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were made in the m. vastus lateralis using contrast-
enhanced ultrasound during a continuous intrave-
nous infusion of Sonovue™ contrast agent, before 
and after the intervention period, with concomitant 
assessments of cardiorespiratory fitness and resting 
blood pressure. HIIT led to improvements in anaero-
bic threshold (13.2 ± 3.4 vs. 15.3 ± 3.8  ml/kg/min, 
P < 0.001), dynamic exercise capacity (145 ± 60 vs. 
159 ± 59  W, P < 0.001) and resting (systolic) blood 
pressure (142 ± 15 vs. 133 ± 11  mmHg, P < 0.01). 
Notably, HIIT elicited significant increases in micro-
vascular blood flow responses to acute contractile 
activity (1.8 ± 0.63 vs. 2.3 ± 0.8 (arbitrary contrast 
units (AU), P < 0.01)), with no change in any of 
these parameters observed in the control group. Six 
weeks HIIT improves skeletal muscle microvascular 
responsiveness to acute contractile activity in the 
form of active hyperaemia-induced by a single bout 
of resistance exercise. These findings likely reflect 
reports of enhanced large vessel distensibility, 
improved endothelial function, and muscle capillari-
sation following HIIT. Moreover, our findings illus-
trate that HIIT may be effective in mitigating delete-
rious alterations in muscle microvascular mediated 
aspects of sarcopenia.
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Abstract Impairments in muscle microvascular 
function are associated with the pathogenesis of sar-
copenia and cardiovascular disease. High-intensity 
interval training (HIIT) is an intervention by which 
a myriad of beneficial skeletal muscle/cardiovas-
cular adaptations have been reported across age, 
including capillarisation and improved endothelial 
function. Herein, we hypothesised that HIIT would 
enhance muscle microvascular blood flow and vas-
cular reactivity to acute contractile activity in older 
adults, reflecting HIIT-induced vascular remodel-
ling. In a randomised controlled-trial, twenty-five 
healthy older adults aged 65–85  years (mean BMI 
27.0) were randomised to 6-week HIIT or a no-
intervention control period of an equal duration. 
Measures of microvascular responses to a single 
bout of muscle contractions (i.e. knee extensions) 
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Abbreviations 
AI  Acoustic index
CEUS  Contrast enhanced ultrasound
CPET  Cardiopulmonary exercise test
HIIT  High-intensity interval training
MBF  Microvascular blood flow
MBV  Microvascular blood volume
MFV  Microvascular flow velocity
MICT  Moderate-intensity continuous training

RE  Resistance exerciseIntroduction

Impaired function of the peripheral vasculature 
becomes increasingly common with advancing age 
[55], with macro- and microvascular dysfunction 
often co-existing [54]. Even in the absence of symp-
tomatic peripheral vascular disease, older adults 
exhibit reductions in whole-limb and microvascular 
blood flow at rest and in response to exercise, com-
pared to younger adults [15–17]. In terms of the 
clinical relevance of these deficits in vascular func-
tion, it is possible that out with vascular disease per 
se, they may contribute to the pathogenesis of insulin 
resistance [32] via impaired delivery of insulin [10, 
37], and may also be implicated in the development 
of hypertension [14]. Another clinical implication of 
reduced vascular function that has been suggested is 
its contribution to age-related anabolic blunting and 
subsequent sarcopenia [67]; the progressive loss of 
muscle mass and function with advancing age [12]. 
However, to date, data surrounding this suggestion is 
equivocal. A number of studies have shown an associ-
ation between reduced microvascular blood flow and 
reduced muscle protein synthetic responses to both 
amino acids [52] and contractile activity [17] — two 
of the most potent anabolic stimuli [13, 61], in older 
adults. Conversely, other research, including that 
by our group has suggested that neither macro- nor 
microvascular blood flow responsiveness is rate-lim-
iting for muscle protein anabolism based on studies 
of exercise [48], pharmacological [50] and nutritional 
enhancement [49] of vascular responses to nutrition. 
Irrespective, enhanced vascular function offers poten-
tial benefit for muscle, cardiovascular and metabolic 
health [18, 51].

Despite the reported benefits of both lifelong exer-
cise and exercise uptake on numerous aspects of physi-
ological function, including central (i.e., cardiovascular 

[9]) and peripheral vascular function [56], low adher-
ence to ‘traditional’, often time-consuming exercise 
interventions such as those described in common 
public health guidelines [45], [66] is a limitation 
to achieving these benefits. In older adults, adher-
ence to this type of exercise training is consistently 
described as poor, with rates as low as 10% reported 
[30, 38, 43]. The rationale for this lack of engage-
ment in older adults is largely akin to those reported 
across all age-groups, with a perceived lack of time 
at the fore [6, 39]. Additionally, already poor physical 
health is also a reported factor in this age-group [42, 
44]. High-intensity interval training (HIIT) is an alter-
native training mode to traditional moderate intensity 
continuous training (MICT) which may potentially 
engender increased uptake and adherence due to its 
time-efficiency (i.e., shorter session duration [33]) and 
ability to quickly improve factors pertaining to cardi-
orespiratory health and fitness in both young [4] and 
older [25] adults. Supporting this notion, a systematic 
review and meta-analysis of 65 studies concluded that 
HIIT has the ability to improve cardiorespiratory fit-
ness over both short- (< 12–weeks) and longer-term 
training durations [2]. Although not all studies have 
demonstrated superiority of HIIT when compared to 
MICT [19, 21], in terms of absolute improvements in 
cardiorespiratory fitness, its time-efficient nature is 
unquestionable [24].

To date, little is known about the effect of HIIT on 
limb blood flow in older adults and we are unaware of 
any studies of microvascular blood flow in response to 
HIIT in any age group. Studies have shown improve-
ment in popliteal artery endothelial function follow-
ing HIIT in both older and younger adults [46], whilst 
HIIT in young adults has also been shown to increase 
expression of endothelial nitric oxide synthase [11]. 
However, none have examined the effect of HIIT on 
microvascular blood flow.

Therefore, the primary aim of this study was to 
assess the effect of 6  weeks’ time-efficient HIIT on 
microvascular responsiveness in healthy older adults.

Methods

Subject characteristics

Ethical approval (A12092016) was obtained from the 
University of Nottingham Faculty of Medicine and 
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Health Science Research Ethics Committee to recruit 
adults aged 65–85  years to participate in a trial of 
6-week fully supervised HIIT versus a non-interven-
tion control. All participants gave written informed 
consent to participate. Exclusion criteria included 
current participation in a formal exercise regime, a 
BMI < 18 or > 30  kg·m2, active cardiovascular dis-
ease, uncontrolled hypertension (> 160/100  mmHg), 
diabetes mellitus, family history of early (< 55 years) 
death from cardiovascular disease or known sensi-
tivity to Sonovue™ contrast agent. The study was 
registered with clinicaltrials.gov and complied with 
the 1964 Declaration of Helsinki. Patients were ran-
domised via sealedenvelope.com, using random per-
muted blocks.

Before baseline testing, all subjects underwent a 
screening session including a cardiovascular exami-
nation by a qualified medical doctor with additional 
exclusion criteria for further participation as per the 
American Thoracic Society (ATS)/American College 
of Chest Physicians (ACCP) guidelines for Cardio-
pulmonary Exercise Testing (CPET) [64]. A unilat-
eral one-repetition maximum (1-RM) assessment for 
knee extension was also conducted at this screening 
session [36] to set the intensity of the RE to be used 
as our vasodilatory stimulus. At baseline testing, par-
ticipants underwent measures of skeletal muscle (m. 
vastus lateralis) microvascular responses to RE by 
contrast enhanced ultrasound (CEUS) and completed 
a CPET and resting blood pressure (BP) assessment, 
as per our previously published protocols [26]. After 
the 6-week intervention period, all baseline tests were 
repeated (~ 72  h after the final HIIT session). Par-
ticipants were requested to maintain their habitual 
dietary intake for the duration of the study and to con-
sume a standardised evening meal prior to an over-
night fast (> 10 h, water ad libitum) before each test-
ing session.

Microvascular blood flow

Using our standard CEUS methods as previously 
described [41], skeletal muscle microvascular blood 
flow (MBF) in the m. vastus lateralis was measured at 
rest and in response to a single bout of unilateral RE. 
In brief, CEUS measures were made using a contrast-
enabled ultrasound machine (Philips iU22, Phillips 
Healthcare, Guildford, UK) and a 9–3-mHz probe 

housed in a custom-made probe-holder secured to the 
leg with Velcro straps. The probe was secured at mid-
thigh level based on anatomic reference to the ingui-
nal crease and mid-point of the patella. The probe was 
attached to the participant’s thigh for 20 min before 
CEUS measurements to allow the probe temperature 
to equilibrate with that of the participant’s skin [57] 
Sonovue™ (Bracco, Milan, Italy) was used as the 
microbubble ultrasound contrast agent and was pre-
pared and administered (intravenously into an antecu-
bital fossa vein) as per manufacturer’s instructions.

With participants seated on an isometric leg exten-
sion machine (ISO Leg extension, Leisure Lines (GB) 
Ltd., Hinckley, UK), and after a measure of resting 
BP [25], a single vial of Sonovue™ was infused at a 
rate of 2 ml/min for 1 min before reduction to 1 ml/
min until the syringe was empty. Each vial of Sono-
vue™ provided ~ 4  min of infusion time, allowing 
90 s of infusion to achieve systemic steady state [41] 
and a further 2.5 min to assess MBF.

To determine MBF, microbubbles under the 
probe which had accumulated during the first 90  s 
were destroyed using a brief “flash” impulse of high 
mechanical index ultrasound from the probe [41]. 
This flash and the replenishment of contrast agent to 
the muscle underlying the probe was recorded on two 
subsequent 30-s cine clips through the probe. Partici-
pants were then instructed to perform 6 unilateral iso-
tonic knee extensions at 50% 1-RM [36]. After this, 
participants were asked to keep their legs completely 
still and another set of flash-replenishment cycles 
were recorded to determine skeletal muscle microvas-
cular responsiveness to the RE bout (Fig. 1).

DICOM video files of the flash-replenishment 
cycles were analysed using QLAB image quantifi-
cation software (Version 10, Phillips Healthcare) as 
previously described [41]. Regions of interest (ROI) 
were drawn freehand including as much muscle as 
possible, whilst excluding connective tissue or any 
large rapid filling vessels (distinct large vessels vis-
ibly containing contrast agent within the first 0.05 s of 
post-flash recording) and were copied across all cine 
clips for each participants’ visit to ensure consistency 
of measurements. QLAB then provided a value for 
the mean acoustic index (AI) (a measure of the echo-
genicity of the tissue, which increases proportionately 
to the concentration of the Sonovue™ [41]) in the 
ROI for each frame of the cine clip. The mean AI for 
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the first 6 frames immediately post-flash was desig-
nated the background AI of the tissue within the ROI 
and subtracted from all subsequent AI values.

The mean AI data from the pre-RE cine clips were 
averaged to give one measure of pre-exercise micro-
vascular blood flow which was compared to the mean 
post-exercise AI data. AI values from both before and 
after RE were then used to plot curves of AI against 
time, and determine the exponential function of one-
phase association using:

where A denotes the level of the plateau of the graph 
and is analogous to MBF (volume) within the tissue 
ROI [57].

Cardiopulmonary exercise testing

CPET was performed according to ATS/ACCP 
guidelines [64] using a Lode Corival cycle ergom-
eter (Lode Corival, Lode, Groningen) and inline gas 
analysis system (ZAN  680, nSpire Health, Colo-
rado, USA) as previously reported [25]. In brief, 
after 2  min of unloaded cycling, participants were 

� = �0 + �
(

1 − �−��
)

,

instructed to maintain a cadence of 50–60 revolu-
tions per minute whilst being encouraged to exercise 
to volitional exhaustion. A Bruce ramp protocol [34, 
65] was selected (10–20 W per minute) based on the 
participant’s body weight and self-reported level of 
habitual physical activity to ensure the CPET was 
between 8 and 12 min in duration [8, 64]. Anaerobic 
threshold (AT) was determined using a combination 
of the V-slope and VE methods [3, 62] by two blinded 
independent assessors, with disagreement resolved by 
consensus. As the same ramp protocol was employed 
per participant for both baseline and post-intervention 
(or control period) assessments, the maximum watt-
age achieved during CPET was considered represent-
ative of dynamic exercise capacity.

High-intensity interval training (HIIT)

Subjects assigned to HIIT attended the laboratory 
three times each week for 6 weeks, with each session 
lasting approximately 15 min (including a warm-up, 
5, 1-min high intensity cycling efforts and a recovery 
period). The HIIT regime has been described previ-
ously [5, 47]. All training sessions were fully super-
vised and conducted with 12-lead ECG, BP and pulse 

Fig. 1  Schematic repre-
sentation of study protocol, 
including assessment days 
(right) and high intensity 
interval training (HIIT) 
(left). Abbreviations: 
CEUS, contrast enhanced 
ultrasound; RE, resistance 
exercise; CPET, cardiopul-
monary exercise testing
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oximetry safety monitoring. After 3 weeks of HIIT (at 
the end of the  9th training session), participants were 
asked to rate their perceived exertion on modified 
Borg scale of 1–10 [7]. A rating of ≤ 8 led to a 10% 
increase in training intensity for the remaining HIIT 
sessions [47]. Subjects in the control group attended 
for pre and post intervention testing sessions only. 
Compliance for the HIIT sessions was 100%, with all 
participants attending all of their allocated sessions.

Statistics

All calculations were performed using GraphPad Prism 
Version 9.0 (California, USA). Data are presented as 
mean (SD). Participant demographics at baseline were 
compared using an unpaired t-test, whilst outcome data 
were compared using two-way ANOVA (group × time). 
Significance was accepted as an alpha of p < 0.05. 
Effect size is reported as Cohen’s d.

Results

Participant characteristics

Twenty-five participants were recruited and randomly 
allocated to either HIIT or the no-intervention control. 
In one participant assigned to the HIIT group, meas-
urement of MBF was not achieved due to cannula 
failure leading to contrast extravasation. One partici-
pant allocated to the control group did not return for 
the post intervention visit and was lost to follow-up. 
Therefore, 23 participants were included in the final 
analysis. No physiological parameter was different 
between the two groups at baseline (Table 1).

Anaerobic threshold (AT)

There was no significant difference in baseline AT 
between groups (P = 0.37) (Table 1). There was how-
ever a significant effect of time (P < 0.01) and a sig-
nificant group × time interaction (P < 0.01), with post-
hoc testing demonstrating a significant increase in AT 
after the intervention period in the HIIT group only 
(13.2 (3.4) vs. 15.3 (3.8) ml/kg/min, P < 0.01; effect 
size (ES): 0.56), with no change in the control group 
(15.1 (6.0) vs. 15.2 (6.4) ml/kg/min, P = 0.98; ES: 
0.01) (Fig. 2).

Exercise capacity

Used as an indicator of dynamic exercise capacity, 
there was no significant difference in baseline peak 
wattage achieved during the CPET  (Wpeak) between 
groups at baseline (P = 0.96) (Table 1). There was a 
significant effect of time (P < 0.01) and a significant 
group × time interaction (P < 0.01), with post-hoc 

Table 1  Participant characteristics, microvascular blood vol-
ume, anaerobic threshold and exercise capacity at baseline

Data are presented as mean (SD). Abbreviations: BMI, body 
mass index; AT, anaerobic threshold; Wmax, maximum watt-
age achieved during cardiopulmonary exercise testing; SBP, 
systolic blood pressure; DBP, diastolic blood pressure; MBV, 
microvascular blood volume (change in response to a single-set 
of isotonic knee extension exercise)

HIIT (n = 13) CON (n = 12)

Age (y) 70 (3) 72 (6)
Sex (male/female) 5/8 7/5
BMI (kg/m2) 27.7 (2.4) 26.3 (2.9)
AT (ml/kg/min) 13.2 (3.4) 15.1 (6.0)
Wmax 145 (60) 144 (63)
SBP 142 (15) 130 (10)
DBP 85 (13) 80 (10)
MBV responsiveness 1.8 (0.63) 2.2 (1.2)
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Fig. 2  Anaerobic threshold (AT) before and after 6-week high 
intensity interval training (HIIT, n = 13) or an equivalent no-
intervention control period (CON, n = 12). Analysis via two-
way ANOVA. ** = p < 0.01
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testing demonstrating a significant increase in  Wpeak 
after the intervention period in the HIIT group only 
(145 (60) vs. 159 (59) W, P < 0.01; ES: 0.25), with 
no change in the control group (144 (63) vs. 145 
(62) W, P = 0.95; ES: 0.01).

Blood pressure (BP)

There was no significant difference in resting sys-
tolic BP (SBP) between the groups at baseline 
(P = 0.78) (Table  1). There was a significant effect 
of time (P < 0.01) and a significant group × time 
interaction (P = 0.02), with post-hoc testing dem-
onstrating a significant reduction in SBP after the 
intervention period in the HIIT group only (142 
(16) vs. 133 (11) mmHg, P < 0.01; ES: − 0.67), 
with no change in the control group (130 (10) vs. 
128 (10) mmHg, P = 0.81; ES: − 0.05) (Fig.  3). 
There was no significant difference in diastolic 
blood pressure (DBP) between the groups at base-
line (P = 0.78) (Table 1), nor was there a significant 
effect of time (P = 0.27) on DBP, or group × time 
interaction (P = 0.76). The coefficient of variation 
(CV) for repeated SBP assessments within our labo-
ratory is 2.57%.

Microvascular blood volume (MBV)

There was no significant difference in MBV responses 
to a single set of 6 unilateral knee extensions between 
the groups at baseline (P = 0.24) (Table 1). There was 
a significant effect of time (P = 0.02) and a significant 
group × time interaction (P < 0.01), with post-hoc 
testing demonstrating a significant increase in MBV 
responses to RE after the intervention period in the 
HIIT group only (1.8 (0.6) vs. 2.3 (0.8), P < 0.01; ES: 
0.64), with no change in the control group (2.2 (1.2) 
vs. 2.2 (1.0), P = 0.94; ES: − 0.12) (Fig.  4). The CV 
for repeated MBV assessments within our laboratory 
is 1.09%.

In assessing the relationship between microvas-
cular blood flow responsiveness and blood pressure, 
we observed a significant relationship (when the two 
groups were combined) between baseline SBP and 
microvascular blood flow responsiveness (change 
elicited by the bout of RE)  (R2 = 0.23; P = 0.02 
(Fig.  5A)), a relationship that was not apparent for 
DBP  (R2 = 0.01; P = 0.60) or mean arterial pressure 
 (R2 = 0.01; P = 0.18). Further, based on the reduc-
tion in SBP that was observed with HIIT, we sought 
to explore the relationship between changes in SBP 
with HIIT, and changes in MBF responsiveness elic-
ited by HIIT. There was no relationship between these 
changes,  (R2 = 0.24; P = 0.10 (Fig. 5B).

Discussion

This work demonstrates that 6  weeks, time-efficient 
HIIT on a cycle ergometer performed 3 times each 
week elicits improvements in the CRF and SBP of 
older adults. Further, this HIIT protocol enhanced 
MBF responsiveness to an acute bout of RE in the 
functionally important vastus lateralis muscle [60]. 
To our knowledge, this is the first study to evalu-
ate changes in MBF in response to HIIT, in any age 
group. We believe these microvascular changes may 
elicit favourable adaptation to concomitant resist-
ance exercise training, given the known association 
between vascular dysfunction and skeletal muscle 
mass/function [18] and as such the effects of multi-
modal training with both HIIT and RET in the same 
muscle merit further study.

The underlying reason behind improvements in 
MBF responsiveness following HIIT may be due to 
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Fig. 3  Systolic blood pressure (SBP) before and after 6-week 
high intensity interval training (HIIT, n = 13) or an equivalent 
no-intervention control period (CON, n = 12). Analysis via 
two-way ANOVA. ** = p < 0.01
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increased capillarization of the muscle [31]. How-
ever, previous work comparing the MBF of young 
and older men with measurements of muscle capil-
larization via muscle biopsies has shown an age-
related decline in MBF, despite no corresponding 
reduction in capillarization [28], implying that age-
related impairment in this regard is functional rather 
than structural. This does not preclude increased cap-
illarization being a mechanism behind our observed 
increases in MBF responsiveness following HIIT, 
as angiogenesis has been demonstrated in young 
[29] and older [23] adults following exercise train-
ing, including HIIT [1]. This assertion may also be 
supported by a previous observational study of 23 
healthy middle-aged adults which performed rest-
ing CEUS measurements of MBV in the vastus lat-
eralis, before taking biopsies of the same muscle for 
histological analysis. In this study, MBV significantly 
correlated with the number of capillary-muscle fibre 
contacts [63]. In addition, even if increased capillari-
zation is a contributory mechanism for our observed 
increase in MBV after HIIT, increased capillarization 
may only be a local effect at the quadriceps as this 

is the muscle most used in cycle ergometer training 
[58]. As such, the ability for HIIT to influence aspects 
of muscle microvascular blood flow in other muscles 
or indeed tissues (remote to the main contraction site) 
remains to be tested. Other potential explanations for 
our HIIT-induced increase in MBV responsiveness, 
outside of increased capillarisation, include improved 
vasodilation at the level of the resistance arterioles 
[59]. Supportive of this suggestion, six-week HIIT 
has previously been shown to increase the expres-
sion of endothelial nitric oxide synthase (the enzyme 
responsible for the production of the majority of 
nitric oxide, a potent vasodilator [20]) in young men 
[11], but there is no data to support this proposition in 
older adults.

Of note, this study is one of the few to use CEUS 
to measure muscle microvascular blood flow respon-
siveness before and after a chronic exercise interven-
tion. Whilst this has been done in both the upper [53] 
and lower limb [48] in response to RET, this is the 
first to measure the response following chronic HIIT. 
Previous chronic training studies using CEUS to 
measure muscle MBV have, like us, only compared 

Fig. 4  Microvascular blood 
volume (MBV) responses 
to an acute bout of resist-
ance exercise (RE; knee 
extensions) before and after 
6-week high intensity inter-
val training (HIIT (C/D), 
n = 13) or an equivalent no-
intervention control period 
(CON (A/B), n = 12). Pan-
els A and C show micro-
vascular refilling curves 
before and after the HIIT 
(C) or control (A) period 
with arrows representing 
the increase in MBV (as 
increase in acoustic inten-
sity (AI)) in response to 
RE before (grey) and after 
(black) the HIIT or CON 
period. Analysis via two-
way ANOVA. ** = p < 0.01
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the change in microvascular responsiveness to a stim-
uli (e.g. feeding) [48] due to CEUS assessment of 
baseline MBF parameters over a chronic time-period 
not yet being validated. As such, although we are 
not able to report on changes in baseline MBF with 
HIIT, it is interesting that the baseline rested/fasted 
MBF of our control group (in the same location 
based on anatomic reference points) was not differ-
ent when comparing before and after the intervention 
period (p = 0.31), whilst an increase was observed 
after HIIT (p = 0.03). The primary concerns regard-
ing the chronic application of CEUS is ensuring the 
same region of the muscle is studied before and after 
an intervention period, as even if the probe position 
is marked based on static anatomical landmarks (i.e., 

the mid-point of the patella), changes in the under-
lying tissue composition (i.e., due to hypertrophy 
and/or adipose losses) would alter the measurement 
region. Baseline to baseline comparisons have been 
reported in one study; however, this study made no 
comment as to the validity of this comparison and 
lacked any non-intervention control group to demon-
strate repeatability of measurements [53]. As such, 
although our findings are suggestive of HIIT-induced 
improvements in basal MBF in older adults, further 
work is needed to validate CEUS for this application.

That SBP at baseline was associated with pre-
intervention MBF responsiveness, likely represents 
improved endothelial function in those with more 
desirable blood pressure at baseline [27]; however, 
there was no association between MBF and pre-inter-
vention DBP or MAP and MBF. Despite the corre-
lation between baseline SBP and pre-intervention 
MBF responsiveness, and HIIT leading to significant 
improvements in both MBF and SBP, there was no 
correlation between the changes in both parameters. 
This may be due to the presence of both normoten-
sive and hypertensive individuals in this study, with 
normotensive individuals perhaps being unable to 
(or indeed needing to) elicit a significant reduction 
in SBP whilst still making improvements in MBF 
responsiveness.

In addition, although the clinical significance of 
HIIT-induced increases in MBV responses to RE 
has yet to be determined, it may have positive effects 
on concomitant resistance exercise training, offer-
ing a potential strategy to combat sarcopenia and the 
numerous detrimental consequences of this condition 
[35]. That the improved responsiveness was observed 
72 h after the final HIIT session, seemingly negates 
the need for HIIT and RET to perform in close tem-
poral proximity (i.e., in the same session or even on 
the same day), removing concerns related to session 
length, fatigue and ‘interference’ during concur-
rent exercise [22], and potentially supports a mixed-
modality training regime for older adults where HIIT 
can not only improve CRF and SBP as demonstrated 
herein, but may also potentially be able to augment 
RET-induced gains.

One limitation of this study is that it recruited 
only healthy older adults, excluding those with con-
ditions known to impact vascular function such as 
obesity and diabetes. As such, these results may not 
be replicated in patient groups with these conditions. 
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However, it may be that those with sub-optimal 
physiological function can achieve enhanced benefits 
from our HIIT protocol, as has been seen elsewhere 
in the literature [40]. This limitation is apparent in 
a large number of studies exploring physiological 
parameters/mechanisms, which often employ strin-
gent inclusion/exclusion criteria to reduce participant 
heterogeneity. Whilst these studies are important to 
explore new paradigms, we fully support the need for 
studies of this nature to subsequently be conducted in 
clinical/at-risk population groups, who are potentially 
more likely to benefit from these findings.
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