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Abstract

The cell cycle regulator p27Kip1 is a critical factor controlling cell number in many lineages.

While its anti-proliferative effects are well-established, the extent to which this is a result

of its function as a cyclin-dependent kinase (CDK) inhibitor or through other known molec-

ular interactions is not clear. To genetically dissect its role in the developing corneal endo-

thelium, we examined mice harboring two loss-of-function alleles, a null allele (p27−) that

abrogates all protein function and a knockin allele (p27CK−) that targets only its interaction

with cyclins and CDKs. Whole-animal mutants, in which all cells are either homozygous

knockout or knockin, exhibit identical proliferative increases (~0.6-fold) compared with

wild-type tissues. On the other hand, use of mosaic analysis with double markers

(MADM) to produce infrequently-occurring clones of wild-type and mutant cells within the

same tissue environment uncovers a roughly three- and six-fold expansion of individual

p27CK−/CK− and p27−/− cells, respectively. Mosaicism also reveals distinct migration phe-

notypes, with p27−/− cells being highly restricted to their site of production and p27CK−/CK−

cells more widely scattered within the endothelium. Using a density-based clustering

algorithm to quantify dispersal of MADM-generated clones, a four-fold difference in

aggregation is seen between the two types of mutant cells. Overall, our analysis reveals

that, in developing mouse corneal endothelium, p27 regulates cell number by acting cell

autonomously, both through its interactions with cyclins and CDKs and through a cyclin-

CDK-independent mechanism(s). Combined with its parallel influence on cell motility, it

constitutes a potent multi-functional effector mechanism with major impact on tissue

organization.
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Introduction

The corneal endothelium is a fluid transporting epithelium that is essential for corneal hydra-

tion and transparency. Consisting of a monolayer of flat, irregularly-shaped cells with den-

drite-like processes, this tissue provides an important physiological interface between the

cornea and the adjoining aqueous humor [1–7]. A critical determinant of endothelium func-

tion is cell density, which in healthy adult humans generally exceeds 2500 cells/mm2 [8–9].

Because mature corneal endothelial cells (CEnCs) do not undergo large-scale renewal, cell

death due to disease, injury or aging leads inevitably to a decline in cell number [10–14].

When cell density falls below approximately 500 cells/mm2, a condition referred to as corneal

endothelial disease occurs, in which corneal fluid balance is severely compromised and the

cornea swells and becomes opaque. Despite the presence under certain circumstances of a cor-

neal wound healing response, in which cell polyploidization and enlargement is triggered [15–

16], this and other potential repair mechanisms are apparently insufficient to maintain tissue

integrity under severe conditions. In these cases, surgical intervention via transplantation is

generally required to correct the resulting endothelial dysfunction [17–19]. Thus, in the nor-

mal corneal endothelium, tissue structure and function are largely dependent on the continued

maintenance of cells generated during the developmental period. For this reason, the mecha-

nisms by which cell number is established and preserved are of fundamental importance.

Developmentally, the endothelium is derived from cranial neural crest cells which, follow-

ing their migration into the eye, undergo a mesenchymal-epithelial transition to construct an

integrated monolayer [20]. Studies in rodents have shown that presumptive CEnCs actively

proliferate during the embryological and early postnatal periods but become arrested in the G1

phase of the cell cycle shortly thereafter [21]. While the mechanisms responsible for limiting

cell division are incompletely understood, the cyclin-dependent kinase (CDK) inhibitor

p27Kip1 (hereafter referred to as p27) is thought to play a central role. In the corneal endothe-

lium of rats and mice, expression of p27 is upregulated during the first two weeks of postnatal

life at a time when endothelial cell proliferation declines and monolayer maturation takes

place [21–24]. Furthermore, in p27 knockout mice there is both enhanced production of

CEnCs and extension of cell division further into the postnatal period [24].

As a component of the retinoblastoma pathway, p27 is a critical modulator of progression

through the G1 phase of the cell cycle. Initially characterized as a relatively broad-based CDK

inhibitor, its most important targets are now recognized to be cyclin E and CDK2 [25].

Through simultaneous binding to both proteins, p27 is able to block cyclin-CDK interaction,

as well as interfere with ATP binding to the kinase, thus inhibiting catalytic activity [26].

Genetically-engineered mice have been particularly informative in outlining the role of this

inhibitor in postnatal growth of many tissues [27–31]. For example, p27-null animals are larger

than normal and exhibit multi-organ hyperplasia. Furthermore, the fact that deficient cells are

smaller than control cells in some tissues may reflect altered coupling between cell growth and

the cell division cycle [27, 32].

In interpreting results from knockout mice, it is often assumed that the sole effect of p27
gene ablation on proliferation is its interference with operation of the core cell cycle machin-

ery. However, recent evidence has indicated that, in addition to its established role as a cyclin-

CDK inhibitor, p27 may also function indirectly as an anti-proliferation factor by restraining

mitogenic cell signaling through its interaction with the microtubule-destabilizing protein

stathmin [33, 34]. Thus, the possibility exists that p27 could be influencing endothelial cell pro-

liferation through both cyclin-CDK-dependent and -independent pathways.

To begin to dissect p27 gene function in mouse corneal endothelium, we have compared a

knockout line (p27−) with a knockin strain (p27CK−) in which four amino acid substitutions in
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the p27 (cdkn1b) gene product prevent the interaction of p27 with cyclins and CDK but leave

its other functions intact [30, 31, 35]. As with previous studies of whole-organism mutants,

our results demonstrate very similar proliferative phenotypes for the endothelium in these two

types of mice. Importantly, however, use of mosaic analysis with double markers (MADM) to

cause sporadic induction of homozygous mutant and wild-type cells in heterozygous monolay-

ers reveals dramatic increases in cell proliferation that are quantitatively different for p27-null

and p27CK− lines. While expansion of p27CK− cells is almost three-fold greater than wild-type

cells, that of p27-null cells is increased approximately six-fold. These data indicate that p27

exerts its influence on cell division through both cell cycle-dependent and -independent mech-

anism and that, in both cases, the effect is cell-autonomous. Finally, our evidence showing that

the two mutants have opposite effects on cell dispersion within endothelial monolayers con-

firm previous work documenting the inhibitor’s involvement in cell migration and highlight

the fact that p27 is able to regulate proliferation and migration in a coordinate fashion during

development.

Materials and methods

Ethics statement

The use of animals for this study was approved by the University Committee on Animal Care

(UCAC) at East Tennessee State University (ETSU; Animal Use Protocol P190702) and was in

compliance with the National Institutes of Health Guidelines for Care and Use of Animals in

Research and the ARVO Statement for Use of Animals in Ophthalmic and Vision Research.

Mice were housed in the Division of Laboratory Animal Resources at ETSU, a facility accred-

ited by the Association for the Assessment and Accreditation of Laboratory Animal Care

(AAALAC), and maintained in an environment of 12-h light/12-h dark.

Animals

Conventional genetic analysis was carried out using two whole-animal mutant mouse strains,

a p27-null strain (designated p27−) with targeted disruption of the entire p27 coding region

and a knock-in line (p27CK−) in which point mutations abrogate the ability of p27 to bind

cyclins and CDKs [27, 30]. The null strain (129-Cdkn1btm1Mlf/J; Stock #003122) was obtained

from The Jackson Laboratory (Bar Harbor, ME). These mice are larger than normal littermates

due to extra cell divisions in virtually all lineages. The knockin strain, which has a similar phe-

notype, was a generous gift of Dr. Michael Dyer (St. Jude Children’s Research Hospital). Hemi-

zygous (p27+/−) or heterozygous (p27+/CK−) mice were interbred to generate the p27−/− and

p27CK−/CK− animals and wild-type littermates (p27+/+) used in these experiments. Genotyping

was as described previously [27, 30].

For mosaic analysis, the two p27 mutant strains were used in combination with four other

lines: MADM-6GR (129-Gt(ROSA)26Sortm3(CAG-EGFP/Dsred2)Luo/J; Stock #006041) [36], MADM-
6RG (129-Gt(ROSA)26Sortm2(CAG-Dsred2/EGFP)Luo/J; Stock #006067) [36], Hprt-Cre [37] (129S1/

Sv-Hprttm1(CAG-cre)Mnn/J Stock #004302) and C57BL/6J (Stock #000664), all from The Jackson

Laboratory. MADM-6GR and MADM-6RG each carry marker transgenes, targeted to the Rosa26
locus on chromosome 6, that are reciprocally chimeric for red (R) and green (G) fluorescent

proteins (Fig 1). In the case of MADM-6GR mice, the N terminal coding region of EGFP is com-

bined with the C terminal coding region of DsRed2, while in MADM-6RG mice the orientation

is reversed. To allow enhanced visualization of DsRed2, six copies of the Myc epitope were engi-

neered into the constructs used to produce transgenes so that the expressed protein can be

labeled using an anti-c-Myc antibody. Interposed between the N- and C-terminal sequences is

an intron within which is embedded a single loxP site. Because the intron shifts the reading
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frame, any proteins produced are nonfunctional. However, when the MADM-6GR and MADM-
6RG transgenes are present on homologous chromosomes, a Cre-catalyzed interchromosomal

recombination event will result in the exchange of C- and N-terminal portions, reconstituting

the coding regions for each of the original fluorescent proteins (Fig 1). In these studies, recom-

binase activity was supplied by a Cre transgene targeted to the X-linked HPRT gene, which is

expressed ubiquitously. All strains were kept as separate homozygous stocks before MADM

analysis and were genotyped by PCR as described [36, 37].

Fig 1. Diagram summarizing MADM outcomes. All experimental mice possess three transgenes: a ubiquitously-expressed Cre recombinase

gene and two marker transgenes. Each marker transgene consists of partial N- or C-terminal coding sequences for GFP and RFP, reciprocally-

arranged and interrupted by a single loxP site, on respective copies of chromosome 6. In a non-dividing cell (G0 or G1), Cre-catalyzed

interchromosomal exchange results in functionally reconstituted fluorescent proteins in the same cell, which fluoresces yellow. However, in

cycling cells S phase progression results in duplicated chromosomes which, upon functional recombination between homologous

chromosomes in G2, produces differentially marked progeny. In the case of G2-X segregation, a pair of red and green cells is produced while

G2-Z segregation results in colorless and yellow (double-labeled) cells. In the case of WT-MADM, all marked cells, regardless of color, are

homozygous wild-type. However, in a heterozygous cell with a mutant p27 gene (the CK- allele is depicted) linked to the chromosome carrying

a GFP-RFP cassette (GR-MADM), Cre-recombination and G2-X segregation after mitosis yields a wild-type red cell (p27WT/WT) and a mutant

green cell (p27CK-/CK-). G2-Z segregation of mitotic cells generates colorless and yellow cells, both heterozygous, while recombination taking

place in either G1 or G0 generates double-labeled cells in all cases without altering genotype.

https://doi.org/10.1371/journal.pone.0226725.g001
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Adult mice older than 8-weeks were used for all studies. Results from both male and female

animals were pooled, since no apparent differences were noted between the sexes in prelimi-

nary experiments.

Generation of MADM mice

Inherent in the MADM strategy is the unique and indelible labeling of the two daughter cells

produced when a dividing cell undergoes interchromosomal recombination. In Fig 1, a cell

containing the MADM-6GR and MADM-6RG transgenes, each on separate chromosomes, is

depicted passing from G1 phase through S phase replication and into G2 phase. Prior to S

phase recombination, the cell in G1 phase is unlabeled. Following DNA replication, Cre-

induced rearrangement between loxP sites located on homologous chromosomes will result in

restored GFP and RFP sequences in two of the four homologous chromosomes. Upon comple-

tion of mitosis, the labeled cells that result will depend on the mode of chromosomal segrega-

tion. In the case of X segregation, each cell will inherit one functional and one non-functional

fluorescent protein gene, which upon expression will cause one cell to fluoresce red and the

other green. Z segregation, on the other hand, will generate cells with either two reconstituted

or two non-reconstituted transgenes (yellow and colorless, respectively). Importantly, unlike

the situation when Cre activity takes place in G2 phase, recombination in non-mitotic cells

during either G0 or G1 converts a colorless cell to a yellow cell that expresses both fluorescent

proteins (Fig 1). Thus, in MADM mice the segregation within a cell of functionally recom-

bined DsRed or GFP genes is linked to the generation of either a red or green cell, respectively.

If the above recombination event takes place on a wild-type background, the result will be

marked cells that are phenotypically normal, a situation referred to as WT-MADM. This

approach has been used successfully to fill restricted numbers of CEnCs with fluorescent label

for cell shape analysis [5]. GR-MADM, a variant strategy appropriate for single-cell phenotypic

analysis, is made possible when one chromosome contains a mutation of interest distal (telo-

meric) to the knockin site of the MADM cassette (in this case, Rosa26). Because the red/green

transgenes are linked to the wild-type/mutant alleles, respectively, through meiotic recombina-

tion, G2 recombination followed by X segregation (i.e., a G2-X event) will generate a green

daughter cell homozygous for the mutation and a red sibling homozygous for the wild-type

allele. G2-Z, G1 or G0 events, on the other hand, will produce cells that remain heterozygous

and, because of their color (yellow) or lack thereof, are distinguishable from single color homo-

zygous cells. In all cases, continued division of any one of the marked cells involved will thereaf-

ter lead to daughter cells of the same genotype. Finally, because the likelihood of recombination

is relatively low at any one mitotic event, marked cells are generally rare and widely distributed,

making the identification of such events more feasible [36, 38, 39].

In our experiments, implementation of WT-MADM was accomplished through a series of

two crosses [40]. First, homozygous MADM-6RG/RG and HprtCre/Cre mice were interbred to

produce double heterozygotes. The latter were then mated with MADM-6GR/GR animals to

generate Cre-positive mice (MADM-6GR/RG; HprtWT/Cre) used for experiments and Cre-nega-

tive animals (MADM-6GR/RG; HprtWT/WT), which provided a control. GR-MADM was carried

out separately for the p27CK− and p27− mutant strains [40]. In both cases, MADM-6GR/GR mice

were first bred to heterozygous mutant animals (p27+/− or p27+/CK−) and double heterozygotes

(MADM-6WT/GR; p27+/− or MADM-6WT/GR; p27 +/CK−) identified by genotyping. The latter

were then backcrossed to wild-type C57Bl/6J mice to produce progeny that were screened by

PCR for meiotic recombinants in which a mutant gene allele (p27CK− or p27−) was linked to

the MADM-6GR transgene (designated p27 MADM-6WT/GR). Finally, p27 MADM-6WT/GR mice

were crossed with MADM-6WT/RG; HprtWT/Cre double heterozygotes (generated as above from
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MADM-6RG/RG and HprtCre/Cre animals) in order to produce p27 MADM-6GR/RG; HprtWT/Cre

experimental mice and p27 MADM-6GR/RG; HprtWT/WT controls.

Tissue preparation and immunostaining

Mice were euthanized using CO2 inhalation, followed by decapitation and pneumothorax. The

eyes were then surgically isolated, punctured posteriorly with a 27-gauge needle and fixed

overnight at 4˚C in 2% paraformaldehyde in sodium acetate buffer, pH 6.0 [41]. After several

washes in phosphate-buffered saline, pH 7.3 (PBS), the globes were dissected to remove all

non-corneal tissues and processed for reporter visualization and/or immunocytochemistry

(see below). In most cases, corneas were kept intact for subsequent flat-mounting [5]. Occa-

sionally, they were cryoprotected with 20% sucrose overnight, frozen in Tissue-Tek O.C.T.

compound (Sakura Finetek USA, Torrance, CA) and sectioned at 10μm using a

cryomicrotome.

In order to visualize cell boundaries, corneas from wild-type mice and whole-animal

mutants were labeled with an antibody to the tight junction-associated protein ZO-1. To sup-

press non-specific binding of the anti-mouse secondary antibody, tissues underwent a two-

stage blocking reaction. In the first stage, they were incubated in normal donkey serum (NDS;

Jackson ImmunoResearch Laboratories, West Grove, PA), diluted 1:10 in Tris-buffered saline

(TBS), pH 7.3, with 1.0% bovine serum albumin (BSA) and 0.4% Triton X-100 (TBS-BSA-Tri-

ton X-100; 1 h; room temperature). Then, after several rinses in TBS corneas were blocked

with goat anti-mouse IgG Fab fragments (Jackson ImmunoResearch; 0.13 mg/ml; 1 h; room

temperature) prior to overnight incubation at 4˚C in mouse anti-ZO-1 (Life Technologies,

Carlsbad, CA; 1A12; 1:100). Following further buffer washes, tissues were stained for 2 h at

room temperature with Alexa Fluor 488–conjugated donkey anti-mouse IgG (Life Technolo-

gies) before being rinsed and flat-mounted.

Intact corneas or corneal sections from MADM mice were blocked with NDS, then incu-

bated overnight at 4˚C in combined primary antibodies (chicken anti-green fluorescent pro-

tein [GFP]; Aves Labs, Tigard, OR; 1:500 and goat anti-c-Myc; Novus Biologicals, Littleton,

CO; 1:200) diluted in TBS-BSA-Triton X-100. The c-Myc antibody was pre-absorbed with

fixed wild-type corneal tissue pieces before use (see [42]). The following day, specimens were

stained with fluorescein isothiocyanate (FITC)–conjugated anti-chicken IgG (1:200 dilution)

and Alexa Fluor 555–conjugated anti-goat IgG (1:400 dilution) to enhance visualization of

EGFP and c-Myc-DsRed2, respectively. After several buffer rinses, four radial incisions were

made in each cornea to allow flattening of the tissue, which was then placed on a glass slide

with the endothelium facing up and coverslipped using Vectashield fluorescence mounting

medium (Vector Labs, Burlingame, CA) [32].

Microscopy, image analysis and statistics

Corneal tissues were examined in either a Leica TCS SP2 or SP8 confocal laser scanning

microscope equipped with standard excitation and emission filters (Leica, Heidelberg, Ger-

many). Images from anti-ZO-1-stained endothelial monolayers were acquired using a 20X

(NA = 0.7) infinity-adjusted objective at zoom = 3.0, while those from MADM-labeled tissues

employed a 10X (NA = 0.4) objective and zoom = 1.0. Maximum z-stack projections were

assembled from individual optical slices (1024 X 1024 resolution) taken at 1μm intervals.

Under these conditions, 3–5 slices were sufficient to include the entire endothelial cell layer.

Tonal quality of the resulting projection images was adjusted using the Levels tool in Adobe

Photoshop CS6 (Adobe Systems, San Jose, CA) prior to further processing.
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Evaluation of endothelial cell density and collection of morphometric parameters were car-

ried out using Fiji software [43]. Within a corneal flat-mount, four central and four peripheral

sites (one each per tissue quadrant) were selected for image acquisition. Central areas were

defined as those lying within a circle (radius = 1250um) encompassing the innermost corneal

surface area, while peripheral regions were limited to those within 200μm of the cornea-sclera

junction. Approximately 0.25mm2 of tissue (3.6% of the total) was sampled in this way. Using

a custom ImageJ1 macro designed by one of us (JB; available at http://www.biovoxxel.de/wp/

wp-content/uploads/2019/05/Endothelial Cells Detection_Final.ijm), cell boundaries were

identified by an algorithm involving various convolution filters and a Voronoi diagram (based

on Dirichlet tessellation). The detected cell areas were used as input for further analysis. Cell

density and area, the number of neighboring cells and circularity (a measure of cell shape)

were obtained using the Extended Particle Analyzer and Neighbor Analysis functions of the

ImageJ BioVoxxel Toolbox. For each parameter, the four central and peripheral measurements

were averaged separately.

To compare patterns of cell proliferation and radial dispersion in mosaic corneas, pano-

ramas encompassing the full expanse of labeled endothelia were assembled from multiple over-

lapping Z-stacks. In initial studies, this was accomplished using the Photomerge command of

Photoshop, with individual single- and double-labeled cells counted manually in the compos-

ite images. In subsequent analyses, we made use of a macro (designed by JB) that incorporates

Z-projection image stitching along with automatic detection and annotation of labeled cells.

Twin spots (MADM-generated clones containing wild-type and mutant cells) were defined as

groups of adjacent red and green cells located at least 200μm from the nearest single-labeled

cell. They were identified using an algorithm that exploits cell proximity measurements to dis-

cover closely associated red and green cells within a circle of defined radius, followed by man-

ual elimination of possible overlapping clones. A best fit was achieved in WT-MADM corneas

with a radius of 82 pixels (248μm), which was then applied to mutant mosaic tissues. Analysis

of the spatial arrangement of single-labeled cells within endothelia was implemented using a

size and shape invariant modification of the density-based clustering algorithm DBSCAN for

2D images [44]. In this unsupervised algorithm, dense regions (clusters) within an array of

points are identified by the maximum distance between points (ε) and the minimum number

of points (minimum density) in a cluster. Data in the present study were obtained using ε = 45

pixels (136μm, cluster radius) and minimum density = 4 (minimum cluster size). All of the

processing and analytical tools described are available as partially individual plugins as part of

the ImageJ BioVoxxel Toolbox (SSIDC Cluster Indicator) or as ImageJ1 macro code (complete

processing pipeline for cluster and twin spot analysis at http://www.biovoxxel.de/wp/wp-

content/uploads/2019/05/SSIDC_Cluster_And TwinSpot Analysis Final.ijm). Instructions for

their use can be found under https://imagej.net/BioVoxxel Toolbox or in the respective macro

code.

For whole-animal studies, one cornea per mouse was used to generate quantitative data. On

the other hand, in reporting the MADM results we made use of both tissues of a single animal

where possible. Our rationale for this is based on the assumption that the number and develop-

mental timing of recombination events are random and, thus, uncorrelated between eyes. The

substantial amount of variability observed between endothelia of an individual mouse (e.g.,

green cell/red cell ratios differ by as much as 87%) confirmed this prediction. In such cases,

both corneas of an animal were included in the analysis in order to document this variation

and provide a fuller picture of the data.

All data were presented as means ± SEM. Statistical analysis was performed using Prism 8.0

software for Mac (GraphPad Software, San Diego, CA).
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Results

The corneal endothelia of whole-organism p27CK-/CK- and p27−/− mutants

are indistinguishable phenotypically

We first examined the effects of the p27CK− and p27− alleles on endothelial cell density in

whole-organism mutants. Representative images of tissue flat-mounts from homozygous wild-

type and mutant corneas are displayed in Fig 2A–2F. Compared with wild-type monolayers,

central regions of both p27CK−/CK− and p27−/− endothelia exhibit density enhancements of

approximately 60% (Fig 2G). A very similar quantitative relationship is also seen for peripheral

regions, although the latter maintain consistently lower cell densities relative to central areas

in all genotypes (Fig 2G).

One consequence of the increased cell densities in mutant endothelia is corresponding

decreases in average cell size, estimated as apical face area (S1A Fig). When the data are plotted

as size distributions, these decreases are seen to be the result of regionally distinct transforma-

tions. In the case of central areas, there is a shift in the peak of mutant cell sizes to smaller val-

ues, with relatively little change in peak widths (S1B–S1D Fig). On the other hand, for

peripheral regions the peak shift is accompanied by a more compressed size distribution, as

well as a greater overlap with central values (S1B–S1D Fig).

To investigate whether the increased cell density seen in p27CK-/CK- and p27−/− mutants has

an impact on apical cell surface geometry, analyses of cell shape and nearest neighbors were

carried out. Our results show that, while there is a small but significant increase in circularity

(regularity of shape) for cells in central regions compared to those in peripheral regions across

all genotypes, little difference is seen between the respective regional populations of wild-type

and mutant endothelial cells (S2A Fig). Similarly, neighbor analysis indicates that the distribu-

tion of neighbors per cell, and thus the arrangement of cells within monolayers, is unchanged

by gene knock-out or mutation (S2B–S2D Fig).

MADM allows analysis of single cells generated during endothelial

development

To investigate p27 gene function at the level of individual cells, mosaic analysis was carried

out. Initially, corneas from WT-MADM mice were examined to assess cell labeling and estab-

lish a baseline for mutant studies. When these tissues are viewed in cross-section, rare exam-

ples of labeled cells can be localized within the endothelial cell layer (arrowheads in Fig 3A).

Similar specimens prepared as flat-mounts allow all GFP+ and RFP+ cells to be seen within the

context of the monolayer (Fig 3B). While most are double-labeled (yellow), in every cornea

variable numbers of single-labeled (green and red) cells are produced as a result of Cre-medi-

ated G2X (mitotic recombination) events. These occur singly but are often components of dis-

crete groups of cells in which one red cell or cluster lies adjacent to a green cell or cluster (Fig

3B, boxed areas). Since such groups are generally limited in number and widely separated

within monolayers, they likely represent the progeny of single (interchromosomal) recombina-

tion events, referred to as twin spots, [40, 45]. To explore this further, we determined the num-

ber and size of single-labeled cell groups using a proximity-based algorithm (see Materials and

Methods). Our results show that, for WT-MADM tissues, an average of only about four such

groups are observed per cornea. Furthermore, the majority (83%) of these are of relatively

small size (two to four cells each), suggesting that they represent independent clones, rather

than the merger of cells from more than one MADM event (Fig 3C). Importantly, when con-

sidered both on the basis of whole corneas and individual twin spots, green and red cells are

generated in approximately equal numbers, indicating that expression of fluorescence markers

does not differentially affect the expansion potential of wild-type sibling cells (Fig 3D).
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Endothelial cells expressing p27CK- and p27− alleles exhibit divergent

proliferative and migration phenotypes

GR-MADM was performed in order to compare wild-type and mutant cells within the same

endothelial monolayer. Examination of whole-mounted corneas from the p27CK− and p27−

Fig 2. Analysis of cell density in endothelial monolayers from organism-wide p27+/+ (WT/WT), p27CK−/CK− (CK-/

CK-) and p27−/− mice (KO/KO). (A-F) Apical cell boundaries revealed by anti-ZO-1 labeling. Compared with wild-

type controls (A and B), increases in cell density are seen in both central and peripheral regions of p27CK−/CK− (C and

D) and p27−/− (E and F) corneas. For each genotype, peripheral regions exhibit consistent decreases in density relative

to corresponding central regions. (G) Quantitation of cell density. Data represent means ± SEM (n = 11 [wild-type] or 6

[mutants]). Ordinary two-way ANOVA followed by Tukey’s HSD test was performed. ��� and ��� indicate p<0.001 by

comparison to wild-type, while ### indicates p<0.001 by comparison to central regions.

https://doi.org/10.1371/journal.pone.0226725.g002

Non-canonical role for p27 in corneal endothelium development

PLOS ONE | https://doi.org/10.1371/journal.pone.0226725 January 13, 2020 9 / 20

https://doi.org/10.1371/journal.pone.0226725.g002
https://doi.org/10.1371/journal.pone.0226725


mosaic strains indicates that there are substantially more single-labeled cells present than in

WT-MADM, with noticeably greater numbers of green cells than red cells (Fig 4A and 4B). To

represent this increase of mutant cells relative to wild-type quantitatively, we made use of the

green/red cell ratio as a metric [40]. Our analysis of the entire population of single-labeled

endothelial cells in p27CK− mosaic corneas indicates that cells expressing a non-functional

CDK inhibitor generate almost three times more progeny than those with wild-type p27 (Fig

4C). Surprisingly, p27− mosaics, in which there is complete loss of CDK inhibitor expression,

Fig 3. Visualization and analysis of single- and double-labeled cells in WT-MADM corneas. (A) Tissue section. In this full-thickness cross-

section, the anterior corneal surface faces upward. Arrows point to groups of labeled cells within the multilayered epithelium, while arrowheads

indicate two stained CEnCs within the endothelial monolayer. (B) Tissue whole-mount. Single- (red and green) and double-labeled (yellow)

endothelial cells (all p27+/+) are confined to a thin tissue layer that is generally well-separated optically from fluorescent protein-expressing

epithelial and stromal cells. In some places, however, moderate undulation of the flat-mounted tissue leads to bleed through from the epithelial

layer (green radial streaks). Boxed areas indicate regions of interest (ROIs) containing groups of single-labeled cells resulting from G2X

recombination events. Insets show boxed areas at 2X magnification. (C) Distribution of twin spot sizes (see Materials and Methods for a

description of how twin spots were identified). The majority (83%) of twin spots contain two to four cells. (D) Relative proportion of single-

labeled GFP+- and RFP+-positive cells in whole corneas and twin spots. Approximately equal percentages of MADM-generated red and green

cells are observed, whether the data include the total number of single-labeled cells in corneas and are expressed relative to all labeled cells (red,

green and yellow; left) or only the subset of single-labeled cells in individual twin spots (right). Values plotted in (C) result from analysis of 23

twin spots from seven corneas. Data in (D) represent means ± SEM (n = 5). Unpaired t-test was performed. ns indicates not significant.

https://doi.org/10.1371/journal.pone.0226725.g003
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Fig 4. MADM analysis of homozygous p27CK−- and p27−-expressing CEnCs. (A and B) Whole-mounts of GR-MADM corneas (CK- and KO,

respectively). Compared with WT-MADM tissues, increased numbers of single-labeled cells characterize corneas of both mutant genotypes.

Boxed areas (ROIs) isolate groups of red and green cells, highlighting the enhanced numbers of mutant (GFP+) cells relative to wild-type (RFP+)

cells in these areas. (C) Quantitative expansion of mutant versus wild-type cells. Each point represents the green-to-red cell ratio for all single-

labeled cells of an individual cornea, with means for different genotypes indicated by horizontal lines. Roughly three- and six-fold increases in the

ratio of mutant-to-wild-type cells is apparent for the p27CK− (CK-) and p27−/− (KO) mosaics, respectively. (D) Histogram of twin spot sizes for

GR-MADM mutants, compared to WT-MADAM tissues (data replotted from Fig 3C). The few twin spots detected in p27CK− mosaic corneas are

all relatively small. By contrast, the frequency distribution of these red and green cell-containing groups is shifted to larger sizes in p27−/− mosaics.

(E) Expansion of mutant cells relative to wild-type cells in identifiable twin spots. Each point represents the green-to-red cell ratio for a single

twin spot. Averaged data are represented as means ± SEM. In (C), n = 5 (WT), 6 (CK-) and 7 (KO). In (E), n = 23 (WT), 6 (CK-) and 20 (KO).

Statistics was conducted by ordinary two-way ANOVA followed by Tukey’s HSD test. �, ��, and ���� indicate p<0.05, p<0.005 and p<0.0001,

respectively. ns indicates not significant. Values plotted in (D) result from analysis of six twin spots from four corneas (p27CK− mosaics) and 20

twin spots from seven corneas (p27−/− mosaics).

https://doi.org/10.1371/journal.pone.0226725.g004

Non-canonical role for p27 in corneal endothelium development

PLOS ONE | https://doi.org/10.1371/journal.pone.0226725 January 13, 2020 11 / 20

https://doi.org/10.1371/journal.pone.0226725.g004
https://doi.org/10.1371/journal.pone.0226725


exhibit a further two-fold increase in the green- to red-cell ratio, resulting in an overall six-fold

expansion of mutant to wild-type cells (Fig 4C).

To determine whether these mutation-specific differences are due to changes in the prolif-

erative potential of individual cells, we performed twin spot analysis. Using the same criteria

employed for WT-MADM corneas, twin spot number and size are seen to differ significantly

between the two mutants (Fig 4D). In the case of p27CK− mosaic corneas, coherent groups of

GFP+ and RFP+ cells are relatively rare and, similar to wild-type tissues, contain only two to

four cells each. By contrast, a shift in the distribution of p27− mosaic twin spots to larger sizes

results in more single-labeled cells being found in these arrays. Importantly, twin spots in the

latter corneas have substantially higher green/red cell ratios than those from either p27CK−

mosaics or p27+ tissues, indicating an increased proliferative potential for cells of this genotype

(Fig 4E).

While endothelia in both p27CK− and p27− mosaics have elevated numbers of mutant green

cells, due to increased recombination events and enhanced cell division, the resulting cells are

distributed very differently within their respective tissues. Fig 5 shows representative regions,

from both wild-type and mutant mosaic corneas, where red and green cells are relatively abun-

dant. Single-labeled cells in twin spots of WT-MADM tissues are generally located within one

or a few cell diameters of one another (Fig 5A–5A”). Because of the rarity of recombination

events, this arrangement results in small discrete groups of clustered cells. In p27CK− mosaics,

on the other hand, individual green and red cells appear scattered within the corneal mono-

layer, with extensive areas of unlabeled cells interposed between them (Fig 5B–5B”). The fact

that obvious groups of single-labeled cells are less evident, suggests a greater degree of mobility

of cells away from sites of MADM-generation in these corneas. Interestingly, clusters of green

cells in p27− mosaics appear to be even more delimited than those of wild-type tissues. Exam-

ples of close-packed GFP+ cells, along with associated RFP+ cells, are depicted in Fig 5C–5C”.

In these clusters, adjacent mutant cells often appear to directly touch one another. The highly

restricted distribution of single-labeled cells, coupled with the expanded generation of p27−

mutant cells characteristic of these mosaics, often leads to large clusters of GFP+ cells (Fig 5C).

Whole-endothelium plots of single-labeled cells reveal global patterns of cell distribution

that mirror the differences seen in dispersion of GFP+ and RFP+ cells from local sites of G2-X

recombination. In WT-MADM corneas, red and green cells are observed mainly in small clus-

ters, although they also exist singly (Fig 6A). While p27CK−-expressing cells are evenly distrib-

uted across endothelial monolayers, p27−/− cells are confined to relatively few highly coherent

clusters (Fig 6B and 6C). To quantify these patterns, we used the density-based algorithm

DBSCAN to perform cluster analysis. Fig 6D illustrates that, compared with p27+/+-expressing

cells in WT-MADM tissues, the percentage of p27CK−/CK− in clusters is 0.6-fold less, while that

of p27−/− cells is 2.5-fold more.

Discussion

p27 is a pivotal factor regulating cell cycle withdrawal in many lineages of developing organ-

isms, including those of the corneal endothelium. In this study, we compared proliferation

and migration phenotypes of murine CEnCs expressing either partial (p27CK-) or full (p27−)

loss-of-function alleles of the cdk1b gene. Whole animal mutants, in which all cells are affected,

exhibited moderate (~0.6-fold) endothelial hyperplasia, with no quantitative difference

between the two variant strains with respect to the final cell density achieved. On the other

hand, in endothelia with sporadically-generated homozygous mutant and wild-type cells there

was a much greater increase in mutant cell number expansion, as well as a two-fold difference

between mice with the p27CK- and p27− alleles.
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The approximately six-fold enhancement in MADM-generated mutant versus wild-type

cells is similar to that previously reported for cerebellar granule cells by Muzumdar et al. [40].

As discussed by these authors, proliferation of mutant cells may be less restricted in mosaic

mice because they constitute a relatively small proportion of the tissues in which they are pro-

duced. Thus, actively dividing cells would be expected to encounter less competition from sur-

rounding wild-type cells than in the situation where all cells are mutant. Furthermore, because

a smaller portion of the tissue is engaged in cell expansion, there would be less likelihood of

activating inhibitory mechanisms regulating global tissue size.

An unexpected result from our study concerns the two-fold difference in the number of

mutant cells, compared to wild-type, in mosaics expressing the p27CK- and p27− alleles. p27 is a

regulatory factor whose only direct influence on cell cycle progression is believed to be as a G1

cyclin-CDK inhibitor [25]. Furthermore, previous studies have shown that this function is

completely eliminated by mutations that alter four amino acids involved in cyclin and CDK

binding [30, 35]. For these reasons, it was predicted that homozygous expression of the p27CK-

allele would produce a phenotype equivalent to that of the p27-null allele. The fact that CEnC

proliferation is actually further enhanced in cells harboring two knockout alleles indicates that

p27 negatively regulates cell cycle progression through an additional mechanism that is unre-

lated to its role as a cyclin-CDK inhibitor.

One way that p27 could be acting in a non-canonical fashion is through effects on mito-

genic signaling pathways that regulate cell cycle progression. For example, Fabris et al. [34]

have recently shown using mouse embryo fibroblasts (MEFs) that cytoplasmic p27 regulates

MAPK (ERK1/2) activation, and consequent early G1-S transit, through its effects on microtu-

bule stability. This effect was shown to be dependent on the interaction of p27 with the micro-

tubule-destabilizing protein stathmin, since increased proliferation in p27-null mice was

Fig 5. Relative dispersion of MADM-generated single-labeled cells in wild-type and mutant mosaic endothelia.

(A-A”) WT-MADM. In twin spots (circled), red and green cells (both p27+/+) directly abut one another or are

separated by, at most, one or two cell diameters. (B-B”) p27CK− GR-MADM. Note that GFP+- and RFP+ cells (mutant

and wild-type, respectively) are more scattered within monolayers, with variable regions of unlabeled cells separating

them. None of the cells in these ROIs belong to twin spots. (C-C”) p27KO GR-MADM. Compared with the other two

genotypes, green cells (p27−/−) are packed together with little intervening space and oftentimes appear to be in direct

contact with one another and with occasional yellow cells (p27+/−). Because of its large size, the group of single-labeled

cells in (C) did not qualify as a single twin spot and, thus, is not circled.

https://doi.org/10.1371/journal.pone.0226725.g005
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Fig 6. Analysis of cell distribution patterns in mosaic wild-type and mutant corneas. (A-C) Representative plots of GFP+ and RFP+ cells

in WT-MADM (A), p27CK− GR-MADM (B) and p27KO GR-MADM (C) tissues. In (A), red and green cells (both p27+/+) appear in small

clusters, as well as distributed as single cells within corneas. Many more MADM-generated cells are apparent in p27CK− and p27KO mosaics.

However, the distribution patterns of GFP+ cells differ greatly between the two mutant mosaics. In p27 CK− GR-MADM tissues (B),

homozygous mutant (green) cells are evenly dispersed within endothelial monolayers. By contrast, GFP+ cells in p27KO GR-MADM

corneas (C) appear mainly in highly coherent clusters. (D) Cluster analysis. Compared with single-labeled (SL) GFP+ cells from wild-type

and CK- mosaics, MADM-generated mutant cells in p27KO GR-MADM corneas are 2.5- and 4-fold more likely to be found in clusters.

Bars represent means ± SEM (n = 4 [red cells] and 3 [green cells]) for WT, 4 [red cells] and 6 [green cells] for CK- and 7 [green cells] for

KO). There were no clusters of p27+/+ (red) cells in p27KO mosaics. Statistical analysis was carried out using ordinary two-way ANOVA

followed by Sidak’s multiple comparisons test. � and ��� indicate p<0.005 and p<0.001, respectively. ns indicates not significant.

https://doi.org/10.1371/journal.pone.0226725.g006
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reverted by concomitant deletion of the stathmin gene [33]. Unlike the binding sites for CDKs

which are located within the N-terminal portion of p27, the interaction with stathmin had

been previously mapped to the C-terminal part of the protein [46]. Interestingly, in these

experiments the augmentation of cell division was due to faster cell cycle reentry whereas,

using MADM, Muzumdar et al. [40] have demonstrated that deletion of p27 results in extra

cell cycles.

An alternative way in which p27 could be influencing CEnC proliferation is through the

small GTPase RhoA. Cytoplasmic p27 has been shown to inhibit Rho signaling by blocking the

binding and activation of RhoA by Rho-GEFs [47]. Coupled with the established involvement

of activated Rho and its downstream effectors ROCK I and II in mitogen-stimulated G1-S

phase progression, p27 could be functioning as an indirect modulator of cell division [48–50].

In NIH 3T3 fibroblasts, where conditional activation of a ROCK-estrogen receptor fusion pro-

tein is sufficient to stimulate G1-S cell cycle progression, activated ROCK acts by upregulating

cyclin D1 and cyclin A expression through Ras/MAPK and LIMK activation, respectively [51].

Therefore, p27 could be exerting anti-proliferative effects both as a cyclin-CDK inhibitor in

the nucleus and as a modulator of Rho/ROCK signaling in the cytoplasm.

While a role for stathmin in CEnC proliferation has not been investigated, there is ample

evidence for the involvement of ROCK in cell division of corneal endothelium. Initial experi-

ments by Okumura et al. [52] using cultured monkey CEnCs demonstrated that the specific

ROCK inhibitor Y-27632 promoted cell adhesion, inhibited apoptosis and increased the fre-

quency of dividing cells. Further studies have shown that these proliferative effects are due to

coordinate upregulation of cyclin D and downregulation of p27 via enhanced phosphatidyli-

nositol 3-kinase (PI-3-K)-Akt signaling [53]. Evidence that active ROCK may normally be

restraining cell division in adult CEnCs has been reproduced in several species, both in vitro

and in vivo [54–57]. In contrast to these studies, essentially opposite results of RhoA and

ROCK inhibitors on endothelial cell proliferation have been reported by Zhu et al. [58]. When

siRNA against the p120 catenin was administered to human CEnC cultures, causing activation

of trafficking of this adherens junction component to the nucleus, BrdU incorporation was

stimulated in parallel with increased RhoA-ROCK signaling. Furthermore, this BrdU incorpo-

ration was abolished by inhibitors targeting either RhoA (CT-04) or ROCK (Y27632). While

these data appear to be in conflict with one another, there is evidence that the direction of cell

division upon Rho/ROCK signaling can be cell type- or context-specific [50]. Thus, these stud-

ies suggest that, under different conditions, ROCK can be either an activator or an inhibitor of

cell division.

Given the cell type- and context-specific nature of proliferative regulatory mechanisms, it is

important that investigation of p27’s cyclin-CDK-independent effects be carried out on

CEnCs in as unperturbed a state as possible. In culture, comparison between p27KO and

p27CK- cells from multiple tissues find them to be indistinguishable, both in their proliferative

behavior and in their expression and regulation of cell cycle factors [30, 31]. Thus, in vitro

studies of these genotypes may be of limited use in uncovering the mechanisms that underlie

the distinct proliferative behaviors in situ that we have described. Rather, strategies to selec-

tively perturb individual signaling pathways in single cells of developing mouse corneas would

seem to be a more productive direction for future investigation. Developing the appropriate

methods is not straightforward, but is likely necessary to specify the mechanisms underlying

the noncanonical effects of p27 on proliferation in the developing cornea.

In addition to proliferative changes, our experiments reveal major differences in the distri-

bution of MADM-generated wild-type and mutant CEnCs within developing endothelial cell

monolayers. Because pairs of red and green cells that arise by G2-X recombination initially lie

directly adjacent to one another, the extent of dispersion of these cells and their progeny is an
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indication of their radial migration. The fact that most labeled p27+/+ cells generated in

WT-MADM tissues remain in relatively close proximity to one another indicates that CEnCs

normally exhibit limited motility within the developing monolayer. Consequently, the greater

dispersion of p27CK−-expressing cells suggests enhanced migration, while the more highly clus-

tered arrangement of p27—expressing cells indicates more restricted migration.

Previously, it’s been demonstrated that cultured p27-deficient MEFs exhibit impaired

motility in combination with an increased number and size of actin stress fibers and focal

adhesions [47, 59, 60]. This was shown to be the result of increased Rho-GTP levels due to loss

of p27 and its ability to directly bind and inhibit Rho activation by guanine–nucleotide

exchange factors (GEFs) [47]. Consequently, Besson et al. [47] have proposed that p27 nor-

mally acts as a positive regulator of cell migration by titrating the Rho signal and allowing for

cell movement through a balance of Rac and Rho activities. Supporting the importance of this

pathway in developing tissues, regulation of RhoA by p27 has been found to be important for

proper migration of neuronal progenitor cells in the subventricular cortex of developing mice

[61, 62]. In contrast to this work, Baldassarre et al. [46] have presented evidence that, in cul-

tured sarcoma cells, p27 is normally a negative regulator of migration, while its binding to

stathmin is able to counteract this migration inhibition.

The highly restricted distribution of p27-null cells seen in our MADM experiments is con-

sistent with reduced motility due to excessive Rho activity. Conversely, the fact that dispersion

of homozygous p27CK—expressing CEnCs is actually increased may be related to expression of

the inhibitor. Besson et al. [47] have previously noted that both embryonic (MEFs) and adult

cells from p27CK- knock-in mice produce levels of p27 above those seen in wild-type controls,

most likely because cyclin and CDK binding is important for turnover of the protein [30, 35,

63]. If a similar increase takes place in p27CK- mosaic corneas, this could account for the appar-

ent enhancement in migration by mutant CEnCs that we see since the migration-promoting

activity of p27 lies in the C-terminal half of the protein, which would be intact in p27CK-/CK-

mutants [59].

Overall, our results highlight unexpected complexity in the way that the cell cycle effector

protein p27 acts during construction of the corneal endothelium. The fact that its mutation

has profound consequences for both cell proliferation and migration underscores the intimate

link between these two functions in cells and the role of p27 in their integration. Finally, our

studies further demonstrate the advantages of single cell mutational analysis for unravelling

protein function within the context of developing mammalian tissues.

Supporting information

S1 Fig. Measurement of apical cell areas in wild-type (WT/WT) and mutant (CK−/CK− and

KO/KO) endothelia. (A) Averaged data. Declines in individual cell area are evident for central

and peripheral regions of both mutants, relative to the wild-type control. (B-D) Histograms

plotting cell area distributions. In p27+/+ monolayers, the size ranges of regional populations are

relatively broad and partially overlapping. Expression of mutant alleles leads to shifts in cell

sizes to smaller values in both central and peripheral regions, as well as more compressed distri-

butions and greater overlap. Data in (A) represent means ± SEM (n = 3). Ordinary two-way

ANOVA followed by Tukey’s HSD test was performed. � and �� indicate p<0.05 and p<0.005

by comparison to wild-type (central), while ��� and ���� indicate p<0.0005 and p<0.0001 by

comparison to wild-type (peripheral). # and ### indicate p<0.05 and p<0.001 by comparison

to central regions. ns indicates not significant.

(TIF)
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S2 Fig. Shape and neighbor analysis of wild-type (WT/WT) and mutant (CK−/CK− and

KO/KO) endothelial cells. (A) Averaged circularity data. Peripheral cells exhibit a small, but

significant, decline in circularity across all genotypes (p<0.01). However, no difference is

observed in either of the two regional cell populations when comparing wild-type and mutant

monolayers. (B-D) Histogram plots of nearest neighbor distributions. Quantitatively similar

numbers of neighbors are seen for all genotypes. Data in (A) represent means ± SEM (n = 3).

Ordinary two-way ANOVA followed by Tukey’s HSD test was performed.

(TIF)
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