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ABSTRACT
The middle Eocene species Caenopithecus lemuroides, known solely from the
Egerkingen fissure fillings in Switzerland, was the first Paleogene fossil primate
to be correctly identified as such (by Ludwig Rütimeyer in 1862), but has long
been represented only by fragmentary mandibular and maxillary remains. More
recent discoveries of adapiform fossils in other parts of the world have revealed
Caenopithecus to be a biogeographic enigma, as it is potentially more closely related
to Eocene adapiforms from Africa, Asia, and North America than it is to any
known European forms. More anatomical evidence is needed, however, to provide
robust tests of such phylogenetic hypotheses. Here we describe and analyze the first
postcranial remains that can be attributed to C. lemuroides—an astragalus and three
calcanei held in the collections of the Naturhistorisches Museum Basel that were
likely recovered from Egerkingen over a century ago. Qualitative and multivariate
morphometric analyses of these elements suggest that C. lemuroides was even more
loris-like than European adapines such as Adapis and Leptadapis, and was not simply
an adapine with an aberrant dentition. The astragalus of Caenopithecus is similar to
that of younger Afradapis from the late Eocene of Egypt, and parsimony and Bayesian
phylogenetic analyses that include the new tarsal data strongly support the placement
of Afradapis and Caenopithecus as sister taxa to the exclusion of all other known
adapiforms, thus implying that dispersal between Europe and Africa occurred during
the middle Eocene. The new tarsal evidence, combined with previously known
craniodental fossils, allows us to reconstruct C. lemuroides as having been an arboreal
and highly folivorous 1.5–2.5 kg primate that likely moved slowly and deliberately
with little or no capacity for acrobatic leaping, presumably maintaining consistent
powerful grasps on branches in both above-branch and inverted postures.

Subjects Paleontology
Keywords Adapidae, Afradapis, Talus, Strepsirrhini, Calcaneus, Astragalus, Europe, Africa,
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INTRODUCTION
Caenopithecus is a phylogenetically and biogeographically enigmatic adapiform primate

whose fossil record is restricted to middle Eocene (Lutetian, ∼43 Ma, MP13b) fissure
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fillings in the commune of Egerkingen, Canton Solothurn, northern Switzerland (Godinot,

1998; Rütimeyer, 1862; Stehlin, 1916). Upper molars of the type and only species,

Caenopithecus lemuroides, were described by Rütimeyer (1862), and later Stehlin (1916)

described parts of the lower dentition, mandible, additional parts of the upper dentition,

and the orbital region. These limited remains show that C. lemuroides was a relatively large

adapiform—having second lower molars that are about the same length as those of the

extant lemurids Eulemur fulvus and Prolemur simus (Kay et al., 2004)—and had a fused

mandibular symphysis, large canine teeth, very small P2/2, simple P3−4/3−4, quadrate

upper molars with distinct hypocones and mesostyles, and narrow lower molars with

elongate crests and well-developed metastylids. The maxillary remains of C. lemuroides

show that the species had a postorbital bar, but no postorbital closure. Analysis of lower

molar shearing crests suggests that C. lemuroides was a dedicated folivore (Kay et al., 2004).

Other remains of Caenopithecus have been reported since the publication of Stehlin

(1916), but are not universally accepted as belonging to that genus—Franzen (1994)

identified partial skeletons from the Geiseltal and Messel deposits as belonging to a new

species of Caenopithecus (i.e., Caenopithecus “neglectus”), but these are now the type

specimens of Godinotia neglecta (Franzen, 2000) and Darwinius masillae (Franzen et al.,

2009), and Godinot (1988) has expressed doubt about the presence of Caenopithecus at

Bouxwiller, France, that was reported by Jaeger (1971). Stehlin also attributed an astragalus

from Egerkingen (NMB Eh 741) to C. lemuroides, but this element is probably that of a

non-primate hyaenodontidan ‘creodont’ (see also Decker & Szalay, 1974).

In an unpublished doctoral dissertation, Dagosto (1986) attributed an astragalus and

three calcanei from the original Egerkingen collections held at the Naturhistorisches

Museum Basel (NMB) to C. lemuroides and briefly described those elements.1 Here we

1 We were unaware of Dr. Dagosto’s earlier
work at the time that this manuscript
was submitted for review, and we thank
Dr. DL Gebo for bringing this to our
attention.

expand on Dagosto’s earlier work by (1) providing quantitative justification for attribution

of these tarsals to C. lemuroides, (2) describing and comparing the Egerkingen tarsals

in greater detail, notably making comparisons with several specimens that have been

discovered since Dagosto’s work was completed in 1986; (3) analyzing the more complete

specimens using multivariate and other morphometric techniques; and (4) including

C. lemuroides in phylogenetic analyses alongside numerous other living and extinct

primates. The tarsals of C. lemuroides provide important new insights into the locomotor

adaptations and relationships of this mysterious primate.

History of study
Rütimeyer (1862) identified Caenopithecus as a primate (and in so doing was the first to

correctly identify a fossil primate of Paleogene age (Stehlin, 1916)); with little comparative

material available for study, he (and later Forsyth Major, 1872) was impressed by upper

molar features that Caenopithecus shared with extant howler monkeys (Alouatta). The

identification of Caenopithecus as a primate was subsequently questioned by various

authorities (e.g., Delfortrie, 1873), but Gervais (1873) considered Caenopithecus to be

a synonym of Adapis (see also Flower, 1876; Forbes, 1894; Schlosser, 1887), and Gaudry

(1878) argued that Caenopithecus was aligned with lemurs, drawing attention to dental
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features that the genus shared with extant Hapalemur and Lemur. Stehlin (1916) noted

additional features of the lower dentition and mandible that Caenopithecus shared with

the few additional European adapiforms that were known by the time of his study. With

the benefit of an expanding North American fossil record, Stehlin also pointed out dental

similarities to Shoshonius and Washakius, which are now considered to be distantly related

washakiin omomyiforms. Abel (1931) and Le Gros Clark (1959) believed Caenopithecus

to be a tarsioid,2 and Gregory (1920) later suggested that the genus might be related to

2 It should be noted that Abel’s “Tar-
sioidea” also included taxa that are
now considered to be plesiadapiforms
(e.g., Paromomys, Carpolestes) or
adapiforms (Anchomomys, Periconodon,
Pronycticebus). Other adapiforms
(Adapis, Pelycodus, Notharctus, Protoad-
apis) were included in his Lemuroidea.

indrioid lemurs, but these are minority views; most debates subsequent to the publications

of Stehlin (1912) and Stehlin (1916) have focused on whether Caenopithecus is more closely

related to adapines such as Adapis and Leptadapis (e.g., Godinot, 1998; Rose, Godinot &

Bown, 1994; Russell, Louis & Savage, 1967; Simons, 1972; Simpson, 1940; Szalay & Delson,

1979) or to some “cercamoniine” adapiform such as Europolemur or Protoadapis (Franzen,

1994; Gingerich, 1977; Remane, 1956; Simons, 1962; Weigelt, 1933). In her unpublished

doctoral dissertation, Dagosto (1986) briefly described and figured the tarsals analyzed

here, attributed them to C. lemuroides, and concluded that they “support the hypothesis

of a close relationship between Adapis, Leptadapis, and Caenopithecus” (p. 198) and

that “Adapis, Leptadapis, and Caenopithecus. . . have abandoned the primitive euprimate

emphasis on leaping and have evolved locomotor modes which stress quadrupedal

locomotion and climbing” (pp. 201–202).

The study of Caenopithecus has been further complicated in recent years by the

discovery of several geographically far-flung taxa, such as Aframonius, in the late Eocene

of Africa (Simons, Rasmussen & Gingerich, 1995), and the poorly known Adapoides,

in the middle Eocene of Asia (Beard et al., 1994), that have been identified as close

relatives of Caenopithecus and placed in Caenopithecinae (a subfamily of the otherwise

strictly European Adapidae; Godinot (1998)). In proposing this group, Godinot (1998)

also included the problematic middle Eocene genus Mahgarita from North America.

Membership has since expanded to include late Eocene Afradapis from Egypt (Boyer,

Seiffert & Simons, 2010; Seiffert et al., 2009), and possibly Mescalerolemur (from the

middle Eocene of Texas; Kirk & Williams, 2011) and Darwinius (from the middle

Eocene of Europe; Franzen et al., 2009; see phylogenetic analysis of Seiffert et al., 2009).

Mahgarita and Mescalerolemur are the only non-notharctine adapiforms known from

North America, and, like Caenopithecus, their geographic origins remain mysterious

(Kirk & Williams, 2011). Fleagle (2013) placed all of these taxa, including middle Eocene

European Europolemur and Godinotia, into a new family, Caenopithecidae. Here we use

the nomen Caenopithecinae and use it to refer to Caenopithecus and its demonstrable near

relatives (Afradapis and Aframonius), because the phylogenetic analyses that we present

here call into question the monophyly of an assemblage that includes these taxa as well as

Mahgarita and Mescalerolemur (see also Kirk & Williams, 2011). We refer to the clade that

includes Adapis and Leptadapis (the monophyly of which is consistently supported by our

phylogenetic analyses) as Adapinae.

The higher-level affinities of caenopithecines and Mahgarita continues to be debated;

authorities have identified some of these species as stem anthropoids or stem haplorhines
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(Franzen et al., 2009; Rasmussen, 1990; Rasmussen, 1994; Simons, Rasmussen & Gingerich,

1995) while others have considered some or all of these species to be most parsimoniously

interpreted as stem strepsirrhines (Dagosto & Gebo, 1994; Godinot, 1998; Kay, Ross &

Williams, 1997; Kirk & Williams, 2011; Maiolino et al., 2012; Marivaux et al., 2013; Ni et

al., 2013; Rose et al., 2009; Ross, Williams & Kay, 1998; Seiffert et al., 2009; Seiffert et al.,

2005). Until recently, the only evidence that could be brought to bear on this debate was

the dental anatomy of these taxa, and the poorly preserved crania of Mahgarita (see for

instance the different interpretations of Rasmussen, 1990, and Ross, 1994), but the recent

discovery of an astragalus of Afradapis (Boyer, Seiffert & Simons, 2010) showed that taxon

to be remarkably strepsirrhine-like in its tarsal morphology, contrasting strongly with

that which would be expected along the haplorhine or anthropoid stem lineages (see for

instance Boyer & Seiffert, 2013). The astragalus of Afradapis shows several similarities to the

astragalus from the Egerkingen collections that we describe here, bolstering the evidence

for its attribution to Caenopithecus, which has been placed as the sister taxon of Afradapis

in multiple phylogenetic analyses (Boyer & Seiffert, 2013; Boyer, Seiffert & Simons, 2010;

Kirk & Williams, 2011; Ni et al., 2013; Seiffert et al., 2009). We further test all of these

phylogenetic hypotheses by adding the character data from the Egerkingen tarsals to the

morphological character matrix that has most recently been employed by Boyer et al.

(2015b), which we analyze using both parsimony and Bayesian approaches.

MATERIALS AND METHODS
Attribution
The tarsals described here derive from the Egerkingen fissure fills, but provenance is

only documented for one specimen, NMB Eh 719, which was recovered from the γ

(= “Gamma”) fissure. In her dissertation, Dagosto (1986) stated that all of the specimens

are from the γ fissure, suggesting that locality information for the specimens was

available in 1986 but has since been lost. On the basis of articular compatibility of the

astragalus (NMB En.270) with the calcaneus NMB Eh 719, as well as the similar size, color,

preservation, and peculiar morphology of all three calcanei (i.e., NMB Eh 719, En.268,

and En.269), we consider it highly probable that all of the tarsals described here belong

to the same species, and so are likely to derive from the same fissure that Eh 719 was

recovered from (i.e., fissure γ , where the two relatively large adapiforms C. lemuroides and

Leptadapis priscus occur; note that Dagosto (1986), was unaware that remains of L. priscus

have also been recovered from fissure γ , and so thought that the much smaller species

Microadapis sciureus was the only other option for attribution). We employ measures of

relative abundance (by comparing the number of craniodental specimens attributed to

each large adapiform species known from Egerkingen γ ) and regressions of dental and

tarsal variables (i.e., astragalar trochlear width and calcaneo-cuboid joint size to M2 size

across a sample of living primates) to determine the most probable species attribution.

Original scans and digital models of all specimens are available on MorphoSource

(www.morphosource.org); a DOI for each specimen is provided in Table 1.
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Table 1 DOIs and MorphoSource ID numbers for scans and digital models of the Egerkingen tarsals.

DOI Morphosource ID File name File type Specimen number Element

10.17602/M2/M5397 M5963-5397 NMB-En-270 M5963-5397.zip Zipped tiff stack NMB En.270 Left astragalus

10.17602/M2/M5398 M5963-5398 NMB-En-270 M5963-5398.ply Smoothed mesh file NMB En.270 Left astragalus

10.17602/M2/M5399 M5964-5399 NMB-Eh-719 M5964-5399.zip Zipped tiff stack NMB Eh 719 Right calcaneus

10.17602/M2/M5400 M5964-5400 NMB-Eh-719 M5964-5400.ply Smoothed mesh file NMB Eh 719 Right calcaneus

10.17602/M2/M5401 M5965-5401 NMB-En-268 M5965-5401.zip Zipped tiff stack NMB En.268 Right calcaneus

10.17602/M2/M5402 M5965-5402 NMB-En-268 M5965-5402.ply Smoothed mesh file NMB En.268 Right calcaneus

10.17602/M2/M5403 M5966-5403 NMB-En-269 M5966-5403.zip Zipped tiff stack NMB En.269 Left calcaneus

10.17602/M2/M5404 M5966-5404 NMB-En-269 M5966-5404.ply Smoothed mesh file NMB En.269 Left calcaneus

We gathered comparative data on tarsal facet size and M2 size from extant and fossil

primates (Appendix S1 and S2) in order to determine whether the Egerkingen tarsal bones

predict tooth sizes more similar to those of C. lemuroides or L. priscus. To this end, we

regressed natural log-transformed lower second molar (M2) area (= maximum mesiodis-

tal length multiplied by maximum buccolingual breadth) on natural log-transformed

astragalar trochlear width (shown to be highly correlated with body mass in Dagosto &

Terranova (1992: their measure “A4”)) and calcaneo-cuboid facet area (= cuboid facet

length times cuboid facet width, another measure shown to be highly correlated with

body mass by Dagosto & Terranova (1992: their “Index 6”) and the best calcaneal predictor

of body mass found by Yapuncich, Gladman & Boyer (2015)). Though M2 area may not

be as robust a body mass proxy as M1 area (Gingerich, Smith & Rosenberg, 1982), it is a

measure that is known in C. lemuroides and L. priscus, and is arguably more removed from

functional/evolutionary pressures on tooth size and morphology that affect the adjacent

molars. We also estimate the body mass of the Egerkingen primate using the equations

derived from regressions of tarsal facet areas on body mass that were recently published by

Yapuncich, Gladman & Boyer (2015).

Our null hypothesis for these analyses was that the Egerkingen tarsals belong to

C. lemuroides, on the basis of the expression of morphology that would be consistent

with that species’ demonstrated phylogenetic proximity to A. longicristatus, but not

clearly consistent with attribution to a primitive adapine such as L. priscus, whose close

relatives (including the alleged congener of L. priscus, Leptadapis magnus) differ in clear

and quantifiable ways. If true, the tarsal dimensions (i.e., those of the astragalus NMB

En.270 and the best-preserved calcaneus from Egerkingen, NMB Eh 719) should predict

an M2 size matching that of teeth identified as belonging to C. lemuroides. Our extant

sample includes 33 species means, in which all individuals used in computing those means

included molar, astragalar, and calcaneal measurements (except for Galagoides demidoff,

for which the molar data came from different specimens than those that provided the tarsal

data). The sample also includes 30 fossil taxa, of which nine specimens have associated

molar and tarsal data (Appendix S2). We also computed 95% prediction intervals as

the limiting envelope within which the actual molar area must fall to be considered

plausibly attributable to the postcranial specimen generating the estimate. Regressions
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were run in PAST.exe (Hammer, Harper & Ryan, 2001). 95% confidence limits on the

prediction interval of tooth size from postcranial element dimensions were generated

(using equation 17.29 of Zar, 1984). Note that prediction intervals that take into account

the Prediction Standard Error (PSE) of the data (or the ‘scatter’) around the regression line

are more appropriate than a confidence interval based on standard error in the regression

parameters (e.g., Chatterjee & Simonoff, 2013). Prediction intervals intuitively must be

broad enough to incorporate most of the data points used to construct the regression,

whereas confidence intervals based on error in regression parameters typically exclude

many more data points used to create the regression, indicating that these limits are not

appropriate indicators of whether a given set of (for instance) postcranial and molar

dimensions are closely associated.

In plotting adapiform M2 area and tarsal measurements among those of other taxa

(Fig. 1), we observed that larger species (i.e., those at or above “Kay’s Threshold” of 500 g)

tend to have higher residuals. Therefore, instead of expecting the “owner” of NMB En.270

and NMB Eh 719 to have a small residual between its actual value and predicted value,

we reasoned that it would more likely to exhibit a residual value close to the average

residual value shown by other large adapiforms in the sample. To compare residuals

among adapiforms, we first ran a regression that excluded large adapiforms (i.e., ten

taxa were excluded from the trochlear width regression, and eight were excluded from the

calcaneo-cuboid facet regression). We re-computed adapiform residuals relative to this

new line and then compared the values of the M2 area residuals generated by the tarsal

specimens under investigation to these populations using one sample t-tests, where the

residual values of the tarsal dimensions were treated as the test values.

Finally, to address the possibility that the astragalus NMB En.270 and the calcaneus

NMB Eh 719 could have come from two different species rather than a single species,

we noted that for dentally-associated elements, molar residuals from the calcaneus and

astragalus were strongly correlated. To quantify this correlation we converted residuals

from the original regressions into z-scores. For each taxon occurring in both regressions

(n = 57), we computed the absolute value of the differences between residuals generated

from the trochlear width and calcaneo-cuboid joint area regressions. We found these

differences to be small in general, and hypothesized that if both tarsals came from a single

species, the difference in M2 residuals should be within the 95% confidence interval of the

differences exhibited by the extant sample. If the tarsals came from two different species,

there is no way to constrain how much difference should exist between the two sets of

residuals when the bones are treated as if they came from a single species. Thus this test

can potentially refute the hypothesis that both bones came from a single species (if the

difference is outside the observed range), but not that they came from two species.

Multivariate morphometric analysis of primate astragali
In order to quantitatively assess the phenetic affinities of the Egerkingen tarsals, we

undertook a principal components analysis of a set of linear and angular measurements

taken on digital models of 25 primate and 27 non-primate astragali. The dataset was first
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Figure 1 Regression of tooth size on tarsal facet size. Above, regression of the natural log of lower
second molar area (length times width) on the natural log of calcaneo-cuboid facet area (length times
width), with data from 51 living and extinct primates and seven non-primate euarchontans. Solid
circles, extant non-primate euarchontans; open squares, plesiadapiforms; solid squares, tarsiers and extinct
omomyiforms; open triangles, extinct adapiforms; open circles, extant lemuriforms; “x,” extant galagids;
open diamonds, extant lorises; “+,” natural log of calcaneo-cuboid facet area of NMB Eh 719 plotted
relative to the natural log of second lower molar size of Leptadapis priscus; “+” enclosed in a diamond,
natural log of the calcaneo-cuboid facet area of NMB Eh 719 plotted relative to the natural log of second
lower molar size of Caenopithecus lemuroides. See figure for regression equation and r2. Below, regression
of the natural log of lower second molar area (length times width) on the natural log of astragalar
trochlear width, with data from 63 living and extinct primates and seven non-primate euarchontans.
Symbols as above; “+,” natural log of the trochlear width of NMB En.270 plotted relative to the natural log
of second lower molar size of Leptadapis priscus; “+” enclosed in a diamond, natural log of trochlear width
of NMB En.270 plotted relative to the natural log of second lower molar size of Caenopithecus lemuroides.
See figure for regression equation and r2. Note that the extant pen-tailed tree shrew Ptilocercus shows a
tooth-tarsal scaling relationship that differs from that of living and extinct primates; for this reason it was
excluded from the regression equation.
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developed by Boyer (2009), and later augmented by Boyer, Seiffert & Simons (2010) and

Chester et al. (2015). The astragalus described here (NMB En.270) lacks most of the head,

and is abraded in such a way that not all measurements in the dataset could be taken.

From an original set of 18 linear measurements, we were able to take 11 (specifically 2, 4–8,

10–14 from Boyer, Seiffert & Simons, 2010, some of which (4, “Fibular facet maximum

dorsoplantar height”; 5, “Fibular facet proximodistal length”; 7, “Lateral tibial facet

maximum mediolateral width”; and 12, “Flexor fibularis groove mediolateral width”)

were estimated due to abrasion along the lateral margin of the lateral tibial facet (for 4,

5, and 7), and along the plantar surface of the medial tubercle buttressing the groove for

flexor fibularis (for 12). Of six angular measurements, we were able to take three (20–22)

(Appendix S3). All linear measurements were converted to shape ratios by dividing each

measurement by a geometric mean (based on 10 measurements—4–8, 10–13, 15) and

then log transforming those ratios. Angular measurements were converted to radians. A

principal components analysis of these data was undertaken using the program PAST. See

Appendix S3 for the complete dataset.

Quantification of flexor fibularis groove depth
We used digital models of the astragali of 52 crown strepsirrhine individuals (20 genera,

including three subfossil lemuriform genera) and seven adapiform genera to quantify the

depth of the flexor fibularis groove along the most anterior extent of its plantar exposure.

Astragali were oriented with the plantar surface facing upward and in posterior view,

such that the point marking the base of the trough of the flexor fibularis groove was

aligned with the point marking the plantar apex of the navicular facet or sustentacular

facet (whichever was visible in that view). This cross-sectional view of the flexor fibularis

groove was therefore oriented roughly perpendicular to the anteroposteriorly oriented

line of action of the flexor fibularis tendon along the plantar surface of the astragalus. In

this view, the two peaks formed by (1) the medial tubercle buttressing the groove and

(2) the most plantar projection of the anteromedial aspect of the ectal facet provided

landmarks for two measurements that were taken simultaneously using the “Measure” tool

in the program Geomagic—the linear width of the flexor fibularis groove, and (by clicking

“Projection” in Geomagic) the length of the contour between the two points that were used

to calculate linear width (which, in Geomagic, is not dependent on orientation but rather is

the shortest distance between those two points along the contour). Surfaces with rendering

artifacts, such as artificially roughened or “spikey” areas, were smoothed in Geomagic

to ensure accuracy of the contour measurement. We used a simple ratio of the contour

measurement to the linear width measurement to describe the depth of the groove; species

with a ratio of 1 show no concavity of the groove, while increasing positive departures from

that value reflect increasing concavity (and therefore tall walls constraining the passage of

the tendon). In species with very little concavity of the groove, the two landmarks could be

difficult to place (because there were no obvious “peaks”), but this is not of great concern to

us because wherever the two points were placed in such species, the ultimate values for the

ratio approached equality; our interest in taking this measurement was to detect marked
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departures from equality, and to identify taxa that had markedly concave flexor fibularis

grooves along the plantar surface of the astragalus.

Peroneal tubercle position in early fossil primates
We took three measurements along the proximodistal long axis of the calcaneus in order

to quantify peroneal tubercle position and size across a sample of early fossil primates

(1: length of the proximal segment; 2: distance from the proximal-most aspect of the

calcaneal tuber to the distal-most projection of the peroneal tubercle; and 3: distance

from the proximal-most aspect of the calcaneal tuber to the midpoint of the peroneal

tubercle). The sample includes a total of 100 individuals, composed of 51 adapiform

specimens (Adapis (n = 6), Asiadapis (n = 2), Caenopithecus (n = 3), Cantius (n = 16),

Leptadapis (n = 8), Marcgodinotius (n = 5), Notharctus (n = 7), Smilodectes (n = 4)), 21

omomyiform specimens (Arapahovius (n = 3), Hemiacodon (n = 1), Omomys (n = 6),

Ourayia (n = 1), Shoshonius (n = 1), Teilhardina (belgica, n = 8), Tetonius (n = 1)), nine

stem anthropoid specimens (Eosimias (n = 6), Parapithecidae (n = 5), Proteopithecus

(n = 1)), six plesiadapiform specimens (Carpolestes (n = 1), Ignacius (n = 1), Nannodectes

(n = 1), Plesiadapis (n = 3)), three dermopteran specimens (Cynocephalus (n = 2),

Galeopterus (n = 1)), and ten scandentian specimens (Ptilocercus (n = 3), Tupaia (n = 7)).

Automated geometric analysis of primate calcanei
In order to compare overall shape of the best-preserved calcaneus from Egerkingen

(NMB Eh 719) with that of other living and extinct primates, we used an automated

morphometric procedure that requires no researcher supervision (i.e., no measurements,

landmarks or anatomical axes need be supplied for bones included in the comparison)

(Boyer et al., 2015a). We chose to take this approach in order to minimize the degree to

which characterizations of shape affinities are dependent on measurements selected, or

researcher observer error or bias. We would opt for this approach with the astragalus as

well, but the method cannot be easily implemented for analysis of fragmentary bones at

this time. In order to create 3D digital models of calcanei, 159 specimens representing 46

primate genera and 6 non-primate euarchontan genera were Micro-CT or laser scanned

and processed in Avizo and Geomagic to create shell-like (i.e., without internal structure)

mesh files representing only the external surface of each bone. All surface files are published

on www.morphosource.org and can be directly downloaded, though the cleaned, shell-like

versions are not necessarily represented (but are available on request). These 3D digital

models were then analyzed using the fully automated 3D geometric morphometric

algorithm auto3dgm (Boyer et al., 2015a), a MATLAB application (available on GitHub).

The algorithm is also available as an R-package, which can currently be downloaded at the

following URL with documentation and tutorials (www.stat.duke.edu/∼sayan/auto3dgm/

index.shtml). Components of the method are detailed in Boyer et al. (2015a); here we

present a brief explanation of the protocol. The analysis down-samples each surface to

a uniform number of evenly spread landmarks—in this case 256 points, which it then

uses to find pairwise alignments via the Closest Iterative Points algorithm (Besl & McKay,

1992). We reduce the risk of incorrect alignments by specifying eight initial alignments
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that represent all combinations of the first three principal axes of variation in the landmark

points. 1,200 points were used to represent each bone’s surface. The initial set of pairwise

distances between bones of the sample is used to define a minimum spanning tree linking

all bones. Point correspondences are propagated through this network, allowing proper

alignment of disparate shapes. This propagation process results in a final landmark

dataset, and revised pairwise distance measures between all surfaces. We then used the

Procrustes distance matrix in a Multidimensional Scaling Analysis with the MATLAB

function ‘mds.m’ to condense the variation into two dimensions (the landmark output

could also have been analyzed in morphologika2.5).

Phylogenetic analysis
We undertook multiple phylogenetic analyses to determine how the new character data

from the Egerkingen tarsals influenced previous placements of Caenopithecus and other

adapiforms. The phylogenetic analyses presented here build on a morphological character

matrix that is based largely on the original work of Kay, Ross & Williams (1997), Ross,

Williams & Kay (1998), Seiffert, Simons & Attia (2003) and Seiffert, Simons & Simons

(2004), and which has been successively augmented by Seiffert et al. (2009), Seiffert et al.

(2010) and Seiffert et al. (2005), Boyer, Seiffert & Simons (2010), Patel et al. (2012), Boyer &

Seiffert (2013), Gladman et al. (2013), and, most recently, Boyer et al. (2015b). The matrix

(Dataset S1) now includes 391 characters, and, with the addition of Mescalerolemur, a

possible caenopithecine from the middle Eocene of Texas (Kirk & Williams, 2011), a total of

109 taxa. We undertook both parsimony and Bayesian analyses of this character matrix.

Two initial parsimony analyses were carried out using PAUP 4.10b10 (Swofford,

1998). For both, heuristic searches were run for 10,000 replicates with random addition

sequence and the tree bisection and reconnection algorithm. For one of the two parsimony

analyses, 256 characters whose states could be reasonably arranged into ordered (additive)

morphoclines were treated as such. A subset of these ordered characters (209 total) had

polymorphisms that were scored as intermediate states rather than scored using standard

polymorphic scoring (i.e., (01)). These 209 characters were scaled so that transitions

between “fixed” states were equal to a single step. In addition, we employed a molecular

scaffold that constrained extant taxa to fit with the prevailing primate phylogeny based

on molecular sequence data (specifically, the results of Springer et al. (2012)), and we

constrained characters encoding premolar loss so that teeth that had previously been

lost could not be regained. Another parsimony analysis was run with the molecular

scaffold enforced, but with no assumptions about character ordering or premolar

re-evolution—i.e., all characters were treated as unordered, with all transitions between

states equal to a single step. Equally parsimonious trees recovered by these analyses are

summarized here as strict consensus trees, and bootstrap support is provided, based on

1,000 pseudoreplicates (also calculated in PAUP).

Two Bayesian analyses were carried out using MrBayes 3.2.2 (Ronquist et al., 2012) and

that program’s Mk model for morphological data. Both analyses were run on the CIPRES

server (Miller, Pfeiffer & Schwartz, 2010). The same molecular scaffold as that used in the
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parsimony analyses was enforced in MrBayes using partial constraints. Analyses were run

for 50 million generations, with four chains (three heated, one cold), sampling every 1,000

generations. Trees were summarized as a “halfcompat” consensus (50% majority-rule

consensus) with a relative burn-in (25% of the samples). One analysis was run with

all characters treated as unordered. While it would be ideal to run a Bayesian analysis

of the matrix with all 256 characters treated as ordered as in the parsimony analysis

described above, unfortunately MrBayes only allows multistate characters to be treated

as ordered if they have six or fewer states, and 28 of the ordered characters in the parsimony

analysis have >6 states. In order to run comparable parsimony and Bayesian analyses

with all 256 characters treated as ordered, we removed the intermediate polymorphic

states in the matrix and used standard polymorphic scoring. We consider this solution to

be far from ideal, because it effectively renders those polymorphisms uninformative for

phylogenetic reconstruction, but it is the only clear option that we could find for running

comparable analyses while maintaining what we consider to be appropriate character state

delimitations (the alternative being to collapse adjacent states into the same state, which

would also lead to loss of information). In all of the Bayesian analyses coding was set to

“variable” (lset coding = variable), which led to the exclusion of invariant or parsimony

uninformative characters. The parsimony analysis of this modified matrix was run in

the same way as the other parsimony analyses, as described above. We also run all of the

same analyses, with all of the same assumptions, with the Egerkingen tarsals scored as

belonging to Leptadapis priscus, the other large adapiform at Egerkingen fissure γ , in

order to determine whether attribution to this taxon (rather than to Caenopithecus) has an

impact on phylogenetic relationships among adapiforms.

Micro-CT scanning
The Egerkingen tarsals described here were micro-CT scanned at the American Museum

of Natural History’s Microscopy and Imaging Facility, using a Phoenix brand v/tome/x

s240 micro-CT scanner. High resolution scan and photographic imagery utilized here

are available through MorphoSource.org. Scans of taxa used in comparative analyses

and details on scanning facility, scanning resolution and energy settings are also largely

available through MorphoSource.org. Additional details are available in appendix tables or

supplementary information of Boyer et al. (2013) and Boyer & Seiffert (2013).

RESULTS
Attribution
On the basis of astragalar trochlear width and calcaneo-cuboid joint surface size

relative to M2 size, the possibility of the Egerkingen primate tarsals being attributable

to either Anchomomys cf. pygmaeus or Necrolemur cf. zitteli (both of which have been

recovered from Egerkingen γ ) can be confidently excluded. Of the remaining possibilities

(Caenopithecus lemuroides or the dentally smaller Leptadapis priscus) Stehlin (1916) lists

22 specimens in the Egerkingen γ collection of C. lemuroides (an additional six are

known from the “Huppersand”), but only two specimens of L. priscus. Using a more
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conservative metric, the minimum number of C. lemuroides individuals represented in

the Egerkingen γ collection is six, while the minimum number of L. priscus individuals

represented in Egerkingen γ collection is two. On the basis of abundance, the most likely

attribution is to C. lemuroides. This is particularly true when the number of isolated

tarsals is taken in account—i.e., it is much more likely that four isolated tarsals (all

likely attributable to a single species) would be derived from the species represented by

22 non-tarsal specimens (C. lemuroides), than to the species represented by only two

non-tarsal specimens (L. priscus).

Regressions of M2 area against tarsal dimensions showed high coefficients of determi-

nation of 0.94 (trochlear width) and 0.93 (calcaneo-cuboid facet size) (Fig. 1). The M2

area of C. lemuroides is within the computed prediction intervals for M2 area generated

by both tarsal elements, though it has a high positive residual indicating that, if the tarsals

are attributable to C. lemuroides, that species would have relatively small tarsal facets

compared to M2 area (Fig. 1). The M2 area of L. priscus also falls within this interval, but

with a fairly small and slightly negative residual. On this basis, the tarsals could belong to

either species and would apparently be more likely candidates for attribution to L. priscus.

Using a modified regression that excludes large adapiforms, we then compared typical

residual values of these adapiforms to those of the focal fossils. We found that the residual

values of the two candidate owners of the Egerkingen tarsals are both well outside of the

95% confidence limits on the means of the residual value distributions exhibited by other

large adapiforms (Fig. 2). Computing the significance of the difference between the focal

fossil residual values and the means for the known associations, we find that, for the

astragalus, the probability of attribution to L. priscus is lower (t-test of null hypothesis that

the adapiform mean is equal to that of L. priscus residual of −0.23; adapiform mean is 0.18,

95% C.I. is 0.05–0.30; t-value = 7.30; p (null correct) = 0.00003) than to C. lemuroides

(residual of 0.51; t-value = −5.94; p (null correct) = 0.0001). For the calcaneus, the

probability of attribution to C. lemuroides is slightly lower (t-test of null hypothesis

that adapiform mean is equal to the C. lemuroides residual of 0.57; adapiform mean is

0.19, 95% C.I. is 0.04–0.33; t-value = −5.85; p (null correct) = 0.0004) than attribution

to L. priscus (residual of −0.18; t-value 5.67; p (null correct) = 0.0005). However, the

differences are minimal in both cases, and again we note that NMB Eh 719 and NMB

En.270 have strange (but morphologically and metrically compatible) articular surfaces,

arguing against attribution to two different species of different dental size. Nonetheless,

these results may lead one to question whether the bones belong to two different taxa.

The comparison of absolute values of z-score differences between calcaneal and

astragalar regression residuals helps to address the last concern, though it cannot

completely resolve it (Fig. 3). Computing this value for 58 taxa (i.e., all those species

with data available for both bones in the original regression, including those of adapines),

we find the average difference between z-score converted residuals is about 0.6 standard

deviation units, with a standard deviation of 0.42 units, and a full range from 0.017–1.96.

Whether both fossils are treated as C. lemuroides, or both are treated as L. priscus, the

residual differences do not reject the hypothesis that these bones belong to a single taxon. It
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Figure 2 Residuals for the natural log of M2 area of adapiforms following recalculation of regres-
sion of the natural log of M2 area on tarsal facet area excluding those adapiform species. Note that
Caenopithecus lemuroides (“Cl”) and Leptadapis priscus (“Lp”) have predicted values for the natural
log of lower second molar area that fall outside of the 95% confidence interval on the mean for
both calcaneocuboid facet area (above) and trochlear width (below). Other abbreviations: “Ap,” Adapis
parisiensis; “Al,” Afradapis longicristatus; “Ca,” Cantius abditus; “Cm,” Cantius mckennai; “Cr,” Cantius
ralstoni; “Ct,” Cantius trigonodus; “Ek,” Europolemur klatti; “Nr,” Notharctus robustior; “Nt,” Notharctus
tenebrosus; “Lm,” Leptadapis magnus; “Sg,” Smilodectes gracilis. See figure for regression equations.

also leads to the expectation that if, in fact, one bone represents C. lemuroides and the other

represents L. priscus, then these animals would have had very similarly-sized tarsals overall,

despite smaller teeth in the latter.

The last relevant observation emerging from these analyses is that the residual values

of putative close relatives of Caenopithecus (Europolemur klatti (Thalmann, 1994) and

Afradapis (Seiffert et al., 2009)) are not only positive, but are well above the general

adapiform means (Fig. 2). The closest relatives of L. priscus in the sample are the adapines

Adapis parisiensis and Leptadapis magnus. For the astragalus, both of those taxa still exhibit

a positive residual in contrast to the L. priscus attribution, and A. parisiensis exhibits a

value greater than the adapiform mean. For the calcaneus, Adapis also has a positive

residual, though it is on the same side of the adapiform mean as the L. priscus residual.

L. magnus has a slightly negative residual, putting it in closer proximity to the L. priscus

residual. Higher than average positive residuals are therefore expected for caenopithecine

tarsal-dental comparisons (meaning that caenopithecines are expected to have larger M2s

relative to tarsal size than the average adapiform), while neutral to somewhat positive

residuals (that are slightly below the average for adapiforms) are expected for adapine

tarsal-dental comparisons. This makes sense given what is known about the folivorous

caenopithecine Afradapis (Seiffert et al., 2009; Seiffert et al., 2010) because primate folivores

are expected to have large postcanine teeth relative to body mass (e.g., Kay, 1975; Scott,
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Figure 3 Box plot of z-score-standardized differences in residuals. Values plotted are the absolute
difference between the z-score-standardized residual of m2 size to astragalus size and the residual of
m2 size to calcaneus size of a given taxon. We noticed that for most taxa, the m2 residual generated by
the calcaneus was proportional to the m2 residual generated by the astragalus. The comparative sample
includes all specimens for which both astragali and calcanei could be compared with tooth size (both
fossil and extant) for a total n = 57 species. As in other plots, the diamond enclosed cross uses the molar
measurements of Caenopithecus, while the regular cross uses those of Leptadapis priscus. Because the
fossils under scrutiny plot in the observed range, this test does not refute the hypothesis that both bones
belong to a single species.

2011). Previous analyses of shearing quotients indicate that Caenopithecus was very likely

folivorous (Kay et al., 2004), and we obtained the same result (Appendix S4, Fig. S1; see

dental topographic variables for Caenopithecus in Table 3) using the dental topographic

comparative framework employed by Seiffert et al. (2010) (though we note that Caenop-

ithecus plots close to Prolemur simus, which was grouped with folivores in our analysis but

is technically a bamboo specialist). As stated above, primate species with folivorous/fibrous

diets are expected to have relatively large teeth, and thus large positive residuals of tooth

size from tarsal size. Of the candidate species that the tarsals might belong to, C. lemuroides

residuals meet this expectation, but L. priscus does not meet the expectation of neutral to

slightly positive residuals based on the data available from other adapines.

Finally, on the basis of the overall morphological pattern, NMB En.270 is more

similar to the astragalus of the caenopithecine Afradapis than it is to those of adapines.

C. lemuroides has been placed as the sister taxon of Afradapis to the exclusion of all other

living and extinct primates in the phylogenetic analysis of Seiffert et al. (2009) (and all later

analyses that augmented that matrix), as well as in analysis of a larger character matrix that

was independently constructed by Ni et al. (2013). More details on these similarities are

presented below. The morphology of NMB En.270 is therefore certainly phylogenetically
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consistent with attribution to C. lemuroides, given what is known about its currently

recognized sister taxon. L. priscus has been placed as the sister taxon to L. magnus and

Adapis based on dental data (Boyer et al., 2015b), and the latter taxa also show a number

of similar morphological features of the astragalus and calcaneus. If the Egerkingen tarsals

belonged to L. priscus, we would expect the morphology to reflect an antecedent condition,

or similar specializations, to those of Adapis or Leptadapis; instead the tarsal specimens

exhibit some unusual specializations that are not expressed in these taxa.

In light of all the foregoing—i.e., on the combined basis of abundance, size (including

the higher than average positive residuals for the Caenopithecus tarsal-dental comparisons,

which fit expectations for a folivorous caenopithecine, but not an adapine), and

morphology—we consider the most parsimonious attribution of the Egerkingen tarsals

to be to C. lemuroides rather than L. priscus.

Body mass estimates
Using the prediction equations published by Yapuncich, Gladman & Boyer (2015)

astragalar ectal facet area (AEFa) and calcaneal ectal facet area (CEFa) from NMB

En.270 and NMB Eh 719, respectively, returned mean estimates of 1,663 g (AEFa;

95% PI = 659–4,196 g) and 2,217 g (CEFa; 95% PI = 1,098–4,476 g) using their

“strepsirrhine” equation; 2,023 g (AEFa; 95% PI = 342–11,984 g) and 2,104 g (CEFa;

95% PI = 609–7,268 g) using their “lorisiform” equation; and 2,962 g (CEFa; 95%

PI = 1,392–6,305 g) and 1,964 g (AEFa; 95% PI = 556–6,929 g) using their “lorisid”

equation.

Description of the Caenopithecus tarsals
Astragalus (NMB En.270, Fig. 4). The astragalus is largely complete, but is abraded along

the lateral trochlear rim, the most proximal and medial aspect of the body (the medial tu-

bercle buttressing the groove for the flexor fibularis tendon), and probably (but less clearly)

the most distal and lateral aspect of the ectal facet and fibular facets, where those two facets

typically meet. The specimen is also missing most of the head and the navicular facet.

In medial view the astragalar body is dorsoplantarly tall, with a medial trochlear rim that

has a small radius of curvature (i.e., it is tightly curved for its proximodistal length). The

lateral tibial facet (trochlea) bears a shallow sulcus between the medial and lateral rims,

which are of about the same height in proximal view. In dorsal view, the lateral tibial facet

has a fairly straight medial border along the body (i.e., excluding the distal extension that is

confluent with the medial tibial facet), but the lateral border is rounded and tapers strongly

toward the proximal and medial aspect of the body; the lateral tibial facet is thus distinctly

“v”-shaped in proximal view, and the proximal tapering of the facet allows for a capacious

groove for the tendon of the flexor fibularis muscle, which is situated lateral to the lateral

tibial facet, as in all known adapiforms and crown strepsirrhines (Beard et al., 1988). Unlike

most other primates, this groove extends well onto the plantar aspect of the body and is

buttressed laterally by a thick and laterally projecting flange, which also supports the most

proximal aspect of the ectal facet, and presumably served as an attachment site for the
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Figure 4 Stereopair images of NMB En.270, left astragalus from Egerkingen (probably fissure γ )
attributed here to Caenopithecus lemuroides. (A) proximal, (B) distal, (C) medial, (D) lateral, (E) dorsal,
and (F) plantar views.
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posterior astragalo-fibular ligament. There is no hint of a posterior astragalar shelf or a

superior astragalar foramen.

The fibular facet is proximodistally convex and quite large, covering most of the lateral

aspect of the astragalar body in lateral view. The fibular facet slopes laterally from the

lateral tibial facet at an angle of 112◦ (using the measurement protocol described by Boyer

& Seiffert, 2013). The medial tibial facet is large, taking up more than half of the medial

surface of the astragalar body and extending all the way to its plantar surface, as in many

other “prosimian” primates (Boyer et al., 2015b). The facet continues distally, becoming

dorsoplantarly shorter as it curves onto the medial surface of the astragalar neck. There

is a dorsoplantarly tall but shallow bean-shaped fossa proximal to the medial tibial facet,

presumably for attachment of the posterior tibioastragalar portion of the deltoid ligament.

The articular area of the medial tibial facet measures 25.7 mm2. The medial tubercle

buttressing the groove for the flexor fibularis tendon is abraded proximally, but the plantar

border of the medial wall of the body clearly extends far plantarly as a protruding ridge,

which terminates just distal to the most proximal extension of the sustentacular facet.

This plantar projection forms the medial half of the deep trochlear groove for the flexor

fibular tendon as it passes plantarly around the astragalus, and clearly contributes to the

perception that the astragalar body is tall.

We estimate that the astragalar neck meets the body at approximately a 33◦ angle.

Judging from the shape of the astragalar neck along its broken surface, the navicular facet

likely would have been mediolaterally quite broad relative to its dorsoplantar height. A

small part of the navicular facet is preserved on the lateral aspect of the neck, revealing that

that part of the facet, at least, was clearly convex. On the plantar surface, the proximal part

of the sustentacular facet is preserved, and is strikingly convex, with articular surface

extending medially and laterally away from the plantar apex of the facet. There is no

concave extension of the sustentacular facet along its proximal margin, as occurs in some

primates. The facet’s proximolateral border is well-defined, but the proximomedial border

is not, sloping gradually toward the sulcus that separates the facet from the plantar ridge

on the body’s medial wall. An elongate tubercle is present on the dorsal surface of the neck,

presumably for attachment of the astragalar-ectocuneiform ligament.

The ectal facet is roughly rectangular in plantar view, with a laterally projecting proximal

part where the facet extends out onto the lateral tubercle for the flexor fibularis groove.

The medial margin of the ectal facet is well-defined and projects plantarly, forming the

lateral wall of the deep flexor fibularis groove. The area of the ectal facet is 20.6 mm2. See

Table 2 for astragalar measurements taken on the specimen that follow the methods of

Gebo et al. (2001).

Calcanei (NMB Eh 719 (Fig. 5), NMB En.268 (Fig. 6), and NMB En.269 (Fig. 7)). Three

primate calcanei have been identified in the Egerkingen collections. As already discussed,

the three calcanei are of approximately the same size and, despite some differences,

conform to a unique morphological pattern. Unless otherwise mentioned, the following

description is based largely on NMB Eh 719, which is both the best-preserved calcaneus,

and the only specimen that is known to be from fissure γ based on available records
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Table 2 Measurements of the Egerkingen tarsals, following Gebo et al. (2001).

Measurement Specimen

NMB En.268 NMB En.269 NMB Eh 719

“Calcaneal length” (CalL) 22.25 20.74

“Distal calcaneal length” (DistL) 7.76

“Posterior calcaneal facet length”
(PcfL, = ectal facet of this study)

7.54 6.87

“Posterior calcaneal facet width” (PcfW) 2.61 3.77

“Heel length” (HeelL) 8.98 6.24

“Calcaneal width” (CalW) 10.11

“Calcaneocuboid height” (CubHt) 4.17

“Calcaneocuboid width” (CubW) 6.51

CalW/CalL 0.49

DistL/CalL 0.37

PcfL/CalL 0.33

HeelL/CalL 0.40 0.30

PcfL/HeelL 1.10

PcfW/PcfL 0.55

CubW/CubHt 1.56

NMB En.270

“Talar neck angle” (TNECKANGLE, in degrees, estimated) 33

“Trochlear length” (TRL) 9.33

“Midtrochlear width” (MTRW) 6.25

“Talar width” (TW) 9.28

MTRW/TRL 0.67

Table 3 Relief index (RFI) and orientation patch count (OPC) values for P4 and M2 of Caenopithe-
cus lemuroides.

Specimen Species Locus 2D area 3D area RFI OPC

NMB no number Caenopithecus lemuroides p4 15.77 43.18 0.50 35.50

NMB no number Caenopithecus lemuroides m2 25.96 67.60 0.48 68.00

NMB Eh 396 Caenopithecus lemuroides m2 25.89 67.24 0.48 54.13

NMB Eh 735 Caenopithecus lemuroides m2 26.05 71.03 0.50 62.63

NMB Eh 600 Caenopithecus lemuroides p4 16.10 38.86 0.44 28.63

NMB Eh 597 Caenopithecus lemuroides p4 14.59 41.40 0.52 36.88

NMB Eh 597 Caenopithecus lemuroides m2 25.24 68.45 0.50 56.25

(Fig. 5). Of the other two calcanei, NMB En.268 (Fig. 6) is missing the medial part of the

sustentaculum and has a large crack passing mediolaterally through the sustentaculum and

ectal facet, leading to displacement of the two halves of the bone relative to each other; it

is also missing most of the cortical bone on the lateral surface of the calcaneal tuber. The

medial aspect of the sustentaculum of NMB En.269 (Fig. 7) is also missing, and the bone

is badly abraded all along the medial and plantar surface, including the cuboid facet. In
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Figure 5 Stereopair images of NMB Eh 719, right calcaneus from Egerkingen fissure γ , attributed here
to Caenopithecus lemuroides. (A) dorsal, (B) distal, (C) lateral, (D) medial, and (E) plantar views.
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Figure 6 Stereopair images of NMB En.268, right calcaneus from Egerkingen (probably fissure γ )
attributed here to Caenopithecus lemuroides. In (A) dorsal, (B) distal, (C) lateral, (D) medial, and
(E) plantar views.
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Figure 7 Stereopair images of NMB En.269, left calcaneus from Egerkingen (probably fissure γ )
attributed here to Caenopithecus lemuroides. In (A) dorsal, (B) distal, (C) lateral, (D) medial, and
(E) plantar views.

Seiffert et al. (2015), PeerJ, DOI 10.7717/peerj.1036 21/61

https://peerj.com
http://dx.doi.org/10.7717/peerj.1036


dorsal view, most of the lateral part of the ectal facet of NMB En.269 is missing, and the

proximal aspect of the calcaneal tuber is badly damaged.

The distal segment of NMB Eh 719 makes up approximately 37% of total calcaneal

length and is not dorsally “flexed” relative to the proximal segment (see Gladman et al.,

2013). The cuboid facet of NMB Eh 719 is damaged along its dorsomedial and plantar

surface, but it is clear that the articular surface is “fan”-shaped, with a long axis that is

oriented obliquely with respect to the dorso-plantar axis of the calcaneal body. There

is a distinct concavity along the medial and plantar surface of the facet for articulation

with a proximally projecting process of the cuboid. Medial and plantar to this articular

pit is a proximodistally elongate distal calcaneal tubercle (best developed in NMB Eh

719 and NMB En.269). The cuboid facet and its margins are best preserved on NMB

En.268, and this specimen confirms that the sustentacular facet does not extend to the

distal end of the calcaneus, that there is no secondary sustentacular facet, and that there

is no facet for the navicular distal to the sustentacular facet. At its broadest point (i.e., at

the most medial projection of the sustentacular shelf), NMB Eh 719 is about 48% as

wide as the calcaneus is long. The sustentaculum does not have a deep groove for the

passage of the flexor fibularis tendon, but rather is quite flat—particularly that of NMB

Eh 719, but somewhat less so in NMB En.268. This condition is surely correlated with

the dorsolateral orientation of the entire sustentacular shelf, which is best appreciated in

distal view (Figs. 5D, 6D and 7D). In dorsal view the sustentacular facet of NMB Eh 719

is proximodistally elongate, bean-shaped, and bears a gentle lateral concavity; it tapers

distally and plantarly to meet the body of the calcaneus (the facet is, however, broken along

its proximal and medial margin). The proximal margin of the sustentaculum does not bear

a convex articular surface for a proximal extension of the astragalar sustentacular facet, as

occurs in some other Paleogene primates. The ectal facet is about 55% as wide as it is long,

and tapers proximally but remains quite broad distally. The facet is tightly curved in all

specimens, though on NMB En.268 this condition is obscured somewhat by breakage and

displacement of the distal part of the facet. The dorsal surface of the facet does not project

out laterally above the lateral border of the calcaneus, as occurs in some primates that

consequently bear a concave surface inferolateral to the ectal facet. The peroneal tubercle is

placed at approximately the distal margin of the ectal facet, is longer (proximodistally) than

it is high (dorsoplantarly), and does not project far laterally; it is not elongate and shelf-like

as in some other Paleogene primates. The lateral wall of the distal segment in C. lemuroides

appears to be medially oriented with respect to the proximal segment, but this might also

be interpreted as a consequence of medial bowing of the calcaneal tuber with respect to

the distal segment. The calcaneal tuber bears distinct rugosities not only along the dorsal

surface but also along the medial margin, further contributing to its medially bowed

appearance. See Table 2 for calcaneal measurements taken on the specimens that follow the

methods of Gebo et al. (2001).

Comparisons with other strepsirrhine astragali
Given Caenopithecus’ well-supported phylogenetic placement among “adapiforms”—an

assemblage of fossil primates that are basally diverging within the order and that may or
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may not be paraphyletic with respect to crown strepsirrhines (see phylogenetic results),

we restrict our comparisons largely to these taxa, specifically adapines (Dagosto, 1983;

Decker & Szalay, 1974), notharctines (Gebo, 1988; Gebo, Dagosto & Rose, 1991), asiadapines

(Rose et al., 2009), Anchomomys (Moyà-Solà & Köhler, 1993; Moyà-Solà et al., 2011),

Azibius (Marivaux et al., 2011), and Djebelemur (Marivaux et al., 2013). We also make com-

parisons based on figures of isolated specimens that have been attributed to Europolemur

klatti (Thalmann, 1994) and figures and half-casts of specimens that have been attributed

to Kyitchaungia takaii (Beard et al., 2007) from the middle Eocene of Germany and Burma,

respectively. Beard et al. (2007) consider Kyitchaungia to be a sivaladapid; if correct, the

specimens might be the only known tarsal elements from that clade (though we note that,

on the basis of our comparisons of M2 size to tarsal dimensions, these specimens could also

be attributable to the amphipithecid Myanmarpithecus yarshensis—a possibility that Beard

et al. (2007) did not explicitly consider). Here we make comparisons with the astragalus

(NMMP 59) and best-preserved calcaneus (NMMP 58) that Beard et al. (2007) attribute

to Kyitchaungia. We also make comparisons with the distal calcaneus that is part of the

problematic partial skeleton NMMP 20, from the late middle Eocene of Myanmar; this

partial skeleton is either that of an amphipithecid, as originally suggested on the basis of the

dental remains known from Sabapondaung kyitchaung locality (Ciochon et al., 2001), or

is a sivaladapid (dental remains of which have not been found at the locality; Beard et al.,

2007). In addition, we discuss similarities that the Caenopithecus tarsals share with those

of lorisids, the subfossil indrioid Babakotia, and some other extant strepsirrhines, largely

because of their importance for functional interpretation. Note that the same comparisons

would also be appropriate if the Egerkingen tarsals actually belong to L. priscus.

Caenopithecus shows a unique mix of astragalar features, some of which are seen

in Adapis and Afradapis, and others of which are more similar to conditions seen in

Leptadapis and notharctines. The astragalar body is relatively tall (dorsoplantarly) when

compared with those of Adapis (Fig. 8E), Afradapis (Fig. 8G), lorises (Figs. 9E and 9F),

and Babakotia (Fig. 9G). The plantar aspect of the proximal portion of the astragalar

body is not preserved in Adapoides (Fig. 8H), but the remaining morphology suggests

that the astragalar body was probably fairly low, perhaps as in Afradapis. Among other

stem strepsirrhines, relatively tall astragalar bodies are also seen in Leptadapis (Fig. 8D),

notharctines such as Cantius (Fig. 8B), asiadapines (Fig. 8C), Anchomomys, Azibius,

Djebelemur (Fig. 8A), and NMMP 59. The height of Babakotia’s astragalar body in medial

view is exaggerated by its tall plantarly-projecting medial process buttressing the groove for

the tendon of flexor fibularis (Fig. 9G).

The very well-defined triangular proximal extension of the lateral tibial facet is most like

those of Afradapis and Babakotia (Figs. 8G and 9H). Other living and extinct strepsirrhines

have facets that taper posteriorly, but they are not so distinctly set off from the flexor

fibularis groove. In Caenopithecus that groove is deeply excavated and extends onto the

plantar aspect of the body, as in adapines (Fugs. 8D and 8E), Afradapis (Fig. 8G), Babakotia

(Fig. 9G), lorises (Figs. 9E and 9F), and, to a lesser extent, Varecia (Fig. 9D). In Afradapis,

Caenopithecus, Babakotia, and some lorises, the proximomedial margin of the ectal facet
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Figure 8 Astragali of other fossil strepsirrhines compared to NMB En.270, attributed here to Caeno-
pithecus lemuroides. (A) Djebelemur martinezi (CBI-1-545), from the early or middle Eocene of Tunisia;
(B) Cantius trigonodus (USGS 21832), from the early Eocene of the USA; (C) Asiadapis cambayensis
(GU 747), from the early Eocene of India; (D) Leptadapis magnus (MNHN QU 11001), from the late
Eocene of France; (E) Adapis parisiensis (ECA 1379), from the late Eocene of France; (F) Caenopithecus
lemuroides (NMB En.270, reversed); (G) Afradapis longicristatus (DPC 21445C), from the late Eocene of
Egypt; (H) Adapoides troglodytes (IVPP V13016, reversed), from the middle Eocene of China. Views in,
from left to right, dorsal, plantar, proximal, lateral, distal, and medial views. Scale bars are equal to 1 mm.
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Figure 9 Astragali of extant and subfossil strepsirrhines compared to NMB En.270, attributed here to
Caenopithecus lemuroides. (A) Microcebus murinus (AMNH 174430); (B) Hapalemur griseus (AMNH
170680); (C) Daubentonia madagascariensis (AMNH 119694); (D) Varecia variegata (AMNH 201384);
(E) Perodicticus potto (AMNH 184579); (F) Nycticebus coucang (AMNH 212953); (G) Babakotia radofilai
(DPC 11000); (H) Caenopithecus lemuroides (NMB En.270, reversed). Views in, from left to right, dorsal,
plantar, proximal, lateral, distal, and medial views. Scale bars are equal to 1 mm.
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projects distinctly plantar to the groove, forming its lateral wall. The plantar ridge forming

the medial wall of this groove in Caenopithecus is also well-developed in Leptadapis (see

MNHN QU 11001, Fig. 8D) and Babakotia, but is not as distinct in Adapis and Afradapis.

This plantar projection clearly contributes to the perception that Caenopithecus and

Leptadapis have tall astragalar bodies, but in medial view the neck and medial tibial facet

of Caenopithecus are actually more similar to those of Afradapis, aside from the strongly

projecting plantar ridge.

The medial tibial facet of Caenopithecus is dorsoplantarly deep as in all other adapi-

forms, but specifically resembles that of Afradapis in becoming dorsoplantarly shorter as

it curves onto the medial surface of the astragalar neck; this similarity is surely also due to

the relatively long astragalar necks of Afradapis and Caenopithecus when compared to those

of adapines. The ln of the square root of medial tibial facet area relative to ectal facet area

is 0.11, which is higher than that of any Paleogene primate. The only extant and subfossil

primates that equal or exceed this value (i.e., that have an equal, or higher, ratio of medial

tibial facet area relative to ectal facet area) are indriids, some lemurids, galagids, some

lorisids (Arctocebus and Nycticebus), and Palaeopropithecus.

The complete absence of a posterior trochlear shelf also characterizes Adapis, Adapoides,

Afradapis, Babakotia, and lorises; such “shelves” are present, to varying degrees, in

notharctines, Anchomomys, Djebelemur, and some extant strepsirrhines, and Beard et

al. (2007) suggest that one was probably present on NMMP 59. In medial view Leptadapis

appears to bear a posterior trochlear shelf, but this posterior bulge is composed solely of

the plantarly projecting ridge buttressing the flexor fibular groove, and there is no shelf

extending across the proximal and plantar aspect of the body as in some other adapiforms

and crown strepsirrhines. The absence of a superior astragalar foramen differs from the

condition in Afradapis, Leptadapis, and some specimens of Adapis; this foramen also occurs

variably in lorisids, but not in any other extant primates of which we are aware.

The fibular facet angle of 112◦ is slightly higher than those that have been calculated

for Leptadapis (104–109◦, n = 3), but is within the range of Adapis (106–114◦, n = 8)

and Babakotia (98–125◦, n = 3), close to that of Djebelemur (113◦), and lower than

that of the single Afradapis specimen that is currently known (116◦) (Boyer & Seiffert,

2013). Other adapiforms have lower values, for instance basal Cantius (94◦
−103◦),

Pelycodus (96◦
−108◦), Asiadapis (100◦), Marcgodinotius (106◦

−110◦), and Anchomomys

(105–111◦).

The astragalar neck meets the body at approximately a 33◦ angle, similar to that

of Afradapis and the values reported by Gebo et al. (2001) for Adapis and Leptadapis,

but higher than the values that they reported for notharctines aside from Notharctus

tenebrosus (35◦). Among smaller stem strepsirrhines, astragalar neck angle is also relatively

low—29◦ in Asiadapis, 20–32◦ in Marcgodinotius, 19◦ in Anchomomys, 17–18◦ in Azibius,

20◦ in Djebelemur, and 26◦ in NMMP 59 . The possible Europolemur klatti specimen

(CeIV-2852) also appears to have a low neck angle, certainly lower than those of Afradapis

or Caenopithecus. Lorises and Babakotia have particularly high neck angles.
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Figure 10 Principal components analysis of astragalar shape variables and angles. First two principal component axes, accounting for 57.1% of
the overall variance, based on the reduced dataset of 15 astragalar measurements that could be taken on NMB En.270 (loadings for each variable
on PC1 and PC2 are provided in the lower right hand corner). Note that Caenopithecus falls close to Afradapis, and to adapines and lorisids. The
suspensory subfossil palaeopropithecid “sloth lemur” Babakotia expands the crown primate morphospace considerably, driven largely by extreme
expression of features that also influence Caenopithecus’s positive score on PC1—i.e., a particularly long and wide flexor fibularis groove (variables
12 and 13) and a high angle between the medial tibial facet and fibular facet (variable 20).

The elongate tubercle on the dorsal surface of the neck for the astragalar-ectocuneiform

ligament is also well-developed in Adapoides, Afradapis, Babakotia, lorises, many

notharctines, and apparently on Europolemur, but is not clearly expressed to the same

degree in adapines.

In many omomyiforms, asiadapines, adapines, and Adapoides there is a concave

proximal extension of the sustentacular facet that would form a sort of locking mechanism

with a posteriorly convex proximal extension of the sustentacular facet on the calcaneus

(Boyer, Seiffert & Simons, 2010); in contrast, there is no distinct articular surface for such

a proximal extension in either Caenopithecus or Afradapis. Caenopithecus is fairly unique

among adapiforms in having a strongly mediolaterally convex proximal portion of the

sustentacular facet.

Multivariate morphometric analysis of primate astragali
Along principal component one (which explains 39.4% of the variance) Caenopithecus

falls close to Afradapis, and, among extant primates sampled, overlaps solely with the

morphospace occupied by lorisids (Fig. 10). Among non-primates, Caenopithecus’ PC1

score is close to that of some Cynocephalus individuals, as well as the extinct carpolestid
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Carpolestes and paromomyid Ignacius. The strongest loadings along this axis are for

variables 12 (flexor fibularis groove width), 20 (angle between fibular facet and medial

tibial facet), and 21 (angle between medial and lateral tibial facets), all of which are

positive. The positions of Caenopithecus, Afradapis, adapines, Babakotia, and lorisids

along PC1 reflect the fact that, relative to other crown primates, they have broad flexor

fibularis grooves, high (obtuse) angles between the fibular facet and the medial tibial facet,

and low (acute) angles between the medial and lateral tibial facets. Principal component

2 explains 17.7% of the variance and does not clearly separate extant primates along

functional lines; this component is dominated by a strong positive loading for variable

13 (flexor fibularis groove proximodistal length). Again, Caenopithecus overlaps with the

adapine-caenopithecine and lorisid morphospaces along this axis (but also that of many

other primates and non-primates). Overall, among extant primates that might guide func-

tional interpretation, the clearest phenetic affinities along the principal two axes are with

the cautious and slow-climbing lorisids. Importantly, though, on the far negative range

of the lorisid morphospace there is near-overlap with the extant large-bodied acrobatic

leaper Propithecus, presumably reflecting the fact that the reduced sample of variables

that can be measured on the Caenopithecus astragalus does not adequately capture all of

the functionally-informative morphology provided by this element (though we note that

Propithecus is also capable of hind limb suspension in addition to acrobatic leaping).

Flexor fibularis groove depth
Quantification of flexor fibularis groove depth among living and extinct strepsirrhines

revealed that most extant species have ratios of flexor fibularis groove contour length

to flexor fibularis groove linear width of 1 or only slightly higher, indicating that there

is very little concavity of the groove along the plantar surface of the astragalus (Fig. 11

and Table 4). This is universally characteristic of the particularly acrobatic grasp-leaping

strepsirrhines, such as the galagids Galagoides and Otolemur, the lemurid Hapalemur, the

lepilemurid Lepilemur, and the indriids Indri and Propithecus, but is also seen in extant

lemurs with more generalized locomotor behavior. The major departures from ratios

of 1 are seen in Cheirogaleus, Varecia, and particularly lorises, which have some of the

highest values among extant taxa (of which Nycticebus and Perodicticus have the highest).

The highest values among strepsirrhines, however, were found among the subfossil forms

Babakotia (ratio of 1.73) and Megaladapis (mean ratio of 2.05). Archaeolemur also had a

relatively high value when compared with those of most extant lemurs (mean of 1.1, close

to that of Varecia). Among Eocene adapiforms, the phylogenetically basal taxa Asiadapis,

Marcgodinotius, and Notharctus had values close to 1, while Afradapis and Caenopithecus

both had values of 1.22, which is higher than the values of all extant strepsirrhines aside

from those of some lorises (and note that the value for Caenopithecus is a minimum

estimate, due to damage to the medial plantar ridge buttressing the groove). The adapines

Adapis and Leptadapis had intermediate values, with means of 1.05 and 1.10, respectively.
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Figure 11 Quantification of flexor fibularis groove depth on the plantar surface of the astragalus. Inset
image shows the orientation of the astragalus for simultaneous measurement of linear width of the flexor
fibularis groove, and the contour measure of the groove (taken in Geomagic). As noted in the main text,
astragali were oriented with the plantar surface facing upward and in posterior view, such that the point
marking the base of the trough of the flexor fibularis groove was aligned with the point marking the
plantar apex of the navicular facet or sustentacular facet (whichever was visible in that view). Boxplots
show variation within species in the ratio of the contour measurement to the linear measurement; higher
numbers are found in taxa with deeper flexor fibularis grooves. Note that the values for Babakotia and
Megaladapis are so extreme that they fall far outside of the figured range.

Comparisons with other strepsirrhine calcanei
In terms of overall morphology and proportions, the calcanei of C. lemuroides are similar

to those of Adapis and Leptadapis in having mediolaterally broad ectal facets (relative to

proximodistal length), well-developed distal calcaneal tubercles, and “fan”-shaped (rather

than strictly ovoid) facets for the articulating cuboid. This gestalt similarity to adapines

is further supported by automated geometric analysis of calcanei from multiple living

and extinct primates (see below). The C. lemuroides calcanei also show some striking

specializations that, as a complex, clearly set them apart not only from adapines but all

other adapiforms—including features such as tightly curved ectal facets that project dorsal
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Table 4 Ratios of flexor fibularis groove contour measures versus flexor fibularis groove linear width
in living and extinct strepsirrhines.

Taxon Specimen Flexor fibularis groove
contour/flexor fibularis
groove linear

Adapis parisiensis MaPhQ 1390 1.03

Adapis parisiensis ROS 106 1.05

Adapis parisiensis ROS 2708 1.09

Afradapis longicristatus DPC 21445C 1.22

Archaeolemur sp. DPC 7849 1.08

Archaeolemur sp. DPC 7900 1.12

Arctocebus calabarensis AMNH 207949 1.11

Arctocebus calabarensis AMNH 212576 1.13

Asiadapis cambayensis GU 747 1.01

Babakotia radofilai DPC 11000 1.73

Caenopithecus lemuroides NMB En.270 1.22

Cheirogaleus medius DPC 0142 1.10

Cheirogaleus medius DPC 031 1.10

Cheirogaleus medius DPC 1023 1.10

Daubentonia madagascariensis AMNH 119694 1.03

Eulemur fulvus albifrons AMNH 170708 1.03

Eulemur fulvus albifrons AMNH 170728 1.04

Eulemur fulvus fulvus AMNH 31254 1.02

Galagoides demidoff AMNH 212956 1.01

Galagoides demidoff AMNH 241121 1.01

Galagoides demidoff AMNH 215180 1.01

Hapalemur griseus AMNH 170680 1.02

Hapalemur griseus AMNH 170689 1.04

Hapalemur griseus AMNH 61589 1.05

Indri indri AMNH 208992 1.00

Indri indri AMNH 100504 1.00

Lemur catta AMNH 170739 1.02

Lemur catta AMNH 170740 1.04

Lemur catta AMNH 170765 1.01

Lepilemur mustelinus AMNH 170556 1.01

Lepilemur mustelinus AMNH 170560 1.02

Lepilemur mustelinus AMNH 170565 1.00

Leptadapis magnus NMB QE 261 1.11

Leptadapis magnus NMB QE 496 1.09

Loris tardigradus AMNH 150038 1.24

Loris tardigradus AMNH 165931 1.10

Loris tardigradus AMNH 34257 1.11

Marcgodinotius indicus GU 748 1.02

Marcgodinotius indicus GU 749 1.01

Megaladapis madagascariensis DPC 18936 1.92
(continued on next page)
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Table 4 (continued)
Taxon Specimen Flexor fibularis groove

contour/flexor fibularis
groove linear

Megaladapis madagascariensis DPC 17176 1.81

Megaladapis madagascariensis DPC 7821 2.43

Microcebus murinus AMNH 174428 1.03

Microcebus murinus AMNH 174430 1.04

Microcebus murinus AMNH 174431 1.03

Mirza coquereli DPC 0137 1.00

Mirza coquereli DPC 1139 1.00

Notharctus sp. AMNH 12000 1.01

Notharctus sp. AMNH 11474 1.00

Notharctus sp. AMNH 129382 1.01

Nycticebus coucang AMNH 90381 1.29

Nycticebus coucang AMNH 102027 1.25

Nycticebus coucang AMNH 212953 1.15

Otolemur crassicaudatus AMNH 187364 1.00

Otolemur crassicaudatus AMNH 150413 1.01

Otolemur crassicaudatus AMNH 216240 1.00

Perodicticus potto AMNH 184579 1.23

Perodicticus potto AMNH 269851 1.11

Perodicticus potto AMNH 86898 1.30

Propithecus verreauxi AMNH 170474 1.00

Propithecus verreauxi AMNH 170463 1.01

Propithecus verreauxi AMNH 208991 1.00

Varecia variegata AMNH 201384 1.11

Varecia variegata DPC 049 1.12

Varecia variegata AMNH 100512 1.09

to the calcaneal tubers, a convex lateral border of the calcaneus, and sustentacular shelves

that are dorsolaterally inclined relative to the mediolateral plane of the ectal facets’ dorsal

apices. Outside of adapiforms, some of these features can be found among lorises and

Babakotia, and these probable convergences help to guide our functional inferences.

Relative elongation of the distal calcaneal segment in Caenopithecus (37% of total

calcaneal length in NMB Eh 719) is intermediate between the very foreshortened condition

exhibited by adapines (27–34%) and the values seen in the relatively elongate notharctines

(38–45%), asiadapines (39–44%), and NMMP 58 (48%, Beard et al. (2007)); Anchomomys

is unique among stem strepsirrhines in having even longer distal segments (51–53%). The

value for NMB Eh 719 matches that which was reported for Europolemur by Gebo et al.

(2001). The variable “ResB” of Boyer et al. (2013), which is the residual from a regression of

absolute distal calcaneal segment length on estimated body mass across primates, is −0.16.

Among Paleogene primates, this residual is higher than those exhibited by asiadapines

and adapines, but lower than those of notharctines, Anchomomys, and all omomyiforms.

Caenopithecus’ value is lower than those of all extant lemuriforms and galagids, but
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higher than those of lorisids (see Table 1 of Boyer et al., 2013). Among subfossil lemurs,

Mesopropithecus has a much higher “Res B” residual, Megaladapis and Pachylemur have

slightly higher residuals, while Archaeolemur, Babakotia, and Palaeopropithecus have much

lower residuals.

The position of the peroneal tubercle in Caenopithecus is also intermediate between

the relative placements in adapines and other adapiforms, although Asiadapis shows

a similar pattern (Fig. 12A and Table 5). Europolemur klatti (GMH XXXII-196) has a

somewhat proximally-placed peroneal tubercle—clearly proximal to the distal terminus

of the ectal facet, and therefore more adapine-like than Caenopithecus. NMMP 20 and

NMMP 58 have also been interpreted as having adapine-like positions of the peroneal

tubercle (Ciochon et al., 2001; Beard et al., 2007). The peroneal tubercles of adapines are

particularly well-developed and protrude markedly directly plantar to the apex of the ectal

facet; they are so different from those of other adapiforms in their robust construction that

Decker & Szalay (1974) even questioned their homology with those of their relatives. In

strong contrast, the peroneal tubercles of Caenopithecus have proximal and distal borders

that grade gradually into the body of the calcaneus.

The width/length ratio of the ectal facet of NMB Eh 719 (55) is more similar to those

of adapines than notharctines (means of which, reported by Gebo et al. (2001), range from

45–52, but with ranges extending to 60 in Notharctus pugnax). The value of 64 reported for

NMMP 58 would be particularly high for an adapiform, with similar values only seen in

Adapis. Based on the values reported by Thalmann (1994), the index for Europolemur klatti

is particularly low (41.8), at the low end of the notharctine range.

The cuboid facets of Caenopithecus are similar to those of adapines in being fan-shaped,

but the long axes of the facets in the former are more dorsoplantarly oriented than the

latter (Fig. 12). A similarly dorsoplantar orientation of the cuboid facet appears to be

present in NMMP 20 (Ciochon et al., 2001) and NMMP 58 (Beard et al., 2007), and, among

crown strepsirrhines, in lorisids and Babakotia (Fig. 13). Notharctines, asiadapines, and

Anchomomys have cuboid facets whose long axes are oriented more mediolaterally than

dorsoplantarly.

The well-developed distal calcaneal tubercles of Caenopithecus (particularly notable

in NMB Eh 719 and NMB En.269) are similar to those of adapines, which typically (but

not consistently) have better-developed tubercles than notharctines such as Cantius and

Notharctus. Anchomomys, Marcgodinotius, and NMMP 58 also have relatively small distal

calcaneal tubercles.

The dorsolateral inclination of the sustentacular facet in Caenopithecus is—when judged

relative to the mediolateral plane of the ectal facet—also seen in basal adapiforms such as

Cantius and Marcgodinotius; other adapiforms, including adapines and more basal taxa

such as Asiadapis, show a larger angle between the mediolateral planes of the ectal and

sustentacular facets.

The strong medial bowing of the calcaneal tuber in Caenopithecus, combined with its

lack of development of any lateral flaring, appears to be unique among adapiforms, but

among extant primates is seen in lorisids (Fig. 13). The preserved portion of the calcaneal
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Figure 12 Peroneal tubercle position in living and extinct primates, and comparisons of the Caenopithecus calcaneus NMB Eh 719 with
those of other adapiforms. (A) Box and whisker plots of ((natural log of proximal segment length)—(natural log of the position of peroneal
tubercle midpoint)) measured on the calcanei of 50 Eocene adapiforms, 21 Eocene omomyiforms, four Eocene stem anthropoids, five Oligocene
parapithecids, five Paleocene plesiadapiforms, and 15 extant non-primate euarchontans. Note that the range of Caenopithecus is intermediate
between those of adapines and other adapiforms, but the broad range is largely driven by a single specimen. (B) Calcanei of various adapiforms scaled
to the same approximate proximal segment length, illustrating differences in peroneal tubercle position (peroneal tubercles are delimited by opaque
overlays). Also note the very short distal calcaneal segments of Adapis and Leptadapis relative to those of Caenopithecus and other adapiforms, and
the different shapes and orientations of the long axes of the cuboid facets in distal view (margins of the cuboid facets are also delimited by opaque
overlays). Scale bar = 10 mm.
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Table 5 Measurements of peroneal tubercle position and size taken on calcanei of living and extinct euarchontans.

Higher taxon Genus/species Specimen (1) ProxL (2) DistPT (3) MidPT (4) (3–1) (5) (2–1) (6) [(2–3)–1]

Adapinae Adapis parisiensis NMB QE 530 14.74 11.82 9.95 −0.393 −0.221 −2.065

Adapinae Adapis parisiensis NMB QE 644 12.33 9.62 8.22 −0.405 −0.248 −2.176

Adapinae Adapis parisiensis NMB QE 741 11.95 10.25 7.87 −0.418 −0.153 −1.614

Adapinae Adapis parisiensis NMB QE 779 13.3 12.05 9.72 −0.314 −0.099 −1.742

Adapinae Adapis parisiensis NMB QF 558 10.88 8.02 7.39 −0.387 −0.305 −2.849

Adapinae Adapis parisiensis NMB QH 640 12.81 10.55 9.57 −0.292 −0.194 −2.570

Adapinae Leptadapis magnus NMB QW 1676 22.56 19.7 16.55 −0.310 −0.136 −1.969

Adapinae Leptadapis magnus PQ 1746 23.49 19.58 15.8 −0.397 −0.182 −1.827

Adapinae Leptadapis magnus ACQ 266 24.74 22.05 16.95 −0.378 −0.115 −1.579

Adapinae Leptadapis magnus ACQ 267 24.63 22.09 17.97 −0.315 −0.109 −1.788

Adapinae Leptadapis magnus NMB QE 920 24.56 19.94 17.4 −0.345 −0.208 −2.269

Adapinae Leptadapis magnus NMB QE 604 21.13 17.9 15.61 −0.303 −0.166 −2.222

Adapinae Leptadapis magnus NMB QF 421 23.15 19.02 16.73 −0.325 −0.197 −2.313

Adapinae Leptadapis magnus NMB QE 830 21.61 18.6 16.15 −0.291 −0.150 −2.177

Asiadapinae Asiadapis cambayensis GU 716 5.76 5.89 na na 0.022 na

Asiadapinae Asiadapis cambayensis GU 760 6.64 6.71 6.01 −0.100 0.010 −2.250

Asiadapinae Marcgodinotius indicus GU 1644 4.19 4.98 4.13 −0.014 0.173 −1.595

Asiadapinae Marcgodinotius indicus GU 709 4.55 5.33 4.52 −0.007 0.158 −1.726

Asiadapinae Marcgodinotius indicus GU 751 4.82 5.71 5.06 0.049 0.169 −2.004

Asiadapinae Marcgodinotius indicus GU 1642 4.59 4.9 4.42 −0.038 0.065 −2.258

Asiadapinae Marcgodinotius indicus GU 1643 4.33 5.21 4.39 0.014 0.185 −1.664

Caenopithecinae Caenopithecus lemuroides NMB Eh 719 13.12 14.39 12.58 −0.042 0.092 −1.981

Caenopithecinae Caenopithecus lemuroides NMB En.268 14.12 14.46 11.61 −0.196 0.024 −1.600

Caenopithecinae Caenopithecus lemuroides NMB En.269 13.76 15.31 13.27 −0.036 0.107 −1.909

Carpolestidae Carpolestes simpsoni UM 101963 4.12 6.85 5.89 0.357 0.508 −1.457

Cynocephalidae Cynocephalus volans UNSM 11501 7.92 12.37 10.25 0.258 0.446 −1.318

Cynocephalidae Cynocephalus volans AMNH 207001 9.08 14.37 12.3 0.304 0.459 −1.479

Cynocephalidae Galeopterus variegatus USNM 317118 7.5 13.25 11.52 0.429 0.569 −1.467

Eosimiidae Eosimias sp. IVPP 11851 3.59 4.51 3.84 0.067 0.228 −1.679

Eosimiidae Eosimias sp. IVPP 12313 4.33 5.98 4.62 0.065 0.323 −1.158

Eosimiidae Eosimias sp. IVPP 12281 4.08 4.73 3.67 −0.106 0.148 −1.348

Notharctinae Cantius mckennai USGS 5897 10.45 12.72 11.4 0.087 0.197 −2.069

Notharctinae Cantius sp. USGS 6791 11.76 12.89 11.71 −0.004 0.092 −2.299

Notharctinae Cantius sp. USGS 21768 13.96 16.13 14.2 0.017 0.144 −1.979

Notharctinae Cantius abditus USGS 21771 14.04 16.91 15.23 0.081 0.186 −2.123

Notharctinae Cantius abditus USGS 21774 13.52 15.12 13.41 −0.008 0.112 −2.068

Notharctinae Cantius sp. USGS 21778 12.24 13.98 12.71 0.038 0.133 −2.266

Notharctinae Cantius abditus USGS 21825 13.53 15.06 13.66 0.010 0.107 −2.268

Notharctinae Cantius abditus USGS 21827 14.25 16.34 13.99 −0.018 0.137 −1.802

Notharctinae Cantius frugivorus USGS 21828 11.28 12.69 11.11 −0.015 0.118 −1.966

Notharctinae Cantius mckennai USGS 25029a 11.28 13.25 12.04 0.065 0.161 −2.232

Notharctinae Cantius mckennai USGS 25029b 11.28 13.1 11.73 0.039 0.150 −2.108

Notharctinae Cantius abditus AMNH 16852 13.05 15.09 13.75 0.052 0.145 −2.276
(continued on next page)
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Table 5 (continued)
Higher taxon Genus/species Specimen (1) ProxL (2) DistPT (3) MidPT (4) (3–1) (5) (2–1) (6) [(2–3)–1]

Notharctinae Cantius abditus USGS 6783 13.67 15.95 14.06 0.028 0.154 −1.979

Notharctinae Cantius ralstoni UF 252980 8.63 11.12 10.43 0.189 0.254 −2.526

Notharctinae Cantius sp. USGS 21829 12.41 14.61 13.41 0.077 0.163 −2.336

Notharctinae Cantius trigonodus USGS 6774 14.98 15.21 14.12 −0.059 0.015 −2.621

Notharctinae Notharctus tenebrosus AMNH 13766 15.46 18.42 16.35 0.056 0.175 −2.011

Notharctinae Notharctus tenebrosus AMNH 55061 13.27 16.17 13.65 0.028 0.198 −1.661

Notharctinae Notharctus tenebrosus AMNH 129382 13.56 16.07 14.28 0.052 0.170 −2.025

Notharctinae Notharctus tenebrosus AMNH 11474 13.25 15.01 13.46 0.016 0.125 −2.146

Notharctinae Notharctus tenebrosus AMNH 131945 14.26 17.66 15.05 0.054 0.214 −1.698

Notharctinae Notharctus tenebrosus AMNH 131955 14.79 18.07 16.53 0.111 0.200 −2.262

Notharctinae Notharctus tenebrosus AMNH 11478 15.57 18.57 16.73 0.072 0.176 −2.136

Notharctinae Smilodectes gracilis USNM 21815 14.5 16.85 14.95 0.031 0.150 −2.032

Notharctinae Smilodectes gracilis USNM 25686 14.76 16.38 14.82 0.004 0.104 −2.247

Notharctinae Smilodectes gracilis AMNH 131763 15.02 17.46 15.45 0.028 0.151 −2.011

Notharctinae Smilodectes gracilis AMNH 131774 14.85 16.96 14.93 0.005 0.133 −1.990

Omomyiformes Arapahovius gazini UCMP 118498 3.59 4.33 3.9 0.083 0.187 −2.122

Omomyiformes Arapahovius gazini UCMP 118499 3.39 4.43 3.83 0.122 0.268 −1.732

Omomyiformes Arapahovius gazini UCMP 173038 3.79 4.76 4.21 0.105 0.228 −1.930

Omomyiformes Hemiacodon gracilis AMNH 12613 7.61 8.01 6.34 −0.183 0.051 −1.517

Omomyiformes Omomys carteri UCM 67678 6.93 7.79 6.52 −0.061 0.117 −1.697

Omomyiformes Omomys carteri UCM 68745 7.23 8.61 6.97 −0.037 0.175 −1.484

Omomyiformes Omomys carteri UCM 69065 7.52 9.69 7.13 −0.053 0.254 −1.078

Omomyiformes Omomys carteri UCM 67679 7.04 8.82 6.53 −0.075 0.225 −1.123

Omomyiformes Omomys carteri UCM 69303 7.88 9.08 8.14 0.032 0.142 −2.126

Omomyiformes Omomys carteri UM 98604 6.45 7.01 6.4 −0.008 0.083 −2.358

Omomyiformes Ourayia uintensis SDNM 4020-60933 10.96 12.58 8.77 −0.223 0.138 −1.057

Omomyiformes Shoshonius cooperi CM 69765 4.43 5.3 4.49 0.013 0.179 −1.699

Omomyiformes Teilhardina belgica IRSNB M1236 3.49 4.99 4.03 0.144 0.358 −1.291

Omomyiformes Teilhardina belgica IRSNB M1237 3.09 4.2 3.63 0.161 0.307 −1.690

Omomyiformes Teilhardina belgica IRSNB M1247 3.2 4.47 3.9 0.198 0.334 −1.725

Omomyiformes Teilhardina belgica IRSNB 16786-06 3.27 4.28 3.67 0.115 0.269 −1.679

Omomyiformes Teilhardina belgica IRSNB 26857-05 3.19 4.12 3.62 0.126 0.256 −1.853

Omomyiformes Teilhardina belgica IRSNB 26857-04 3.48 4.77 4.15 0.176 0.315 −1.725

Omomyiformes Teilhardina belgica IRSNB M0061 3.13 4.35 3.62 0.145 0.329 −1.456

Omomyiformes Teilhardina belgica IRSNB 16786-03 3.31 4.63 4.01 0.192 0.336 −1.675

Omomyiformes Tetonius sp. AMNH 88821 4.49 6.7 4.49 0.000 0.400 −0.709

Parapithecidae Apidium phiomense DPC 1003B 14.12 17.39 15.22 0.075 0.208 −1.873

Parapithecidae Apidium phiomense? DPC 8810 13.45 17.52 14.81 0.096 0.264 −1.602

Parapithecidae Apidium phiomense DPC 2381 13.79 17.41 15 0.084 0.233 −1.744

Parapithecidae Apidium phiomense DPC 15679 14.06 17.4 15.05 0.068 0.213 −1.789

Parapithecidae Apidium phiomense DPC 20576 9.72 12.4 10.45 0.072 0.244 −1.606

Paromomyidae Ignacius graybullianus USNM 442240 4.82 7.04 6.02 0.222 0.379 −1.553

Plesiadapidae Nannodectes gidleyi AMNH 17379 6.49 8.95 7.48 0.142 0.321 −1.485
(continued on next page)
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Table 5 (continued)
Higher taxon Genus/species Specimen (1) ProxL (2) DistPT (3) MidPT (4) (3–1) (5) (2–1) (6) [(2–3)–1]

Plesiadapidae Plesiadapis churchilli UM no number 7.71 10.53 9.01 0.156 0.312 −1.624

Plesiadapidae Plesiadapis cookei UM 87990 11.13 16.05 12.91 0.148 0.366 −1.265

Plesiadapidae Plesiadapis tricuspidens MNHN R 414 12.25 17.23 14.65 0.179 0.341 −1.558

Proteopithecidae Proteopithecus sylviae DPC 24776 7.19 8.45 7.74 0.074 0.161 −2.315

Ptilocercidae Ptilocercus lowii USNM 488067 3.13 3.74 3.05 −0.026 0.178 −1.512

Ptilocercidae Ptilocercus lowii USNM 488069 3.13 3.73 3.03 −0.032 0.175 −1.498

Ptilocercidae Ptilocercus lowii USNM 488072 3.13 3.66 3.05 −0.026 0.156 −1.635

Tupaiidae Tupaia belangeri AMNH 113135 5.3 7.16 5.51 0.039 0.301 −1.167

Tupaiidae Tupaia glis SBU Tg01 5.09 7.72 5.26 0.033 0.417 −0.727

Tupaiidae Tupaia glis AMNH 215175 4.9 7.58 5.63 0.139 0.436 −0.921

Tupaiidae Tupaia glis AMNH 215176 4.62 6.96 4.91 0.061 0.410 −0.813

Tupaiidae Tupaia glis AMNH 215177 5.23 7.9 5.92 0.124 0.412 −0.971

Tupaiidae Tupaia glis AMNH 215178 5.18 7.63 5.91 0.132 0.387 −1.102

Tupaiidae Tupaia glis AMNH 215179 4.99 6.93 5.41 0.081 0.328 −1.189

Notes.
ProxL, length of the proximal segment; DistPT, distance from the proximal-most aspect of the calcaneal tuber to the distal-most projection of the peroneal tubercle;
MidPT, distance from the proximal-most aspect of the calcaneal tuber to the midpoint of the peroneal tubercle; (3-1), MidPT—ProxL; (2-1), DistPT—ProxL
; (2-3)—1, [(DistPT-MidPT)—ProxL].

tuber of NMMP 58 appears to be bowed medially, but the most proximal portion of the

tuber is damaged.

Automated geometric analysis of primate calcanei
The multidimensional scaling (MDS) plot from the auto3dgm analysis (Fig. 14; see

Datasets S3 and S4 for 3D coordinates and MDS coordinates, respectively) appears to

capture a mix of phylogenetic and functional signals. The first axis is probably related in

large part to major differences in distal calcaneal elongation, with the relatively elongate

calcanei of tarsiers, galagids, Microcebus, and omomyiforms having strongly positive

scores, and the relatively foreshortened calcanei of non-primate euarchontans, hominoids,

and cercopithecoids having strongly negative scores. Several basal extinct primate clades,

such as Notharctinae, Adapinae, Asiadapinae, and Eosimiidae occupy a central zone along

the first axis, presumably reflecting in part their intermediate levels of distal calcaneal

elongation. Caenopithecus (NMB Eh 719) falls into a unique part of the primate calcaneal

morphospace, showing no overlap with any other living or extinct taxon, but falling about

mid-way between the polygons encompassing Dermoptera, Lorisidae, and Adapinae;

Babakotia also falls into this part of the MDS plot, but is in an even more extreme position,

actually falling outside of the morphospace encompassing all other known living and

extinct primates. Non-cheirogaleid, non-lepilemurid lemuriforms show considerable

cohesion along the first axis despite variation in locomotor style, presumably reflecting

strong phylogenetic signal in calcaneal morphology; the same can be said of platyrrhines

as a whole. Lorisids fall within the lemuriform morphospace along the first axis, but, along

with Babakotia, some adapines, and Caenopithecus, have strongly positive scores along

the second axis. Overall, as with the multivariate analysis of the astragalus, Caenopithecus

appears to occupy a calcaneal morphospace that is best interpreted as being related to
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Figure 13 Calcanei of extant and subfossil strepsirrhines compared to NMB Eh 719, attributed here
to Caenopithecus lemuroides. (A) Varecia variegata (AMNH 201384); (B) Daubentonia madagascariensis
(AMNH 185643); (C) Perodicticus potto (AMNH 184597); (D) Nycticebus coucang (AMNH 102027);
(E) Babakotia radofilai (DPC 11818); (F) Caenopithecus lemuroides (NMB Eh 719). Views in, from left
to right, medial, dorsal, lateral, and plantar; and, on the far right, proximal (above) and distal (below).
Scale bars are equal to 5 mm.
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Figure 14 Multidimensional scaling plot derived from automated geometric morphometric analysis of euarchontan calcanei, based on 1,200
points. The position of Caenopithecus lemuroides (based on NMB Eh 719) is marked by a white star enclosed in a red circle. Abbreviations: “Asiad,”
Asiadapinae; “Daub,” Daubentonia; “Noth,” Notharctinae; “Proteo,” Proteopithecus.

cautious slow climbing, considerable pedal mobility, and possibly hind limb suspension.

The proximity of Caenopithecus to adapines is consistent with its phylogenetic placement

(see below), while its more positive score along the second axis (relative to most adapines)

might reflect an increased emphasis on slow and cautious climbing, and possibly hind limb

suspension, when compared to its adapine relatives. Such a scenario is also consistent with

the functional interpretation that has been put forth for the closely related caenopithecine

Afradapis, and the possible caenopithecine Adapoides, on the basis of their astragalar

morphology, which is very loris-like (Boyer, Seiffert & Simons, 2010). We further explore

the functional implications of Caenopithecus’ tarsal morphology below.

Phylogenetic analysis
Parsimony analysis of the character matrix with 256 of 291 characters ordered, transitions

between fixed and polymorphic states weighted as a half-step, premolar re-acquisition

not allowed, and with the molecular scaffold enforced recovered two trees of 4330.5 steps

(consistency index excluding uninformative characters (CI) = 0.1605, retention index

(RI) = 0.5646, rescaled consistency index (RC) = 0.0914, Fig. 15). The only differences

between the current result and that of Boyer et al. (2015b, who provided the most recent

modification of the matrix used here) are (1) the placement of the clade (Europolemur

dunaifi, (Aframonius, (Afradapis, Caenopithecus))) as the sister taxon of Adapinae to

the exclusion of Microadapis (and all other adapiforms), (2) the placement of taxa

previously situated as basal caenopithecines (Europolemur klatti and Mahgarita stevensi)
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Figure 15 Phylogenetic analysis with some multistate characters ordered. Strict consensus of two
equally parsimonious trees of length 4330.5 recovered following parsimony analysis (10,000 heuristic
search replicates) of the 291 character matrix in PAUP* 4.10b, with 256 of the characters ordered and
transitions between “fixed” and “polymorphic” states in ordered morphoclines weighted as 0.5. See
text for tree statistics; numbers above or below branches are bootstrap values, following 1,000 pseu-
doreplicates. Relationships among extant species were constrained by a molecular “scaffold” following
Springer et al. (2012).
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as members of a (Europolemur klatti, (Darwinius, (Mahgarita, Mescalerolemur))) clade,

and (3) notharctines (represented by Cantius) and the “cercamoniines” Pronycticebus and

Protoadapis are consecutive sister taxa of a clade containing all of the aforementioned taxa.

None of these relationships are well-supported—only the Adapinae (bootstrap value of

93), Adapis parisiensis + Leptadapis magnus (91), and Afradapis + Caenopithecus (70)

clades are supported by bootstrap values higher than 50.

Parsimony analysis with all characters unordered and equally weighted, but constrained

by the molecular scaffold, led to the recovery of 342 equally parsimonious trees of

length 4,638 (CI = 0.2218, RI = 0.4950, RCI = 0.1104) (Fig. 16A). In contrast to the

results from the analysis with some characters ordered and scaled, the sister taxon of

Adapinae was found to be a (Microadapis, (Pronycticebus + Protoadapis)) clade rather than

Caenopithecinae; an Afradapis-Caenopithecus clade was placed as a more basal sister group

of that clade, alongside Aframonius and E. dunaifi, followed more distantly by Magharita.

Darwinius, Djebelemur, E. klatti, Mescalerolemur, a European anchomomyin clade, and an

African “Anchomomys” milleri + Azibiidae clade were all placed outside of this clade, but

higher up the strepsirrhine stem lineage than notharctines, asiadapines, and sivaladapids.

Both Bayesian phylogenetic analyses presented here reached convergence, judging from

very low (<0.01) average standard deviations of split frequencies in the last generations

sampled. The “halfcompat” consensus derived from Bayesian analysis with all characters

unordered (Fig. 16B) provides more resolution than the comparable parsimony analysis,

but few higher-level relationships among adapiforms are well-supported aside from

Adapinae (posterior probability (PP = 100)), Afradapis + Caenopithecus (97), Pronyc-

ticebus + Protoadapis (99), Sivaladapidae (100), and Asiadapinae (100). This analysis

differs from both parsimony analyses in placing an Afradapis-Caenopithecus clade as the

sister group of Adapinae to the exclusion of Aframonius, though with very weak support.

Darwinius, E. dunaifi, and Mahgarita are placed in an unresolved polytomy outside of that

clade, followed more distantly by E. klatti. One of the more notable implications of this

topology is that, given parsimony optimization, it unequivocally requires re-acquisition

of the upper and lower first premolar, and re-evolution of a double-rooted upper and

lower second premolar (i.e., from a single-rooted condition), along the stem leading to

Adapinae. Also notable in this context is the placement of the possible caenopithecine

Mescalerolemur as a sister taxon of Anchomomyini, far from Mahgarita. We suspect that

this result is incorrect, given that Mescalerolemur and Mahgarita are such geographically

and temporally unique records in the primate fossil record (and share a number of

striking morphological apomorphies), but it is nevertheless interesting that the older

and arguably more primitive Mescalerolemur is placed closer to crown strepsirrhines

than caenopithecines, adapines, and non-anchomomyin “cercamoniines”, similar to the

results recovered by Kirk & Williams (2011) for Mescalerolemur + Mahgarita. Outside

of Strepsirrhini, is also notable that, within Haplorhini, results are radically different

from those in the parsimony analyses in supporting a “strict tarsier-anthropoid clade”

(i.e., tarsiers join anthropoids to the exclusion of all omomyiforms) rather than a

monophyletic Tarsiiformes (tarsiers + omomyiforms).
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Figure 16 Phylogenetic analysis with all characters unordered. (A) Strict consensus of 342 equally
parsimonious trees of length 4,638 following parsimony analysis (10,000 heuristic search replicates) of
the 391 character matrix in PAUP* 4.10b, with all characters unordered and equally weighted. See text for
tree statistics; numbers above or below branches are bootstrap values, following 1,000 pseudoreplicates.
Relationships among extant species were constrained by a (continued on next page...)
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Figure 16 (...continued)

molecular “scaffold” following Springer et al. (2012). Note that, unlike the consensus tree with some
characters ordered and scaled, adapines form a clade with Microadapis, Pronycticebus, and Protoadapis
rather than with any caenopithecine, though Caenopithecus still forms a clade with Afradapis to the
exclusion of all other species. (B) “Halfcompat” (majority-rule) consensus tree following 50 million
MCMC generations in MrBayes (first 25% discarded as “burn-in”). Numbers above or below branches
are posterior probabilities. Relationships among extant species were constrained by a molecular “scaffold”
following Springer et al. (2012). Note that caenopithecines are paraphyletic with respect to adapines given
this topology, unambiguously implying re-acquisition of the upper and lower first premolar in the latter
clade.

Parsimony and Bayesian analysis of the matrix with standard polymorphic scoring

(which reduced the total number of states for each of the 256 multistate characters that

were ordered in the parsimony analysis, thereby allowing them to be treated as ordered in

MrBayes) resulted in some differences from the parsimony results in Figs. 15 and 16A, and

the Bayesian results in Fig. 16B, but none that impacted the placement of Caenopithecus

close to Afradapis, and, more distantly, Adapinae (Figs. 17A and 17B). In the parsimony

analysis with standard polymorphic scoring (783 equally parsimonious trees of length

3796; CI excluding uninformative characters = 0.1771, RI = 0.5919, RCI = 0.1059), the

only changes among stem strepsirrhines were outside of Adapidae, specifically (1) the join-

ing of Darwinius and Europolemur klatti as a sister clade of Mahgarita + Mescalerolemur

(rather than being paraphyletic with respect to Mahgarita + Mescalerolemur), (2) recovery

of a Pronycticebus + Protoadapis clade as sister of the clade containing Adapidae,

Darwinius, E. klatti, Mahgarita, and Mescalerolemur (rather than being paraphyletic with

respect to that clade), (3) recovery of a clade containing European Anchomomys species and

movement of African “Anchomomys” milleri to a sister taxon relationship with Djebelemur,

and (4) placement of Mazateronodon as the sister taxon of a ((Plesiopithecus, (“A.” milleri,

Djebelemur)), crown Strepsirrhini) clade.

The Bayesian analysis with 256 characters ordered showed more differences from the

results based entirely on unordered characters, but again Afradapis was placed as the sister

taxon of Caenopithecus, and, with Aframonius, all caenopithecines were placed as sister

taxa of Adapinae, but with higher support (posterior probability of 79 versus 66). There

was also moderate support (PP = 72) for placement of E. dunaifi as the sister taxon of

that clade. There was no support for a clade containing all stem and crown strepsirrhines

to the exclusion of asiadapines, notharctines, and Donrussellia (supported by a PP of 90

in the analysis with all characters unordered); instead sivaladapids, asiadapines, and a

(Microadapis (Pronycticebus, Protoadapis)) clade were placed in a basal polytomy, with

only notharctines and Donrussellia being placed more basally. The anchomomyin clade

broke down into a polytomy with azibiids, and Mescalerolemur was again separated

from Mahgarita and placed as a sister of a clade containing anchomomyins, azibiids,

djebelemurids, Plesiopithecus, and crown strepsirrhines.

When the same phylogenetic analyses are run with the Egerkingen tarsals scored as

Leptadapis priscus rather than as Caenopithecus, the results of some analyses were different,

though not radically so. Under parsimony (with 256 characters ordered, transitions
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Figure 17 Phylogenetic analysis with standard polymorphic scoring and 256 multistate characters
treated as ordered. (A) Strict consensus of 783 equally parsimonious trees of length 3,796 following
parsimony analysis (10,000 heuristic search replicates) of the 291 character matrix in PAUP* 4.10b, with
all characters equally weighted, “standard” scoring of polymorphisms, and 256 multistate characters
treated as ordered. See text for tree statistics; numbers above or below (continued on next page...)
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Figure 17 (...continued)

branches are bootstrap values, following 1,000 pseudoreplicates. Relationships among extant species were
constrained by a molecular “scaffold” following Springer et al. (2012). (B) “Halfcompat” (majority-rule)
consensus tree following 50 million MCMC generations of the same matrix in MrBayes (first 25%
discarded as “burn-in”). Numbers above or below branches are posterior probabilities. Relationships
among extant species were constrained by a molecular “scaffold” following Springer et al. (2012). Note
that, as in the Bayesian analysis of unordered characters caenopithecines are paraphyletic with respect
to adapines given this topology, unambiguously implying re-acquisition of the upper and lower first
premolar in the latter clade.

between fixed and polymorphic states weighted as a half-step, premolar re-acquisition

not allowed, and with the molecular scaffold enforced) Caenopithecus still formed a clade

with Afradapis, but caenopithecines as a whole were not placed as the closest sister taxa

of Adapinae; rather, the sister group of the “core” caenopithecines (i.e., (Aframonius,

(Afradapis, Caenopithecus))) was a clade containing Darwinius and E. dunaifi. Mescalerole-

mur and Mahgarita together formed the sister group of that larger clade, and all of those

taxa were joined more basally by E. klatti, while Microadapis was placed as the sister taxon

of Adapinae. When all characters were treated as unordered, parsimony analysis placed

adapines as the sister taxon of a (Microadapis, (Pronycticebus, Protoadapis)) clade, and

caenopithecines (broadly defined) were paraphyletic with respect to that larger clade.

Under Bayesian inference, the support for the paraphyly of caenopithecines with respect to

adapines disappeared, and there was only very weak support (0.51 posterior probability)

for an (Aframonius, (Afradapis, Caenopithecus)) clade, and no support (i.e., posterior

probability of <50) for a caenopithecine-adapine clade. With the change to the treatment

of polymorphic characters (i.e., use of “standard” polymorphic scoring), the same

strict consensus and “halfcompat” topologies were retrieved regardless of whether the

Egerkingen tarsals were attributed to L. priscus or Caenopithecus.

DISCUSSION AND CONCLUSIONS
Functional considerations
In her doctoral dissertation, Dagosto argued that “Adapis parisiensis, Leptadapis magnus,

and Caenopithecus lemuroides have features of the upper ankle joint and foot proportions

which strongly suggest that quadrupedal slow climbing was the dominant form of locomo-

tion” (Dagosto, 1986, p. 333). Our analyses lend additional support to this hypothesis, and

our functional interpretation is broadly consistent with that of Dagosto (1986).

It has been argued that several features of the strepsirrhine hind limb, including

astragalar features such as laterally flaring fibular facets and laterally placed grooves for

the tendon of flexor fibularis, reflect an ancestral dependence on the use of inverted and

abducted foot postures on inclined and vertical small-diameter supports (Gebo, 2011).

Some features of the Caenopithecus tarsals suggest that, relative to other adapiforms,

C. lemuroides’ tarsus may have been held in particularly inverted postures. For instance,

if the fibular facet angle faithfully reflects pedal inversion (Gebo, 2011; Boyer & Seiffert,

2013), then Caenopithecus’ high value alone would suggest that this taxon might have

had more inverted foot postures than any other Paleogene primate aside from Afradapis,
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Cantius nuniensis, and Djebelemur (though the ranges of Adapis parisiensis and Notharctus

tenebrosus also encompass values as high as that of Caenopithecus, see Boyer & Seiffert

(2013)). Boyer et al. (2015a) and Boyer et al. (2015b) have also recently argued that the

ratio of medial tibial facet (MTF) area to ectal facet (EF) area provides another quantitative

proxy for pedal inversion in fossil primates, and Caenopithecus’ ratio of 0.11 is higher than

that of any other adapiform. Among extant primates, Caenopithecus’ value is higher than

those of cheirogaleids, Lepilemur, Daubentonia, and even some lorises, but is equaled or

exceeded by leaping galagids, indriids, and lemurids. Boyer et al. (2015b) argued that the

high MTF/EF area ratios of the latter strepsirrhines might reflect increased loading of the

MTF due to acrobatic grasp-leaping, i.e., increased loading relative to more generalized

(less acrobatic) ancestors whose feet were already more habitually inverted than those of

other, non-strepsirrhine primates, and thus already had high MTF/EF area ratios.

Given that extant strepsirrhine grasp-leapers have both high fibular facet angles and

high MTF/EF area ratios as in Caenopithecus, it could be argued that the latter’s values

reflect acrobatic leaping as well as pedal inversion. However, we consider this to be

less likely than a dependence on slow and cautious climbing, and possibly hind limb

suspension, when other loris-like features of Caenopithecus’ tarsals are taken into account,

such as its high astragalar neck angle, inferred presence (based on neck width) of a broad

astragalar head, a curved distal projection of the medial tibial facet that extends onto the

astragalar neck, and a deeply excavated groove for the tendon of flexor fibularis on the

plantar surface of the body (which, at least among extant strepsirrhines, is deepest in

species that are known to habitually engage in hind limb suspension). Calcaneal features

seen in Caenopithecus that are likely related to increased pedal inversion and overall

mobility rather than acrobatic grasp-leaping include the dorsoplantarly oriented long axis

of the cuboid facet, projection of the ectal facet dorsal to the calcaneal tuber (rather than

being level to it), the dorsolateral inclination of the sustentacular shelf, and the convexity

of the lateral border of the calcaneal body and (correlated) medial bowing of the calcaneal

tuber. Furthermore, the distal calcaneus of Caenopithecus is less elongate (relative to body

mass) than are the calcanei of acrobatic lemuriforms with high MTF/EF ratios. Finally, in

our morphometric analyses the tarsals of Caenopithecus show no close phenetic affinities to

those of extant leaping primates, and instead appear to be most consistent with a somewhat

loris-like complex derived from a generalized adapiform Bauplan that combined both

notharctine-like and adapine-like features.

The trochlea-like groove for the tendon of flexor fibularis (the medial wall of which is

highly abraded on NMB En.270, but obviously quite prominent, see Fig. 18, feature 2)

presumably served to prevent medial slippage of that tendon and maintain its line of

action while the foot was held in diverse inverted postures, including those that would

have been required by hind limb suspension. The strong medial buttressing of this groove

via a bony plantar projection might have been particularly important for Caenopithecus

because, unlike most other primates, the plantar groove guiding the passage of the flexor

fibularis tendon along the plantar surface of the calcaneal sustentaculum was poorly

developed, as might be expected given the dorsolateral inclination of the sustentacular
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Figure 18 Sustentacular facet morphology and flexor fibularis groove depth in Caenopithecus and
other adapiforms. Stereopairs of (A) Caenopithecus (NMB En.270, reversed); (B) Afradapis (DPC
21445C, reversed); (C) Adapis (ECA 7377); and Asiadapis (GU 747) in distal view, showing (1) the
laterally expanded convexity of the sustentacular facet in Afradapis and particularly Caenopithecus, and
(2) the deep flexor fibularis grooves of Afradapis and Caenopithecus when compared with Adapis and
Asiadapis.

shelf. The plantar projection on the medial aspect of the astragalar body might, then,

represent a compensatory feature that maintained a tunnel-like passage for the tendon.

The continuation of this trochlear passage for the flexor fibularis tendon onto the plantar

surface of the astragalus could have been particularly important for the maintenance of

strong pedal grasps when the foot was held in extreme plantarflexion (as would occur

during hind limb suspension), as this groove and its associated ligaments would have

formed—and maintained the integrity of—the so-called “tarsal tunnel” (e.g., Keck,

1962), a structure that, in the case of suspensory species that habitually hold the foot in

extreme plantarflexion, might also prevent plantar bowstringing of the flexor fibularis

tendon. This inference is supported by the presence of a similarly deep plantar exposure of

the flexor fibularis groove in occasionally or habitually suspensory euarchontans such

as Cynocephalus, subfossil palaeopropithecid “sloth lemurs,” lorises, and even in the

occasionally suspensory lemurid Varecia variegata (Meldrum, Dagosto & White, 1997), a

species whose flexor fibularis grooves are comparatively more shallow than the former

taxa, but are nevertheless larger and deeper than those of its close lemurid relatives

that rarely, if ever, engage in hind limb suspension (Fig. 11). All of these species also

resemble Caenopithecus in lacking the distinct posterior trochlear shelf that is seen various

Paleogene primates (e.g., notharctine adapiforms and microchoerine omomyiforms)

whose postcranial morphology suggests an increased capacity for leaping; the absence of

such a shelf-like projection along the proximal border of the lateral tibial facet presumably
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would have allowed for increased plantarflexion relative to those taxa that have a shelf. A

prominent medial wall of the flexor fibularis groove that is similar to that of Caenopithecus

is also present in Babakotia (Fig. 9H). In extant lorises the same function is achieved in a

slightly different manner; rather than having a mediolaterally restricted plantar projection,

instead the lateral tibial facet (= trochlear articular surface) is mediolaterally broad and

its entire surface projects plantar to the flexor fibularis groove (Figs. 9E and 9F), providing

a structurally somewhat different (but functionally similar) strong medial buttress for

a similarly trochlear groove—again presumably preventing medial slippage and bow-

stringing of the flexor fibularis tendon, and maintaining the line of action of the tendon

during strong pedal grasping and hind limb suspension. Quantification of flexor fibularis

groove depth demonstrates that Afradapis and Caenopithecus are both loris-like in this

feature (Fig. 11), while Babakotia and Megaladapis show the same pattern but take it to an

extreme, with values that are much higher than those of any other strepsirrhines. Though

Varecia isn’t the only lemurid that engages in hind limb suspension (and it should be

noted that occasional use of hind limb suspension is not at all uncommon among primates

(e.g., Meldrum, Dagosto & White, 1997)), it does so more frequently, and its high values

relative to its lemurid relatives might also be explained as a correlate of this behavioral

pattern. The high value of Cheirogaleus medius is interesting given evidence from that

species’ axial skeleton for a more loris-like dorso-stable Bauplan than other cheirogaleids

(including Cheirogaleus major) (Granatosky et al., 2014). The high value of the terrestrial

subfossil form Archaeolemur is more difficult to explain and requires further investigation,

though it does not approach the magnitude seen in Afradapis and Caenopithecus. In

summary, the pronounced height of the astragalar body in Caenopithecus—which is often

associated with leaping propensities in primates—seems more likely to be a correlate of the

plantar projection that buttresses the flexor fibularis groove, while at the same time being

accentuated by the absence of the posterior shelf. We interpret these correlated features

as two aspects of a morphological pattern that more likely facilitated inversion, increased

capacity for plantarflexion, and possibly hind limb suspension in this species.

The dorsoplantar orientation of the long axis of the cuboid facet (and correlated medial

placement of the cuboid pivot) is also seen in slow-moving lorises and palaeopropithecids,

and suggests that the articulating cuboid would have been held in such a position that the

navicular articulation was more dorsally oriented than in those taxa that have cuboid facets

whose “pits” are situated along the plantar margin of the facet. The dorsolateral inclination

of the calcaneal sustentacular facet might represent a structural mechanism that would

have restricted movement of the astragalar neck such that, in the most stable positions

allowed by the articulating ectal and sustentacular facets, the long (roughly mediolateral)

axis of the astragalar neck and head would have been held in an inverted position. A similar

dorsolateral orientation of the sustentaculum, with no plantar groove, is also seen in

Babakotia (Fig. 13E). The tightly curved calcaneal ectal facet of Caenopithecus nevertheless

appears to provide an extensive surface for articulation of the astragalar ectal facet, thereby

allowing for considerable mobility in the proximodistal plane and corresponding potential

for inversion (when positioned relatively proximally) and eversion (when positioned
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relatively distally) of the calcaneus with respect to the astragalus (Fig. 19, and see Decker

& Szalay, 1974) (though this assessment is based on articulation with NMB En.270, which

probably does not belong to the same individual, see Fig. 19). This capacity for eversion is

interesting given the strikingly convex shape of the proximal portion of the sustentacular

facet of Caenopithecus (Fig. 16A), which is fairly unique among adapiforms (see the rela-

tively flat sustentacular facets of Adapis and Asiadapis, Figs. 18C and 18D) and rare among

extant primates. Given that the calcaneal sustentacular facet is relatively flat (mediolater-

ally), the convexity of the articulating astragalar sustentacular facet, and the medioplantar

orientation of the medial extension of that facet, suggests a mechanism by which the

astragalus might be capable of slipping into a more or less “locked” (but not particularly

stable) position when the calcaneus is everted relative to the astragalus (Figs. 19B, 19D,

19E and 19H). Such everted positions greatly reduce the overlap of the articulating susten-

tacular facets, however, and furthermore lead to a corresponding separation of the head

of the astragalus from the distal calcaneus (and, presumably, correlated separation of the

navicular from the cuboid), suggesting to us that these foot postures are unlikely to have

been used habitually. It is conceivable that such postures might have been employed during

quadrumanous bridging behaviors, for instance when one foot maintains a strong grasp

on an inclined support, but becomes increasingly everted as the body turns away from that

support to grasp a nearby branch with the other limbs. A similar medioplantar extension

of the astragalar sustentacular facet is also seen in lorisids, lending some support to that

interpretation, but in these taxa the facets are not nearly as convex as that of Caenopithecus.

Among living primates, projection of the ectal facet dorsal to the calcaneal tuber is seen

in generally slow-moving species such as lorisids, whereas leaping species that depend on

powerful propulsion via the triceps surae musculature (such as tarsiers; Gebo, 1987), tend

to have calcaneal tubers that project dorsally to approximately the same level as the most

dorsal surface of the ectal facet. The development of rugosities along the medial margin

of the calcaneal tuberosity on NMB Eh 719 suggests that the calcaneal tendon might have

had strong insertions along both the dorsal and medial surfaces of the tuber, as might be

required if the calcaneus as a whole was typically held in an inverted position with respect

to the tibia. The medial curvature, and moderately developed plantar projection, of the

calcaneal tuber would also be expected to have increased the mechanical advantage of the

superficial head of the flexor digitorum brevis muscle, which is important for species that

engage in hind limb suspension because such an arrangement allows for strong digital

flexion in diverse foot postures, notably those that might reduce the contractile potential

of flexor fibularis (Sarmiento, 1983). A distinctly convex lateral border of the calcaneus is

also seen (though to a greater degree) in lorisids, whereas dedicated leapers tend to have

calcaneal tubers and distal segments whose long axes are roughly parallel. The mediolateral

curvature of the calcaneal body in primates with more inverted feet might be functionally

similar to dorsoplantar curvature of the calcaneal body in primates that have more everted

feet; i.e., due to inversion, the medial surface of the tuber becomes functionally equivalent

(in terms of the line of action of the triceps surae musculature) to the dorsal surface of the

tuber in taxa with more everted feet.
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Figure 19 Articulation of the unassociated Caenopithecus astragalus NMB En.270 and and calcaneus
NMB Eh 719 in inversion and eversion. Articulated astragalus and calcaneus in (A) lateral view, inverted;
(B) lateral view, everted; (C) medial view, inverted; (D) medial view, everted; (E) dorsal view, inverted;
(F) dorsal view, everted; (G) distal view, inverted; (H) distal view, everted. In each unique view, from top
to bottom the astragalus is rendered as solid (e.g., A1), translucent (e.g., A2), or is not shown (e.g., A3).
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Finally, we note that Caenopithecus has a particularly well-developed tubercle on the

lateral surface of the astragalar neck for the astragalar-ectocuneiform ligament. This

ligament tubercle is also well-developed in lorises, highly suspensory sloth lemurs such

as Babakotia and Palaeopropithecus, the loris-like caenopithecine Afradapis, and the

loris-like possible caenopithecine Adapoides, but is not clearly expressed to the same extent

in adapines or grasp-leaping lemuriforms. We infer that the large tubercle reflects the

existence of a particularly large astragalar-ectocuneiform ligament, and hypothesize that

such an enlarged ligament might have been one of several ligamentous features that served

(at least in part) to keep the astragalus closely anchored to the surrounding tarsals when

the compressive load of the tibia on the astragalus was released—as would be expected to

occur during hind limb suspension. Such a morphological adaptation would undoutedly

be a more energy-efficient mechanism for maintaining articular integrity of the tarsals in

habitually suspensory postures than to depend on muscles and their associated tendons.

This interpretation calls into question whether Notharctus might have also utilized hind

limb suspensory behaviors to a significant degree because it (but not Cantius) exhibits a

tubercle that is developed to the same extent as that of Caenopithecus.

In summary, when all of the evidence presented here is taken into account, we consider

it most likely that Caenopithecus had a tarsus that was habitually held in strong inversion,

and that this species was capable of strong pedal grasping in a diversity of postures, as

is typical of slow-moving primates that simultaneously use all four limbs to navigate

arboreal settings in which branches are small relative to hand and foot size (such as

terminal branches). We do not detect any compelling morphological evidence for habitual

leaping or acrobatic grasp-leaping in Caenopithecus’ tarsals, but we do consider their

morphology to be consistent with the use of hind limb suspension. Jenkins & McClearn

(1984) pointed out that hind limb reversal of the sort that is required for hind limb

suspension is accomplished in placental mammals via cruro-astragalar plantarflexion,

subtalar inversion, and transverse tarsal supination, all of which we consider to have been

possible in Caenopithecus and facilitated particularly well by its morphology. Inverted

postures might be further indicated by a long and deep plantar exposure of the flexor

fibularis groove, the development of the large tubercle for the astragalar-ectocuneiform

ligament, and by the correlation of such extreme postures with slow climbing as suggested

by the existence in Caenopithecus of relatively small tarsal facets (in this case estimated

relative to tooth size—though admittedly this could also relate to a folivorous diet (and

relatively large molars) as suggested above).

Lifestyle, phylogenetic position, and biogeographic origin of
Caenopithecus
If we are correct in attributing the Egerkingen tarsals to Caenopithecus lemuroides,

then members of this species can now be reconstructed as having been folivorous slow

climbers that were approximately 1.5–2.5 kg in body mass. We consider it unlikely that

C. lemuroides individuals were adept leapers, and more probable that members of this

species consistently maintained powerful grasps on branches as they moved through
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their arboreal habitats. We also consider it possible, based in part on the form-function

correlation that we propose for the depth of the flexor fibularis groove on the plantar

surface of the astragalus, that C. lemuroides might have regularly engaged in hind limb

suspensory postures, though more evidence from the other bones of the hind limb is

certainly needed to fully test that hypothesis. Regardless of whether the inference of

hind limb suspension is correct, the reconstruction of C. lemuroides as a folivorous and

slow climbing species suggests that the best extant primate analogues might be found

among howler monkeys (Alouatta), although all known living and extinct alouattines

are considerably larger than C. lemuroides (ranging in size from ∼4 to 11.5 kg; Smith &

Jungers, 1997). The combination of folivory and slow climbing arguably also fits with what

might be predicted for the adaptive profile of basal “stem” members of the lemuriform

indrioid palaeopropithecid clade, prior to their acquisition of extreme specializations

for quadrumanual under-branch suspension. The acquisition of such a lifestyle in

distantly related lineages that presumably shared a common ancestor with distinctively

strepsirrhine ankle morphology (Gebo, 2011; Boyer & Seiffert, 2013) may help to explain

tarsal similarities that are shared by C. lemuroides and Babakotia.

Most of our phylogenetic analyses place Caenopithecus close to adapines to the exclusion

of other non-caenopithecine adapiforms, but importantly the new tarsal evidence shows

that Caenopithecus is not just a dentally aberrant adapid with an adapine-like postcranium;

instead, Caenopithecus appears to be an adaptively unique member of Europe’s middle

Eocene primate fauna. The biogeographic underpinnings of the adapiform diversity seen

in the middle Eocene of Europe remain mysterious. Godinot (1998) argued that Caeno-

pithecus and Adapinae were likely immigrant taxa that arrived in Europe independently

during the middle Eocene, possibly from Asia, but simple parsimony reconstructions

of continental biogeography onto the trees derived from our phylogenetic analyses all

unambiguously imply that the last common ancestor of caenopithecines and adapines was

already present in Europe. Nevertheless, a key taxon in Godinot’s scenario was middle

Eocene Adapoides from the Shanghuang fissure fillings in China (Beard et al., 1994),

which was not included in our phylogenetic analyses because undescribed material of that

taxon announced in an abstract (Coster, Ni & Beard, 2012) indicates that teeth previously

assigned to another adapiform in the Shanghuang fauna actually belong to Adapoides; we

await explicit clarification on this matter before integrating Adapoides into phylogenetic

analysis. Admittedly, the new observations (and expanded sample of Adapoides noted by

Coster et al.) could have an important impact on our understanding of the biogeographic

origins of adapines and caenopithecines.

The “core” caenopithecines (Aframonius, Afradapis, and Caenopithecus) present another

biogeographic puzzle—depending on the assumptions and methods employed there were

either (1) two unambiguously independent caenopithecine dispersals from Europe to

account for the presence of Aframonius and Afradapis in Africa (i.e., on the two “allcompat”

trees derived from the Bayesian analyses, and on that derived from parsimony analysis

with all characters unordered), or (2) ambiguity, with two independent dispersals to Africa

or back-migration of Caenopithecus to Europe being equally parsimonious (i.e., on the
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remaining trees). The biogeographic scenario is further complicated by the fact that the

middle Eocene “caenopithecids” Mescalerolemur and Mahgarita from west Texas—which

are unique records in North America, and arguably the most biogeographically anomalous

adapiforms—do not form a clade in our Bayesian analyses, or in our parsimony analyses

when characters are treated as unordered (these taxa do form a clade in our parsimony

analyses, when some characters are treated as ordered). In our opinion, the separation

of these genera (and the independent colonizations of North America required by such

a result) is almost certainly erroneus and more likely reflects the in situ acquisition of

caenopithecine-like convergences in Mahgarita (e.g., mandibular symphyseal fusion,

enlarged upper molar hypocones, acquisition of an enlarged P3 protocone) from a

Mescalerolemur-like form that more closely resembled anchomomyins or djebelemurids.

The placement of Mescalerolemur as a close relative of crown strepsirrhines to the exclusion

of non-anchomomyin adapiforms in our Bayesian analyses is similar to the placement

retrieved by Kirk & Williams (2011) for a combined Mescalerolemur-Mahgarita clade when

those authors employed a previous version of the matrix used here in their parsimony

analyses (but notably with a reduced taxon set outside of Strepsirrhini). The divergent

placements of Mescalerolemur and Mahgarita in some of our phylogenetic analyses clearly

reveals the potential for parallel acquisition of the aforementioned caenopithecine-like

features from more generalized small-bodied ancestors, and suggests that much more fossil

evidence is needed from Afro-Arabia, Asia, Europe, and North America to tease apart

the phylogenetic and biogeographic history of this group. Tarsals of Mescalerolemur or

Mahgarita could provide particularly decisive evidence, given that Adapoides, Afradapis,

and Caenopithecus are all known to have somewhat loris-like astragali (Gebo et al., 2001;

Boyer, Seiffert & Simons, 2010) that differ markedly from those known for notharctids,

djebelemurids, anchomomyins, and Europolemur.

Finally, we note that middle Eocene localities in Europe have now yielded primate and

non-primate species whose adaptive profiles closely resemble those that might have been

present among Madagascar’s lemuriforms in the later Oligocene and early Miocene, when

non-daubentoniid clades were likely diversifying (Springer et al., 2012; Kistler et al., 2015).

As discussed earlier, as slow moving folivores, caenopithecines might have resembled

basal palaeopropithecids, while adapines and Europolemur-like forms were presumably

more like basal lemurids in their lifestyles; anchomomyin stem strepsirrhines and

microchoerine omomyiforms were cheirogaleid-like in being small-bodied insectivorous

or omnivorous species capable of leaping (Dagosto & Schmid, 1996; Boyer et al., 2015b);

and the non-primate apatemyids appear to have occupied a niche similar to that of extant

Daubentonia (e.g., Koenigswald, 1990). A similar pattern might have existed slightly later

in the middle Paleogene of Afro-Arabia, with the caenopithecine Afradapis occupying

a basal palaeopropithecid-like niche, djebelemurids and basal lorisiforms occupying

cheirogaleid-like niches, and plesiopithecids (based solely on craniodental evidence)

possibly being somewhat Daubentonia-like (Godinot, 2006; Godinot, 2010). Afro-Arabia

clearly differs from both Europe and (presumably) Madagascar, however, in having a

diverse anthropoid fauna through the later Paleogene. The extent to which dispersal
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and/or endemic common ancestry shaped the similar adaptive composition of primate

communities on these landmasses (which were largely isolated and thus biogeographically

filtered during the later Paleogene) is a complex puzzle that will provide fascinating insight

on primate evolutionary history as it is gradually pieced together by future work.
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tertiaires. Paris: Librairie Hachette et Cie.

Gebo DL. 1987. Functional anatomy of the tarsier foot. American Journal of Physical Anthropology
73:9–31 DOI 10.1002/ajpa.1330730103.

Gebo DL. 1988. Foot morphology and locomotor adaptation in Eocene primates. Folia
Primatologica 50:3–41 DOI 10.1159/000156332.

Gebo DL. 2011. Vertical clinging and leaping revisited: vertical support use as the ancestral
condition of strepsirrhine primates. American Journal of Physical Anthropology 146:323–335
DOI 10.1002/ajpa.21595.

Gebo DL, Dagosto M, Beard KC, Qi T. 2001. Middle Eocene primate tarsals from China:
implications for haplorhine evolution. American Journal of Physical Anthropology 116:88–107
DOI 10.1002/ajpa.1105.

Gebo DL, Dagosto M, Rose KD. 1991. Foot morphology and evolution in early Eocene Cantius.
American Journal of Physical Anthropology 86:51–73 DOI 10.1002/ajpa.1330860105.

Gervais P. 1873. Remarques au sujet du genre Palaeolemur (Adapis). Journal de Zoologie II
2:421–426.

Gingerich PD. 1977. New species of Eocene primates and the phylogeny of European Adapidae.
Folia Primatologica 28:60–80 DOI 10.1159/000155799.

Gingerich PD, Smith BH, Rosenberg KR. 1982. Allometric scaling in the dentition of primates
and prediction of body weight from tooth size in fossils. American Journal of Physical
Anthropology 58:81–100 DOI 10.1002/ajpa.1330580110.

Gladman JT, Boyer DM, Simons EL, Seiffert ER. 2013. A calcaneus attributable to the primitive
late Eocene anthropoid Proteopithecus sylviae: phenetic affinities and phylogenetic implications.
American Journal of Physical Anthropology 151:372–397 DOI 10.1002/ajpa.22266.

Godinot M. 1988. Les primates adapidés de Bouxwiller (Eocène Moyen, Alsace) et leur apport
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Rütimeyer L. 1862. Eocäne Säugethiere aus dem Gebiet des schweizerischen Jura.
Neue Denkschriften der Allgemeinen Schweizerischen Gesellschaft für die Gesammten
Naturwissenschaften 19:1–98.

Sarmiento EE. 1983. The significance of the heel process in anthropoids. International Journal of
Primatology 4:127–152 DOI 10.1007/BF02743754.

Schlosser M. 1887. Die Affen, Lemuren, Chiropteren, Insectivoren, Marsupialier, Creodonten und
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Ryder OA, Janečka JE, Fisher CA, Murphy WJ. 2012. Macroevolutionary dynamics and
historical biogeography of primate diversification inferred from a species supermatrix. PLoS
ONE 7:e49521 DOI 10.1371/journal.pone.0049521.

Stehlin HG. 1912. Die Säugetiere des schweizerischen Eocaens. Critischer Catalog der Materialen.
Siebenter Teil, erste Hälfte: Adapis. Abhandlung der Schweizerischen Paläontologischen
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