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Objective: The high morbidity, complex seasonality, and recurring risk of hand-foot-and- 
mouth disease (HFMD) exert a major burden in China. Forecasting its epidemic trends is 
greatly instrumental in informing vaccine and targeted interventions. This study sets out to 
investigate the usefulness of an advanced exponential smoothing state space framework by 
combining Box-Cox transformations, Fourier representations with time-varying coefficients 
and autoregressive moving average (ARMA) error correction (TBATS) method to assess the 
temporal trends of HFMD in China.
Methods: Data from January 2009 to December 2019 were drawn, and then they were split 
into two segments comprising the in-sample training data and out-of-sample testing data to 
develop and validate the TBATS model, and its fitting and forecasting abilities were 
compared with the most frequently used seasonal autoregressive integrated moving average 
(SARIMA) method.
Results: Following the modelling procedures of the SARIMA and TBATS methods, the 
SARIMA (1,0,1)(0,1,1)12 and TBATS (0.024, {1,1}, 0.855, {<12,4>}) specifications were 
recognized as being the optimal models, respectively, for the 12-step ahead forecasting, along 
with the SARIMA (1,0,1)(0,1,1)12 and TBATS (0.062, {1,3}, 0.86, {<12,4>}) models as 
being the optimal models, respectively, for the 24-step ahead forecasting. Among them, the 
optimal TBATS models produced lower error rates in both 12-step and 24-step ahead 
forecasting aspects compared to the preferred SARIMA models. Descriptive analysis of 
the data showed a significantly high level and a marked dual seasonal pattern in the 
HFMD morbidity.
Conclusion: The TBATS model has the capacity to outperform the most frequently used 
SARIMA model in forecasting the HFMD incidence in China, and it can be recommended as 
a flexible and useful tool in the decision-making process of HFMD prevention and control in China.
Keywords: HFMD, morbidity, TBATS, SARIMA, models, time series analysis

Introduction
Hand-foot-and-mouth disease (HFMD) is a common viral infectious disease that 
mainly affects children under seven.1 This illness is typically a self-limiting condi-
tion and most children are characterized by oral pain, anorexia, low fever, and 
popular vesicles on the palms and soles, whereas a few children can develop 
myocarditis, pulmonary edema, and aseptic meningoencephalitis, which may lead 
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to death. Coxsackievirus A16 (CVA16) and enterovirus 71 
(EV71) are the most common causative agents causing 
HFMD outbreaks in the past years, even though some 
other pathogens can be involved.2–4 Moreover, it was 
discovered that around half of the children were coinfected 
with more than one pathogen. The Coxsackie viruses were 
first described in 1948,5 and particular attention was not 
paid to HFMD until 1998 because this illness caused 
several outbreaks, associated with millions of children, 
especially in the Western Pacific Region (eg, Malaysia, 
China, Japan, Singapore, Mongolia, Vietnam, and 
Cambodia6–11). In China, several large outbreaks of 
HFMD were observed in 2007 and early 2008, leading to 
major burdens of disease and economy. In response to 
such a daunting threat, HFMD was thus listed as 
a notifiable disease in May 2008 in China,12 and since 
then its morbidity often ranks the first among the 40 
notifiable infectious diseases in China.13 Currently, three 
monovalent EV-A71 vaccines have been introduced 
against HFMD since 2016 in China, and the protective 
efficacies of the above-mentioned vaccines were shown to 
be higher than 90% against EV71-related HFMD.14 

However, it is documented that this illness still has 
a significant influence on the general susceptible popula-
tion, with more than two million children developed 
HFMD per year in China, and more crucially, the HFMD 
incidence appears to exhibit an increasing tendency in 
recent years, partly attributable to the emergence of new 
Coxsackievirus, climate change, and environmental 
degradation.14,15 Therefore, to attenuate or contain the 
spreading of this illness, early warning for the temporal 
patterns of HFMD epidemic trends in the upcoming years 
using a suitable forecasting model plays an important role 
in developing effective preventive measures.16

In the past, different mathematical simulation models, 
including autoregressive integrated moving average 
(ARIMA) method,13 artificial neural networks (ANNS), 
exponential smoothing (ES) method,17 support vector 
machine (SVM),18 decomposition methods,18 and grey 
model19 have been applied to forecast the epidemics of 
communicable diseases. The occurrence of communicable 
diseases is typically limited by different influencing fac-
tors (eg, meteorological variables, government interven-
tions, vaccines, and air quality15,20), leading to showing 
complex epidemiological features with multiple seasonal 
periods, high-frequency seasonality, non-integer seasonal-
ity, and dual-calendar effects of the time series.21 For this 
reason, the above frequently used forecasting tools may be 

incapable of mining information in such a complex time 
series reasonably well. Importantly, the incidence series of 
HFMD has been shown to exhibit complex seasonal pat-
terns in different regions or countries.12,22–24 To overcome 
the weaknesses and inadequacy of the existing time series 
models in dealing with complex seasonal patterns, an 
advanced exponential smoothing state space framework 
by combining Box-Cox transformations, Fourier represen-
tations with time-varying coefficients and autoregressive 
moving average (ARMA) error correction (TBATS) model 
was customized to accommodate such a time series with 
complex seasonal behaviors.21 The TBATS model is intro-
duced based on a trigonometric formulation capable of 
handling the seasonal complexities in a time series. Also, 
this model is designed to overcome the defects of the 
conventional BATS models that require a large number 
of parameters to be estimated in the process of BATS- 
development and are unable to deal with non-integer 
seasonality.21,25,26 However, there is a current lack of 
using the TBATS framework to model and forecast the 
temporal patterns of HFMD. Considering the advantage of 
the TBATS framework and the complex seasonal patterns 
of HFMD, the purpose of this work is to use the TBATS 
framework to describe and predict the epidemic behaviors 
of HFMD. In the forecasting field of communicable dis-
eases, the most commonly used mathematical methods is 
the ARIMA model,13,27–30 and it has been demonstrated to 
show a high forecasting accuracy. Therefore, in this study, 
the ARIMA model was also created to nowcast and fore-
cast the epidemic trends of HFMD, and its forecasting 
accuracy level was compared with the TBATS method to 
further investigate the flexibility and usefulness of the 
TBATS method.

Materials and Methods
Data Collection
In China, the notifiable infectious diseases were asked to 
report to the Chinese Center for Disease Control and 
Prevention (CDC). Since HFMD was named as class 
C notifiable infectious disease in May 2008, and hence 
the monthly notified cases between January 2009 and 
December 2019 spanning 11 years were drawn from 
the National Notifiable Infectious Disease Surveillance 
System (NNIDSS) operated by the Chinese CDC, and 
the population data were drawn from the Statistical 
Yearbook of China during the same period. Suppose 
that the number of populations remained relatively 
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steady during the year, the monthly HFMD incidence 
rate was computed by the average populations of 
each year (Table S1). Generally, at least 50 and prefer-
ably 100 observations or more are required to construct 
a robust and effective forecasting model.31 Therefore, 
the dataset including over 100 observations was treated 
as the training horizon to build the model, and the rest as 
the testing horizon to verify its generalization of the 
model.

The study protocol was approved by the institutional 
review board of Xinxiang Medical University (No: XYLL- 
2019072), and the ethical approval failed to be needed 
since the reported HFMD cases without personal informa-
tion are publicly available in China.

SARIMA Model
Typically, time series is characterized by noticeable corre-
lations between successive observed values.32 The most 
classical approach to consider the association patterns of 
a time series is the ARIMA model.29 Since the incidence 
series of infectious diseases often shows marked seasonal 
variation and periodicity, and thus the seasonal ARIMA 
(SARIMA) is more appropriate for capturing the dynamic 
dependence structure in the HFMD incidence.13,33 In this 
model, the seasonality of the object series was regarded as 
the independent variable and the morbidity as the depen-
dent variable.33 SARIMA method can be presented with 
the standard notation of SARIMA (p,d,q)(P,D,Q)s, where 
p stands for the order of autoregression, d signifies differ-
enced times, and q refers to the order of moving-average, 
(P,D,Q) are their corresponding seasonal counterparts, and 
S is the cycle length of the object series (S=12 in this 
study). Often, the SARIMA model is created based on four 
modelling steps. First, model identification. The SARIMA 
is defined for stationary time series.30 Therefore, the sta-
tionarity of HFMD incidence series was detected using an 
augmented Dickey-Fuller (ADF) test, if suggesting 
a nonstationary series, the logarithm or square root trans-
formed method or/and differenced method would need to 
be used until a stationary series was achieved.29 Second, 
parameter estimation. By examining the correlogram and 
partial correlogram of the differenced series to identify the 
plausible values of the key parameters of the SARIMA 
model. Among the possible models, the parameters that 
provided a less value of Akaike’s information criterion 
(AIC) and Schwarz’s Bayesian criterion (BIC) and 
a greater value of Log-Likelihood were considered the 
preferred.33 Third, model diagnostic checking. Using the 

Ljung-Box Q test to check whether the residual series 
behaved like a white noise series and the key parameters 
were statistically significant.33 Finally, when the best 
model passed all the required statistical tests, and then 
a forecast into the future could be done using this best- 
fitting model. Otherwise, the above steps should be 
repeated until an appropriate model was detected.

TBATS Model
In the past, the well-documented seasonal ES methods have 
widely been adopted to deal with the single seasonal time 
series.17 Nevertheless, these traditional ES methods fail to 
describe the complex seasonal time series comprising multiple 
seasonal patterns, non-integer seasonal patterns, and dual- 
calendar effects.21,34 Although some researchers attempted to 
extend the classical ES models to accommodate a second 
seasonal trait so that the time series comprising two seasonal 
components can be described, this may suffer from a major 
flaw that needs to compute substantial values for the preceding 
seasonal patterns, particularly when a time series shows high- 
frequency seasonal behaviors, resulting in over- 
parameterization.21,26,35 To accommodate a wider variety of 
seasonal components and to resolve the issue encountered in 
the extended version of the common ES models. The notation 
BATS (p, q, m1, m2, …, mT) method is thus proposed, where 
B refers to the Box-Cox transformation, A represents the 
ARMA model, T is the trend trait in the object time series, 
and S signifies the seasonality in the object time series.21,26,34 

The key parameters of the BATS model are composed of the 
ARMA method (p and q) and the seasonal periods (m1, …, 
mT). The BATS model has the potential to handle multiple 
seasonal periods and to allow for some types of nonlinear 
characteristics included in the object time series with Box- 
Cox transformation.36 Despite its advantages of the BATS 
model, it is unable to deal with non-integer seasonality and 
also encounters many parameters that require computation.21 

Hence, researchers proposed a novel trigonometric representa-
tion of seasonal traits based on the Fourier series, and this 
representation can be in the form of TBATS (ω, p, q, φ, {m1, 
k1}, {m2, k2}, …,{mT, kT}), where the parameters (p, q, 
and m) of the TBATS model have the same meaning as the 
BATS model, k is the number of harmonics used for the 
seasonal trait, ω stands for the Box-Cox transformation, and 
φ signifies the dampening parameter value.21,37 Importantly, 
The TBATS method can not only significantly reduce the 
number of parameters needed (with an estimation of 2(k1+k2 

+ … +kT) initial seasonal values) relative to the traditional 
BATS method, but can be used to estimate the non-integer 
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seasonal frequencies with the trigonometric functions.21,37 

Also, the TBATS model has the potential to decompose 
a time series into constituent different components. 
Especially, this model is capable of identifying and extracting 
one or more seasonal traits that may fail to be presented in the 
object series graphs themselves.37

Statistical Analysis
The SARIMA and TBATS methods were created using 
R software (version 3.4.3, R Development Core Team, 
Vienna, Austria). We set two predicted segments to account 
for the model uncertainty in the forecasting process (ie, the 
first 108 (from January 2009 to December 2017) and 120 
(from January 2009 to December 2018) observations were 
used for the training parts, respectively, and the rest of 24 
(from January 2018 to December 2019) and 12 (from January 
to December 2019) observations were reserved for the testing 
parts, respectively). In this study, a Lagrangian Multiplier 
(LM) test was employed to check whether there existed con-
ditional heteroskedastic behavior and volatility (ARCH effect) 
in the residual series produced by these two models.38 The 
statistical significance level was set at p<0.05.

We used two types of evaluation metrics to investigate 
the forecasting accuracy level between these two models. 
One is the scale-dependent metrics including root mean 
square error (RMSE) and mean absolute deviation (MAD), 
another is the percentage error metrics including mean 
error rate (MER) and mean absolute percentage error 
(MAPE). The model that has lower values of the above 
measurement metrics was considered higher accuracy in 
the time series forecasting of HFMD morbidity.

RMSE=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N ∑N

i¼1 Xi � bXi

� �2
r

(1))

MAD= 1
N ∑N

i¼1jXi � bXij (2)

MER=
1
N∑N

i¼1jXi� bXij

bX i 
(3))

MAPE= 1
N ∑N

i¼1
jXi� bXij

Xi 
(4))

where Xi is the observed values, bXi is the predicted 
values of the two models used, Xi stands for the mean of 
the observed values, and N signifies the number of fore-
casted values of the two models used.

Results
Descriptive Analysis
During the period 2009–2019, the reported number of 
HFMD totaled 22,227,647 cases, leading to annual and 
monthly average incidence rates of 147.710 and 12.309 per 

100,000 people, respectively. From Figure 1 we can see that 
HFMD cases were notified across the whole year, and yet 
the HFMD incidence showed a high incidence characteristic 
every other year. Based on the 11 years of observations, the 
maximum number of HFMD cases were noted in May 2014, 
with 528,777 cases (38.658 per 100,000 people), and the 
minimum number of HFMD cases were observed in 
January 2009, with 7672 cases (0.575 per 100,000 people). 
When a seasonal-trend decomposition procedure based on 
Loess (STL) method was adopted to characterize the differ-
ent components in the HFMD incidence, a notable season-
ality and dual peak distribution were observed, there were 
few cases between January and March (especially in 
February), a sudden escalation between April and July (par-
ticularly in June), then a reduction in August, and yet 
a secondary peak in September per year (Figure 1).

Constructing the SARIMA Model
By a visual inspection of the time series plot showing the 
original data, the logarithm transformed data, and the square 
root transformed data of the HFMD incidence (Figure S1), 
suggesting a similar changing trend over time between 
these three series. After repeated attempts (Figure S2), we 
found that the original data of the HFMD incidence with 
logarithm transformation seemed to be more suitable for the 
development of the SARIMA model to make a long-term 
forecast (from January 2018 to December 2019). As 
a result, we first seasonally differenced the logarithm trans-
formed series from January 2009 to December 2017 to 
remove its strong seasonal pattern (Figure S3). The differ-
enced series was shown to be stationary (ADF=−5.720, 
p<0.001), which suits the prerequisite for constructing the 
SARIMA model. Then, by investigating the autocorrelation 
function (ACF) and the partial autocorrelation function 
(PACF) plots of the differenced series, it appeared that the 
orders of p, P, q, and Q might be between 0 and 2 in that the 
correlation coefficients showed a rapidly decayed trend 
before lag 3 (Figure S3). Given that some models with 
simple parameters are not capable of effectively capturing 
the dynamic dependence structure of the HFMD incidence 
series, thereby eight plausible models were selected in our 
experiments (Table 1). Of them, it seemed that the 
SARIMA(1,0,1)(0,1,1)12 specification was expected to be 
the preferred model as it provided the minimum informa-
tion criteria (AIC=17.147 and BIC=27.876) among the 
plausible models. Further diagnostic checking for the resi-
dual series of the best SARIMA model indicated that the 
key parameters were statistical significance (Table 2), and 
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the residuals from this best SARIMA model behaved like 
a white noise series as the Box-Ljung Q test showed 
a p-value greater than 0.05 (Table 3 and Figure 2). 
Besides, no ARCH effect was observed in the residuals 
since the LM-test indicated a p-value greater than 0.05 
(Table 3). All the results above mean that the SARIMA 
model obtained is very adequate for modelling the HFMD 
incidence. Similarly, following the modelling procedures 
described above, the observations between January 2009 
and December 2018 were used to construct the SARIMA 
model to validate the robustness and accuracy of the 

SARIMA model. The SARIMA(1,0,1)(0,1,1)12 specifica-
tion was still considered the optimal model and the statis-
tical tests for this preferred SARIMA model are given in 
Tables S2-S4 and Figures S4-S6.

Developing the TBATS Model
The forecasting accuracy level of the TBATS model relies on 
the number of harmonics k used for the seasonal component.21 

In choosing an effective TBATS model, given one seasonal 
trait at a time, we thus developed the TBATS model based on 
the training data from January 2009 to December 2017 by 
gradually adjusting the k each time but remaining all other 
harmonics constant for each seasonal component. Meanwhile, 
an automatic time series algorithm of the ARIMA model was 
employed to the residual series produced by the TBATS model 

Figure 1 Time series displaying the HFMD incidence from January 2009 to December 2019 and the decomposed trend, seasonal, and random traits using the classical 
multiplicative decomposition method.

Table 1 The Identified Eight Possible SARIMA Methods and 
Their Corresponding Information Criteria

Models AIC BIC Log-Likelihood

SARIMA(1,0,1)(0,1,1)12 17.147 27.876 −4.574

SARIMA(1,0,1)(1,1,0)12 20.826 31.554 −6.413
SARIMA(1,0,0)(0,1,1)12 32.938 40.985 −13.469

SARIMA(0,0,1)(0,1,1)12 45.834 53.880 −19.917

SARIMA(2,0,1)(1,1,0)12 22.528 35.939 −6.264
SARIMA(2,0,1)(0,1,1)12 18.826 32.237 −4.413

SARIMA(2,0,2)(1,1,0)12 24.487 40.580 −6.244

SARIMA(2,0,2)(0,1,1)12 20.739 36.832 −4.369

Abbreviations: SARIMA, seasonal autoregressive integrated moving average 
method; AIC, Akaike’s Information Criterion; BIC, Schwarz’s Bayesian Criterion.

Table 2 Statistical Test of the Estimated Parameters for the 
Optimal SARIMA (1,0,1)(0,1,1)12 Method

Variables Estimates Standard Error t p

AR1 0.593 0.098 6.055 <0.001
MA1 −0.528 0.109 −4.847 <0.001

SMA1 0.632 0.123 5.119 <0.001

Abbreviations: SARIMA, seasonal autoregressive integrated moving average 
method; AR1, autoregressive method at lag1; MA1, moving average method at 
lag1; SMA1, seasonal moving average method at lag1.
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without the ARMA component to discover the suitable orders 
of p and q.39 By doing so, the one that had the minimum AIC 
value was identified as the optimal model. In an effort by trial 

and error, it is found that the TBATS (0.062, {1,3}, 0.86, 
{<12,4>}) specification minimizes the AIC (705.260), and 
the resulting smoothing parameters and other key parameters 

Table 3 Box-Ljung Q and LM Tests of the Residual Series from the Optimal SARIMA (1,0,1)(0,1,1)12 and TBATS(0.062, {1,3}, 0.86, 
{<12,4>}) Methods

Lags SARIMA Method TBATS Method

Box-Ljung Q p LM-test p Box- 
Ljung Q

p LM-test p

1 0.119 0.731 0.273 0.601 0.286 0.593 18.008 <0.001

3 0.596 0.897 0.316 0.957 1.572 0.666 23.434 <0.001

6 2.201 0.900 6.786 0.341 3.091 0.797 23.837 0.001
9 3.033 0.963 8.497 0.485 4.929 0.840 24.117 0.004

12 3.774 0.987 18.314 0.107 7.609 0.815 23.502 0.024

15 6.996 0.958 16.728 0.335 15.483 0.417 23.796 0.069
18 10.925 0.898 18.622 0.415 21.033 0.278 23.876 0.159

21 13.608 0.886 19.228 0.571 24.255 0.281 23.754 0.305

24 15.967 0.889 20.562 0.664 29.840 0.190 24.565 0.430
27 23.473 0.659 22.865 0.692 37.700 0.083 25.021 0.573

30 28.350 0.552 25.349 0.708 37.998 0.150 25.317 0.710

33 31.819 0.526 29.728 0.631 39.365 0.206 25.530 0.820
36 33.320 0.597 31.965 0.661 42.564 0.209 25.864 0.894

Abbreviations: SARIMA, seasonal autoregressive integrated moving average method; TBATS, an advanced exponential smoothing state space framework by fusing Box- 
Cox transformations, Fourier representations with time-varying coefficients with autoregressive moving average error correction.

Figure 2 Diagnostic checking for the residual series from the best SARIMA (1,0,1)(0,1,1)12 method. (A) Correlogram of the sample autocorrelation function (ACF); (B) 
Correlogram of the sample partial autocorrelation function (PACF); (C) p values for the Ljung-Box test. The plot above showed that almost all the sample autocorrelations 
for the residual series fail to touch the significance bounds apart from the one at lag 25 (which is also reasonable as higher-order autocorrelation may exceed the 95% 
significance bounds by chance alone) and p values at different lags are greater than 0.05 under the Ljung-Box statistic, suggesting that there is little evidence of non-zero 
autocorrelations in the residual series at various lags.
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are listed in Table S5 and the extracted components with Box- 
Cox transformation based on the above-identified parameters 
are visible in Figure S7. Further analysis for the residual series 
indicated that the errors belonged to a white noise series and the 
ARCH effect from the original observed series was largely 
attenuated in that gradually increasing the lag periods gener-
ated a p-value greater than 0.05 under the Box-Ljung Q test and 
the LM test (Table 3 and Figure 3). Thereby, we are confident 
that this best TBATS model is sufficient for the morbidity 
series forecasting of HFMD. Likewise, following the model 
selection steps, the TBATS (0.024, {1,1}, 0.855, {<12,4>}) 
specification was selected as the best-fitting model based on 
the data from January 2009 to December 2018 to account for 
the model uncertainty, and the resulting key parameters and 
statistical checking results are provided in Tables S4-S5 and 
Figures S8-S9.

Comparing the Forecasting Ability 
Between Models
The forecasting ability between the TBATS model and the 
SARIMA model was compared from two aspects including 
in-sample fitting horizon and out-of-sample forecasting 

horizon based on the measurement metrics of MAD, 
RMSE, MAPE, and MER. Table 4 and Figure S10 detail 
the results on the comparison, and it is apparent from the 
results that the best TBATS models produced lower error 
rates in both the training and testing segments compared to 
the best SARIMA models, be it in 24-step or 12-step ahead 
projections (Table S6 and S7), suggesting that the TBATS 
model is more reliable and robust in forecasting the HFMD 
incidence in China than the most frequent use of SARIMA 
model (Figure S11). Accordingly, we again built the TBATS 
model based on the 11 years of data to predict the HFMD 
incidence into the next 24 months. The model selection 
procedures resulted in the best TBATS (0.022, {3, 1}, 
0.851, {<12, 4>}) method, and the resulting forecasting 
results are presented in Table 5 and Figure 4, being sugges-
tive of a relatively stable epidemiological trend in the 
HFMD incidence between January 2020 and 
December 2021 in China.

Discussion
Since 2008, HFMD has become a major public health 
concern because of its high morbidity and adverse health 

Figure 3 Diagnostic checking for the residual series from the best TBATS (0.062, {1,3}, 0.86, {<12,4>}) method. (A) Correlogram of the sample autocorrelation function 
(ACF); (B) Correlogram of the sample partial autocorrelation function (PACF); (C) p values for the Ljung-Box test. The plot above showed that almost all the sample 
autocorrelations for the residual series fail to touch the significance bounds and p values at different lags are greater than 0.05 under the Ljung-Box statistic, suggesting that 
there is little evidence of non-zero autocorrelations in the residual series at various lags.
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effect on more than two million children per year in 
China.12,13,22 The use of statistical models with high accu-
racy and robustness as an effective and helpful tool for the 
estimation of the long-term epidemic trends of infectious 
diseases is essential to inform prevention initiatives.16 For 
this reason, prompting different researches using various 
mathematical techniques with the same purpose of achiev-
ing an accurate forecast of the upcoming HFMD epi-
demics is being done. However, as far as we know that 
there is no study by far using an advanced exponential 

smoothing state space TBATS framework to describe and 
estimate the temporal patterns of HFMD. The present 
research explores, for the first time, its potential of the 
TBATS model for the application in describing and ana-
lyzing the epidemic trajectories of HFMD, and the most 
commonly used SARIMA model was also fitted to the 
HFMD incidence data to compare their predictive ability 
between the TBATS model and the SARIMA model. The 
results to emerge from this time series analysis indicated 
that the best TBATS model shows a performance 

Table 4 Comparisons of the Fitted Parts and the Predicted Parts Between SARIMA Methods and TBATS Methods

Methods Fitted Part Predicted Part

MAD MAPE RMSE MER MAD MAPE RMSE MER

Models constructed with the data from January 2009 to December 2017 24-step ahead projection

SARIMA 2.072 0.198 2.942 0.170 3.664 0.369 6.102 0.287

TBATS 1.698 0.180 2.507 0.140 1.280 0.152 2.098 0.100

Reduced percentages (%)

TBATS vs SARIMA 18.050 9.596 14.786 17.647 65.066 58.808 65.618 65.157

Models constructed with the data from January 2009 to December 2018 12-step ahead projection

SARIMA 2.157 0.197 3.049 0.174 3.720 0.371 4.782 0.321

TBATS 1.834 0.188 2.789 0.148 2.858 0.321 3.201 0.247

Reduced percentages (%)

TBATS vs SARIMA 14.975 4.569 8.527 14.943 23.172 13.477 33.061 23.053

Abbreviations: SARIMA, seasonal autoregressive integrated moving average method; TBATS, an advanced exponential smoothing state space framework by fusing Box- 
Cox transformations, Fourier representations with time-varying coefficients with autoregressive moving average error correction; MAD, mean absolute deviation; MAPE, 
mean absolute percentage error; RMSE, root mean square error; MER, mean error rate.

Table 5 Forecasts and Their 95% Uncertainty Limits of the HFMD Incidence for the Next 24 Months Based on the TBATS (0.022, {3, 
1}, 0.851, {<12, 4>}) Method

Time Forecasts 95% Uncertainty 
Limits

Time Forecasts 95% Uncertainty 
Limits

Jan-20 2.766 (1.740, 4.376) Jan-21 4.070 (2.127, 7.718)
Feb-20 1.769 (0.977, 3.178) Feb-21 2.196 (1.134, 4.212)

Mar-20 5.055 (2.723, 9.308) Mar-21 5.471 (2.859, 10.375)

Apr-20 14.644 (13.323, 44.000) Apr-21 14.911 (7.882, 27.963)
May-20 24.306 (14.637, 48.420) May-21 23.736 (12.613, 44.289)

Jun-20 26.725 (12.010, 40.091) Jun-21 25.986 (13.793, 48.540)

Jul-20 22.029 (6.590, 22.550) Jul-21 21.171 (11.193, 39.698)
Aug-20 12.241 (6.845, 23.514) Aug-21 11.879 (6.215, 22.502)

Sep-20 12.739 (6.281, 21.808) Sep-21 12.301 (6.433, 23.312)

Oct-20 11.753 (5.580, 19.520) Oct-21 11.489 (5.990, 21.839)
Nov-20 10.481 (4.204, 14.926) Nov-21 10.197 (5.302, 19.434)

Dec-20 7.956 (2.127, 7.718) Dec-21 7.832 (4.049, 15.009)

Abbreviations: TBATS, an advanced exponential smoothing state space framework by fusing Box-Cox transformations, Fourier representations with time-varying 
coefficients with autoregressive moving average error correction.
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Figure 4 Time series plot showing the in-sample simulation and out-of-sample forecasting using the best SARIMA and TBATS methods. (A) The in-sample fitting and out-of- 
sample forecasting results using the best SARIMA method; (B) The in-sample fitting and out-of-sample forecasting results using the best TBATS method; (C) The next 24- 
month projections using the best TBATS method built with the incidence data from January 2009 to December 2019.
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improvement over the optimal SARIMA model in both in- 
sample data and out-of-sample data, particularly in the 
forecasting aspect, be it in the 12-step ahead (short-term) 
projection or the 24-step ahead (long-term) projection. In 
the meantime, we also developed the TBATS and 
SARIMA models based on the data from January 2009 
to December 2016 to investigate their forecasting ability 
into the next 36 months, suggesting that the TBATS model 
was still superior to the SARIMA model (Tables S8 and 
S9), but these two models produced a high error rate 
(MAPE=0.441 in the TBATS model vs MAPE=0.930 in 
the SARIMA model), particularly for the SARIMA model, 
it had been inadequate for predicting the temporal patterns 
into the future three years as the MAPE value was greater 
than 0.5 on the testing data, which is deemed as an unac-
ceptable level of accuracy. This provides further support 
for the usefulness of the TBATS model as an adequate and 
effective tool in nowcasting and forecasting the temporal 
trends of HFMD until the upcoming 24 months in China. 
Furthermore, an external validation of the utility of 
TBATS model was performed based on the HFMD inci-
dence data from 2009 to 2017 in Henan Province (Table 
S10), and the resulting results are listed in Table S11 and 
Figure S11, indicating a same finding as our present study 
that the predictive results under TBATS model were closer 
to the actual data compared with that under SARIMA 
model. Also, the TBATS model can act as a serviceable 
tool in estimating the short-term or long-term effects of 
new prevention and control measures (eg, the introduction 
of new vaccines available, the optimization of the current 
prophylaxis, and increasing the intensity of vaccine advo-
cacy and education among children and their parents at 
high-risk seasons2,24). If this model produces a significant 
overestimation over the real data, suggesting that the pre-
sent interventions may take effect; otherwise, additional 
interventions are needed to contain the epidemics of 
HFMD. Besides, the SARIMA model was also discovered 
to report an acceptable projected result although it yielded 
a higher forecasting error rate compared to the TBATS 
model. This further corroborates the finding of a great deal 
of previous work that the SARIMA model is flexible and 
useful in the forecasting domain of time series.27,29,30,33,40

The versatile SARIMA method is deemed as the most 
frequently adopted tool in the forecasting domain of time 
series data with remarkable seasonality and cyclicity in 
that this model has the advantage that there is no need to 
make a foregoing assumption on the inherent rule of a time 
series.30,41 For example, Tian et al built a SARIMA (1,1,2) 

(0,1,1)12 model to describe and analyze the temporal pat-
terns of HFMD between May 2008 and August 2018.13 

Shi et al investigated the spreading mode of Hemorrhagic 
Fever with Renal Syndrome morbidity from 2000 to 2017 
in East China by establishing a SARIMA (0,1,1,)(0,1,1)12 

method.27 In spite of its satisfactory predictive perfor-
mance of the SARIMA model, it has a limited ability to 
solve nonlinear problems and to make a long-term forecast 
as this model is designed under the assumption of 
linearity.33 Also, as evidenced by the findings to emerge 
from our study and other publications,13,21,42 the SARIMA 
model is not well suited to address the complex time series 
with multiple seasonal periods, high-frequency seasonal-
ity, non-integer seasonality, and dual-calendar effects 
despite its wide application.21 Instead, the TBATS model 
is tailored for not only dealing with the complex time 
series described above but allowing for some types of 
non-linearity using Box-Cox transformations,21,43 which 
enable this model to have the potential to describe the 
long-term epidemic patterns of HFMD. Given its attractive 
applications of the TBATS model,21 it appeared therefore 
that this model can be adopted to analyze the HFMD 
incidence in other countries or regions, even for all the 
time series, and yet additional work on the current topic is 
still required to verify its versatility. Additionally, of note, 
current studies have demonstrated the potential of some 
new models to perform the long-term forecasting and to 
handle the nonlinear issue, such as ETS model,44 long 
short-term memory neural network (LSTM),9 and neural 
network nonlinear autoregression (NNAR) model.45 

Consequently, further investigations into the predictive 
performance comparison between the TBATS model and 
the above models are needed.

Understanding the epidemiological features of infec-
tious diseases is very useful and crucial for their preven-
tion and control.9 In this study, there were reported HFMD 
cases all the year round in China, and characterized by 
biennial or triennial larger epidemics in the HFMD inci-
dence. Such an epidemiological feature fits well with ear-
lier reports in mainland China,12,13,46 also coincident in 
Taiwan of China,47 Singapore,48 Vietnam,11 and 
Malaysia.49 The possible reasons underlying such an epi-
demic pattern are first, most people who have been 
infected with the pathogens of HFMD can develop protec-
tive antibodies against the causative agents, leading to 
a risk reduction in the infection with the same types of 
pathogens.13 Second, recent work found that the duration 
of cross-protection infected with the most common two 
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pathogens of CVA16 and EV71 was about 9.95 weeks 
(95% uncertainty limit 3.31 to 23.40) in 68% of the popu-
lation, suggesting that such a periodic pattern of HFMD 
may be related to cross-serotype immunity.12,50 Besides, 
the additional reasons for the periodic pattern described 
above are expected to go on. Whilst we also observed that 
the HFMD incidence exhibited a notable seasonality and 
dual peak distribution, there were few cases between 
January and March, a rapid upsurge between April and 
July, then a reduction in August, and yet a secondary peak 
in September per year. Such a seasonal behavior was in 
line with the finding from Singapore,48 Malaysia,49 and 
most provinces or cities of China (eg, Taiwan, Hong Kong, 
Ningbo, Shenzhen, Zunyi, Shandong, and Guangdong).22 

For the double peak pattern of HFMD, current evidence 
indicated that it was predominantly seen in southern 
China,12 in good agreement with the data reported in 
Hong Kong and Taiwan of China,47,51 and Vietnam,11 

whereas inconsistent with the data reported in most 
regions of northern China,12 where a single peak was 
predominately seen, this concurs well with the finding 
from Japan and Malaysia.12,49 The peak activity of 
HFMD varied by geography, which may be ascribed to 
the different pathogens,12,49 meteorological factors (such 
as temperature, atmospheric pressure, precipitation, sun-
shine hours, humidity, and wind),12,15 and socio-economic 
differences.12,22 Prior published work discovered that 
although the leading pathogens of EV71 and CVA16 
arise per year in China (which is different from that in 
Japan and Malaysia where the leading pathogens arise 
every 3 or 4 years12,49), they are circulated in different 
peaks.52 The EV71 is mainly associated with the first 
strong peak behavior, whereas the CVA16 is predomi-
nantly associated with the second weak peak activity, and 
yet these two common pathogens are less circulated in 
January and February annually, this wholly corroborates 
with our initial finding that a trough in the HFMD inci-
dence seen between January and March. Another contrib-
utory factor correlated with the least reported HFMD cases 
in February is closely related to the “spring festival 
effect”, several studies have given well-grounded discus-
sions on how this effect influences the epidemics of infec-
tious diseases.53,54 Further, a projection into the next two 
years based on the TBATS model showed that albeit there 
did not seem to have a large amplitude of oscillations 
compared with the data from 2009 to 2019, the HFMD 
incidence was still high, and the predicted seasonal pat-
terns match well with our findings described above. 

Currently, some emerging Enteroviruses, especially 
Coxsackievirus A6 (CA6),3,14 have been increasing trig-
gers causing HFMD outbreaks, and thus it is a matter of 
great urgency that the introduction of a multivalent vac-
cine fusing EV71, CA16 with CA6 to prevent HFMD in 
addition to the preventions strongly recommended by 
Saguilet al.24

This study sets out to investigate the flexibility and 
usefulness of the TBATS model in fitting and forecasting 
the epidemic patterns of HFMD in China. Importantly, the 
results to emerge from a series of experiments are 
encouraging. However, this study also suffers from some 
drawbacks. First, since HFMD is a self-limiting disease,2 

the patients with mild and moderate symptoms may not 
seek medical assistance, thus leading to under-reporting 
and under-diagnosis. Second, daily or weekly data may 
provide a greater investigation into the temporal discre-
pancies among years. Nonetheless, it is difficult to obtain 
such data for shorter periods. Third, a high forecasting 
performance can be achieved when using the TBATS 
model to nowcast and forecast the temporal levels of the 
next two years (24 months). Future work should therefore 
include the new data into the model to ensure its high 
forecasting accuracy. Lastly, the present results may not 
be transferable to the conclusion that the TBATS model 
has superiority in the prediction of HFMD in other regions 
or other infectious diseases, and additional work is 
entailed.

Conclusion
The most striking result to emerge from the data is that the 
TBATS model has the capacity to outperform the most 
frequently used SARIMA model in decomposing and fore-
casting the HFMD incidence in China. This model can be 
recommended as a flexible and useful tool in the decision- 
making process of HFMD prevention and control. 
Moreover, the predicted HFMD incidence for the next 
two years remains still high, considering the new increas-
ing emerging pathogens causing HFMD outbreaks, it is 
required to curb and harness this urgent issue within the 
feasible measures taken.

Data Sharing Statement
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