cambridge, MA, USA, 1970.
39. Grisetti, G.; Stachniss, C.; Burgard, W. Improved Techniques for Grid Mapping with Rao-Blackwellized

Particle Filters. IEEE Trans. Robot. 2007, 23, 34–46. [CrossRef]
40. Masudur Rahman Al-Arif, S.M.; Iftekharul Ferdous, A.H.M.; Nijami, S.H. Comparative Study of Different

Path Planning Algorithms: A Water based Rescue System. Int. J. Comput. Appl. 2012, 39, 25–29.
41. Anderson, J.; Mohan, S. Sequential Coding Algorithms: A Survey and Cost Analysis. IEEE Trans. Commun.

1984, 32, 169–176. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MAES.2010.5546308
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1109/TRO.2006.889486
http://dx.doi.org/10.1109/TCOM.1984.1096023
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Motivating Scenario: Autonomous Factory Service Robot 
	Autonomous Robot System Design 
	RF-Based Target Localisation 
	Related Works 
	Design Concept and Methodology 
	Angle-Based Differential RSS Localisation Validation 
	Enhancing Angle and Distance Estimation 

	Motion Planning 
	Mapping and Path Planning 
	Simultaneous Localisation and Mapping (SLAM) 
	Path Planning 

	Navigation Testing 
	Testing Scenarios 
	Results and Discussions 

	Conclusions and Future Work 
	References

