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a b s t r a c t

Chemical and fuel production by photosynthetic cyanobacteria is a promising technology but to date has
not reached competitive rates and titers. Genome-scale metabolic modeling can reveal limitations in
cyanobacteria metabolism and guide genetic engineering strategies to increase chemical production.
Here, we used constraint-based modeling and optimization algorithms on a genome-scale model of
Synechocystis PCC6803 to find ways to improve productivity of fermentative, fatty-acid, and terpene-
derived fuels. OptGene and MOMA were used to find heuristics for knockout strategies that could in-
crease biofuel productivity. OptKnock was used to find a set of knockouts that led to coupling between
biofuel and growth. Our results show that high productivity of fermentation or reversed beta-oxidation
derived alcohols such as 1-butanol requires elimination of NADH sinks, while terpenes and fatty-acid
based fuels require creating imbalances in intracellular ATP and NADPH production and consumption.
The FBA-predicted productivities of these fuels are at least 10-fold higher than those reported so far in
the literature. We also discuss the physiological and practical feasibility of implementing these knock-
outs. This work gives insight into how cyanobacteria could be engineered to reach competitive biofuel
productivities.
& 2016 The Authors. Published by Elsevier B.V. International Metabolic Engineering Society. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The engineering of microbes for the production of chemicals
and fuels is a pillar in a future bio-based economy (Choi et al.,
2015; Peralta-Yahya et al., 2012). Autotrophic hosts such as cya-
nobacteria are particularly attractive cell factories for large-vo-
lume, low-value products like biofuel, as handling of plant-based
feedstock can negatively affect the cost and energy balances of
heterotroph-based processes (Jiang et al., 2014). Many cyano-
bacteria strains have been developed which produce small
amounts of chemicals and biofuels directly from CO2 (Oliver and
Atsumi, 2014). However, systems-level metabolic engineering is
needed to achieve industrially-relevant chemical productivities in
cyanobacteria (Gudmundsson and Nogales, 2014).

Cell factory design is based on a genome-scale metabolic model
(GEM), where cellular metabolic reactions are tabulated and con-
nected into a network topology. The GEM can be subjected to flux
balance analysis (FBA), which uses external nutrient uptake rates
and optimization principles to estimate steady-state intracellular
and extracellular reaction fluxes, including cell growth rate
r B.V. International Metabolic Engi
(O’Brien et al., 2015). A suite of algorithms have been developed
which can use the GEM to calculate how cellular metabolism
should be changed to achieve high productivities or yields of a
given product (Machado and Herrgård, 2015). These algorithms
report in silico modifications that could be manifest experimen-
tally as genetic knockouts, knockdowns, or knockups.

One powerful algorithm is OptKnock, which seeks to maximize
flux to product while simultaneously maximizing growth rate. The
result is a list of knockouts, that when executed in silico, result in a
strain where product synthesis occurs at maximum growth (Bur-
gard et al., 2003). This is beneficial as there is evidence that bac-
terial metabolism will evolve to maximize growth (Fong and
Palsson, 2004). Therefore, product-growth “coupled” strains would
ensure high productivity over time. A first application of OptKnock
was to predict and execute the reaction knockouts necessary to
link lactate production to cell growth in E. coli (Fong et al., 2005).

In the OptGene algorithm, reaction knockouts are implemented
randomly, creating a mutant population (Patil et al., 2005). The
reaction fluxes of each mutant are predicted using minimization of
metabolic adjustment (MOMA), which assumes a minimal devia-
tion from wild-type fluxes (Segrè et al., 2002). Mutants having
higher fluxes toward product (or some other fitness metric) are
selected for subsequent mutation or crossover with other mutants.
OptGene is computationally efficient because it searches for local
optima; i.e. mutants are subjected to an evolutionary trajectory,
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Table 1
Reactions that must be knocked out to create mutant M1 and enable 1-butanol-coupled growth in iJN678_ButFER.

Reaction name in iJN678 Enzyme (s) Reaction* Locus to target**

NDH1_2u NAD(P)H dehydrogenase NDH-1 (thylakoid) 4h[c]þnadh[c]þpq[u]-nad[c]þ3h[u]þpqh2[u] slr0331 (ndhD1) and slr1291
(ndhD2)

NDH2_syn NdbA, NdbB, NdbC (thylakoid) h[c]þnadh[c]þpq[u]-nad[c]þpqh2[u] slr0851, slr1743, and sll1484
NDH2_2p NdbA, NdbB, NdbC (periplasm) h[c]þnadh[c]þpq[p]-nad[c]þpqh2[p] slr0851, slr1743, and sll1484
GLYCTO1 Glycolate oxidase o2[c]þglyclt[c]-h2o2[c]þglx[c] sll0404 (glcD2)
GLUSx Glutamate synthase GOGAT (NADH-dependent) h[c]þnadh[c]þakg[c]þ gln-L[c]-nad[c]þ2 glu-L[c] sll1502
MDH Malate dehydrogenase nad[c]þmal-L[c]⇔h[c]þnadh[c]þoaa[c] sll0891
POR_syn Pyruvate: ferredoxin oxidoreductase coa[c]þpyr[c]þ2 fdxo-2:2[c]-h[c]þco2[c]þaccoa

[c]þ2 fdxr-2:2[c]
sll0741

FPK Phosphoketolase f6p[c]þpi[c]-actp[c]þe4p[c]þh2o[c] slr0453
NADTRHD*** NAD transhydrogenase nad[c]þnadph[c]⇔nadp[c]þnadh[c] slr1239 (pntA)

* [c] cytoplasmic, [u] thylakoid, [p] periplasmic compartments.
** Locus to target is suggestion for gene deletion to eliminate enzyme activity. For multi-domain proteins a core subunit is given. NDH-1 (Battchikova et al., 2011), GlcD2

(Eisenhut et al., 2008).
*** Reaction assumed to be reversible.

K. Shabestary, E.P. Hudson / Metabolic Engineering Communications 3 (2016) 216–226 217
and each mutant is compared only to others in the population.
While global optima are not found, the mutants reveal heuristics
about the most effective mutations to improve productivity. Opt-
Gene was recently used to identify knockouts in yeast that im-
proved succinate titers 30-fold when the strategy was executed
in vivo (Otero et al., 2013).

Synechocystis GEMs have been previously used to suggest en-
gineering strategies for increasing production of ethanol, iso-
butanol, fumarate, and hydrogen (Sengupta et al., 2013;Erdrich
et al., 2014; Nogales et al., 2013). However, strategies for product-
growth coupling have been elusive in cyanobacteria, as photo-
synthesis metabolism is robust, with several electron “valves” such
as cyclic and alternative electron flows. Here we use OptGene and
OptKnock on stoichiometric Synechocystis GEMs to identify in silico
gene knockouts that improve production of fermentation, fatty-
acid, and terpene-derived biofuels. OptGene revealed heuristics for
improving productivity, while OptKnock identified reaction
knockouts that couple photoautotrophic growth and biofuel pro-
duction. The underlying logic of these strategies is revealed.
2. Material and methods

2.1. Genome scale modeling

The Synechocystis sp. PCC 6803 model iJN678 (Nogales et al.,
2012) was used to perform flux balance analysis using the COBRA
toolbox 2.0 (Schellenberger et al., 2011) on MATLAB (Mathworks
Inc., Natick, MA). The model iJN678 was downloaded from the
BiGG Models database (http://bigg.ucsd.edu). The reconstruction
iJN678 incorporates 678 genes, 863 reactions and 795 metabolites.
Several additions were made in accordance with recent literature:
the TCA cycle shunt reactions (Zhang and Bryant, 2011), the light-
independent serine biosynthesis pathway (Klemke et al., 2015),
and the phosphoketolase reaction (Xiong et al., 2015). Electron-
transport chain reactions in the cytoplasm and thylakoid were
modified to be consistent with recent literature (Lea-Smith et al.,
2015). All modifications are added in the iJN678_2016 SBML file
(Sourceforge).

Model iJN678_2016 can simulate heterotrophic, autotrophic
and mixotrophic conditions by constraining photon, glucose, or
carbonate/CO2 uptakes. All simulations were done for autotrophic
conditions in light limited state (LLS); photon flux was fixed at
�45 mmol/gDW h (both bounds). This photon uptake gives a
maximum specific growth rate of 0.08 h�1, which is similar to that
recorded under common laboratory conditions of 1% v/v CO2 and
50 uE/m2/s illumination. Carbon uptake (HCO3) was not fixed but
had a limit of �3.7 mmol/gDW h, which is the estimated maximal
uptake rate (Young et al., 2011). A second Synechocystis sp. PCC
6803 GEM (Knoop et al., 2013) was used for comparison. The
ferredoxin plastoquinone reductase (FQR) and the Mehler-related
reactions were added to this GEM. The biofuel biosynthesis reac-
tions were added as described in Section 3.

Execution of OptKnock on genome scale models has been de-
scribed (Chowdhury et al., 2015). Here, OptKnock was performed
on iJN678 with scripts provided in the COBRA toolbox 2.0 (Hyduke
et al., 2011). The TOMLAB/CPLEX solver was used (Tomlab Opti-
mization Inc., San Diego, CA). The reactions available to OptKnock
were reduced to a pool of approximately 325 following a pub-
lished methodology (see Supplemental Matlab file (Sourceforge)
and (Feist et al., 2010)). The testable subset excluded transport
reactions, peripheral reactions, essential reactions, and reactions
acting on high-carbon containing molecules. Simulations were
allowed to run for up to 12 h. OptForce was performed on the
same iJN678 reaction subset using the General Algebraic Modeling
System GAMS 24.4.1 (GAMS Development Corporation, Wa-
shington, DC) as described in Ranganathan et al. (2010).

OptGene was performed on the iJN678 reaction subset using
the “Evolutionary optimization” algorithm in the OptFlux software
(Rocha et al., 2010).

Minimization of metabolic adjustment (MOMA) was used to
predict the flux distributions of mutant strains (Segrè et al., 2002).
The fitness metric was Biomass-Product Coupled Yield (BPCY), the
product of biomass and biofuel fluxes divided by HCO3

� uptake
rate. Up to 5 reaction knockouts were allowed. The reference flux
distribution for MOMA was obtained by solving iJN678 with FBA
constrained with 13C MFA data from the 95% confidence intervals
from the reactions in Table 1 of Young et al. (Young et al., 2011).
These constraints reduced the maximum biomass formation rate
to 0.0735 h�1. All simulations were performed on a MacBook Pro
with 8 GB RAM and a 2.7 GHz Intel i5 processor.
3. Results

3.1. OptGene for metabolic engineering heuristics in Synechocystis

Several stoichiometric GEMs are available for Synechocystis PCC
6803 and have been recently reviewed (Baroukh et al., 2015). We
chose the iJN678 GEM due to its detail of linear electron flow (LEF)
and alternative electron flow (AEF) reactions (Nogales et al., 2012).
We added and removed several reactions from the GEM to make it
consistent with current literature (see Section 2). Three non-native
biofuel synthesis pathways were considered for photoautotrophic

http://bigg.ucsd.edu
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production (Fig. 1). The first is a chimeric version of the Clostridia
1-butanol fermentation pathway (Bond-Watts et al., 2011; Shen
et al., 2011) that was recently implemented in Synechococcus (Lan
and Liao, 2012) and Synechocystis (Anfelt et al., 2015). The fer-
mentation pathway is characterized by demand of 3 NADH. 1-oc-
tanol was chosen as a representative of a fatty-acid derived alco-
hol. Here, fatty-ACP is hydrolyzed with a chain-length specific
thioesterase; the subsequent fatty acid is reduced by carboxylic
acid reductase and a native alcohol dehydrogenase. This pathway
has a high NADPH and ATP demand. It has recently been im-
plemented in E. coli (Akhtar et al., 2015) but not in cyanobacteria.
Limonene was included as a representative of terpene-based bio-
fuels and is one step from geranyl-diphosphate in the native MEP
pathway (Davies et al., 2014). All pathways were added separately
to iJN678 to form iJN678_ButFER, iJN678_OctFA and iJN678_Li-
monene (Table S2). Flux balance analysis of the GEMs using a
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biomass objective function produced no biofuel, indicating that
optimal growth in photoautotrophic conditions does not require
biofuel synthesis in order to satisfy mass balances. Maximum
1-butanol, 1-octanol and limonene productivities were 0.925,
0.463 and 0.37 mmol/gDW h (17, 15, and 12 mg/L/OD730/h, re-
spectively), as calculated by solving FBA with biofuel secretion as
the objective function.

OptGene finds local optima in a given fitness metric by com-
paring randomly mutated strains to one another (Patil et al., 2005).
We chose OptGene as a computationally fast way to uncover
trends for improving productivity from the reference flux state
(zero biofuel productivity). First, critical reactions were removed
from consideration, resulting in Subset A (ca. 170 reactions, see
Supplemental). Up to five reaction knockouts were allowed. Mu-
tant intracellular fluxes were calculated using MOMA (minimiza-
tion of metabolic adjustment) and the fitness metric was biomass-
product coupled yield (BPCY). OptGene readily found mutations
that increased BPCY for each biofuel. Because OptGene finds local
optima from a random starting point, 3–5 sessions were run, each
providing ca. 20 simulations (knockout strains). These strains were
assessed for BPCY. To further avoid redundancy in the solutions,
several reactions that appeared often were removed from the in-
itial available pool, to form Subset B (ca. 150 reactions). Fig. 2
shows the production envelope for each biofuel as calculated with
FBA, and selected OptGene-derived mutant strains are plotted
with their biofuel and biomass fluxes as calculated by MOMA. A
list of gene knockouts and corresponding BPCY calculations are in
Supplemental.

In general, more knockouts increased BPCY, though there was a
diminishing-returns effect for more than 4 knockouts. The pro-
ductivities of all mutants were well below the maximal pro-
ductivity for each fuel. Among the most common knockouts for
1-butanol were phosphoenolase (ENO) and phosphoglycerate
mutase (PGM). These knockouts block pyruvate formation in lower
glycolysis; flux is instead diverted through methylglyoxal to lac-
tate, which is oxidized to pyruvate to generate NADH. This extra
NADH is beneficial for 1-butanol production. Alternatively, the
phosphoketolase (FPK) is used to produce acetyl-CoA from Calvin-
cycle intermediates (Anfelt et al., 2015). In fact, ENO and PGMwere
such prevalent knockouts from OptGene that we were forced to
exclude them from consideration to find more diverse solutions
(Subset B). In the fatty-acid 1-octanol pathway, a recurring theme
for increasing BPCY was knockout of alternative-electron flow
reactions, such as the MEHLER reaction and Flv2/Flv4, which could
have the effect of reducing NADPH consumption. Knockout of
glutamate dehydrogenase (GLUDy, NADPH-utilizing) forces NH4

uptake to occur through the ATP-consuming glutamine synthase.
This knockout thus reduces NADPH consumption and increases
ATP consumption. Glutamate dehydrogenase was also identified
by MOMA as a knockout target for increasing ethanol and butanol
production in Synechococcus PCC 7002 (Hendry et al., 2016). One
set of knockouts for increasing limonene BCPY involved the pyr-
uvate synthesis reaction SER_AL (serine-ammonia lyase). This is
counter-intuitive, as pyruvate is a necessary metabolite in the MEP
pathway leading to limonene. However, knockout of these routes
to pyruvate result in flux through other pyruvate-generating
pathways. Furthermore, the BPCY objective function maximizes
the product of growth and limonene synthesis, so that a tradeoff
between these two is sought.

3.2. Model-derived mutants with growth-coupled biofuel production

OptGene was useful in identifying gene knockouts that could
be expected to increase BPCY. However, the predicted flux dis-
tributions are calculated using MOMA, and may not be indicative
of long-term flux distributions, which tend to optimize biomass
formation (Fong and Palsson, 2004). We next used OptKnock to
find gene knockouts that would result in biofuel production at
FBA-predicted flux distributions (Burgard et al., 2003). Since Opt-
Knock uses biomass optimization to predict fluxes, more inter-
ventions are required to get non-zero product synthesis than for
MOMA-based prediction.
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OptKnock was run first on iJN678_ButFER and up to 10 reaction
knockouts were allowed, from a pool of 325 (Methods). Based on
reaction knockouts proposed by OptKnock, we devised two mu-
tants (M1 and M2) that have a strong coupling of 1-butanol and
growth, i.e. 1-butanol production is predicted at all growth rates.
The M1 knockouts are listed in Table 1. The production envelope of
M1 is significantly constrained compared to iJN678_ButFER
(Fig. 3). The biofuel-growth coupling could likely be strengthened
with more knockouts. At maximum growth rate under LLS
(Methods), the M1 strain is predicted to produce butanol at
0.3 mmol/gDW h, which is 33% of the theoretical maximum rate
and 6-fold higher than the highest experimental report, which was
estimated to be 0.05 mmol/gDW h from a butanol-producing Sy-
nechococcus PCC7942 at similar conditions (Lan et al., 2013). The
M2 strategy required high flux through pyruvate: ferredoxin oxi-
doreductase, known to be oxygen sensitive (McNeely et al., 2011),
and through methylglyoxal, a toxic electrophile (see flux map Fig.
S1). For these reasons, M2 is considered to not be physiologically
feasible and is not discussed further. We note that the M1 strategy
also provides growth-biofuel coupling for longer-chain alcohols
Table 2
Reaction interventions needed to create mutant M3 and enable 1-octanol-coupled grow

Reaction name in iJN678 Enzyme (s) Reaction*

NDH1_1u NAD(P)H dehydrogenase NDH-1 (thylakoid) 4h[c]þnad

NDH1_2u NAD(P)H dehydrogenase NDH-1 (thylakoid) 4h[c]þnad

NDH2_syn NdbA, NdbB, NdbC (thylakoid) h[c]þnadh
NDH2_2p NdbA, NdbB, NdbC (periplasm) h[c]þnadh
NDH1_3u Active CO2 transporter facilitator (thylakoid) 3h[c]þh2o

[c]þ3h[u]
Mehler Flavodiiron proteins Flv1 and Flv3 h[c]þ0.5 o

Cyo1b_syn Cytochrome c oxidase 4h[c]þ2 fo
[u]

GLYCTO1 Glycolate oxidase o2[c]þgly
GLUSx Glutamate synthase GOGAT (NADH-

dependent)
h[c]þnadh

ACKr Acetate kinase atp[c]þac
H2ase_syn [NiFe] Hydrogenase h[c]þ nad
ATPS4rpp ATP synthase (periplasmic) 3 adp[c]þ
FNOR*** Ferredoxin: NADPþreductase h[c]þnadp

* [c] cytoplasmic, [u] thylakoid, [p] periplasmic compartments.
** Locus to target is suggestion for gene deletion to eliminate enzyme activity. For mu

(Eisenhut et al., 2008), Hox (Eckert et al., 2012), AtpE (Imashimizu et al., 2011).
*** Overexpression required.
(Fig. S2) produced via reverse-beta oxidation (Dellomonaco et al.,
2011).

We next ran OptKnock for the fatty-acid derived 1-octanol
pathway (iJN678_Oct_FA) but did not find growth-coupled stra-
tegies after several attempts and extended simulation time (up to
24 h). This suggests that coupling from this pathway cannot be
achieved with knockouts alone, or with fewer than 10 knockouts.
As an alternative to OptKnock, we used OptForce, which tests not
only knockouts but also reaction “knock-ups” (increased flux) and
“knock-downs” (reduced flux) (Ranganathan et al., 2010). OptForce
was able to find a set of interventions that coupled 1-octanol
production and growth. This mutant (M3) is described in Table 2.
As discussed below, M3 contains several deletions in alternative
electron flow reactions and requires upregulation of the ferre-
doxin: NADPH oxidoreductase reaction.

3.3. Flux differences in OptKnock and OptForce -derived in silico
mutant strains

3.3.1. NADH recycling as driving force for butanol-growth coupling
in ButFER

From inspection of Table 1 it is clear that most knockouts in M1
are involved in NADH metabolism. Phosphoketolase (FPK), which
was recently shown to benefit butanol production during light-
limited cultivation (Anfelt et al., 2015), is part of a bypass around
the NADH-generating pyruvate dehydrogenase (Pdh) and must
therefore be knocked out. Additionally, knockout of NADH-de-
pendent GOGAT enzyme in M1 forces nitrogen uptake through
glutamate dehydrogenase (Gdh, NH3

þ , NADPH-dependent). There
is experimental evidence that Gdh is active in Synechocystis and is
involved in nitrate uptake in light-limited conditions (Chávez
et al., 1999). Comparison of the flux distributions in M1 and iJN678
at maximal growth show that M1 has increased flux through Pdh,
decreased flux through the TCA cycle and respiratory electron
transport chain, and an increased flux in carbon fixation (Fig. 4).
The primary sources of NADH in both strains are acetyl-CoA bio-
synthesis by Pdh and serine biosynthesis from 3PGA. The primary
NADH usage in iJN678 is alanine biosynthesis and in M1 it is
butanol.

The M1 strain suggests that NADH recycling is an important
lever for improving butanol productivity, which we tested in
th in iJN678_OctFA.

Locus to target**

ph[c]þpq[p]-nadp[c]þ3h[p]þpqh2[p] slr0331 (ndhD1) and slr1291
(ndhD2)

h[c]þpq[u]-nad[c]þ3h[u]þpqh2[u] slr0331 (ndhD1) and slr1291
(ndhD2)

[c]þpq[u]-nad[c]þpqh2[u] slr0851, slr1743, and sll1484
[c]þpq[p]-nad[c]þpqh2[p] slr0851, slr1743, and sll1484
[c]þnadph[c]þpq[u]þco2[p]-nadp[c]þhco3
þpqh2[u]

sll1733 (ndhD3) and sll0027
(ndhD4)

2[c]þnadph[c]-h2o[c]þnadp[c] sll1521 (flv1)
sll0550 (flv3)

cytc6[u]þ0.5 o2[u]-2h[u]þ2 ficytc6[u]þ h2o slr1137

clt[c]-h2o2[c]þglx[c] sll0404 (glcD2)
[c]þakg[c]þgln-L[c]-nad[c]þ2 glu-L[c] sll1502

[c]⇔adp[c]þactp[c] sll1299
ph[c]⇔nadp[c]þh2[c] sll1224 (hoxY)
3 pi[c]þ14h[p]-3 atp[c]þ11h[c]þ3 h2o[c] slr1330 (atpE)
[c]þ2 fdxr-2:2[c]⇔nadph[c]þ2 fdxo-2:2[c] slr1643

lti-domain proteins a core subunit is given. NDH-1 (Battchikova et al., 2011), GlcD2



Fig. 4. Flux distributions of iJN678_ButFER and mutant M1. Fluxes were calculated using FBA with a biomass formation objective function in light-limited condition (see
Section 2). A) iJN678_ButFER, constrained with 13C MFA data (see Section 2) B) mutant M1, which was not constrained with 13C MFA data. Flux values are in mmol/gDW h
(*10�2) except for the flux to biomass (h�1).
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several ways. When we added a generic NADH “burning” reaction
to M1, coupling was lost. When we added a generic NADH-gen-
eration reaction to iJN678 and forced flux through it at 20 mmol/
gDW h, NDH-1 and NDH-2 dissipated the increased NADH. If these
reactions were held at low fluxes, NADH was instead dissipated via
cytochrome oxidases or glutamate synthase. These NADH dis-
sipating reactions overlap with those suggested by OptKnock and
support the theory that butanol is a necessary NADH valve in M1.
Importantly, the M1 strategy provides biofuel-biomass coupling
for longer chain alcohols produced via the reverse beta-oxidation
pathway (Dellomonaco et al., 2011)(Fig. S2), as well as the NphT7,
ATP-dependent butanol pathway (Lan and Liao, 2012).

Recent strategies to increase productivities in cyanobacteria
have focused on utilizing NADPH-dependent enzymes or path-
ways, (Angermayr et al., 2014; Oliver and Atsumi, 2014), in order
to exploit the NADP pool in Synechocystis, which is 5-fold larger
than the NAD pool (Cooley and Vermaas, 2001). However, only a
few knockouts are needed to force butanol productivity when
NADH-dependent enzymes are used. Addition of a soluble trans-
hydrogenase (Sth) to convert the NADPH pool to NADH could in-
crease butanol productivity further, as reported for lactate pro-
duction in Synechocystis (Angermayr et al., 2012; Varman et al.,
2013). We tested the effect of forcing flux through the Sth reaction
(NADPHþNADþ-NADHþNADPþ) and found that this extra
NADH generation strengthened the coupling and increased buta-
nol productivity at maximal growth rate (Fig. 3). It should be no-
ted, however, that stronger coupling reduced the maximal growth
rate. Simulation of batch-phase growth and butanol production
showed that weaker butanol-growth couplings would give higher
final butanol titers if starting culture density was low (Suppl Note
1). A growth-biofuel tradeoff is partially captured by the BPCY
metric used in OptGene.

3.3.2. ATP/NADPH ratio as a driving force for fatty-acid and terpene
biofuels

Fatty-acid derived biofuels have a high NADPH requirement but
since NADPH is used in anabolic reactions, it is not possible to
eliminate NADPH sinks while retaining growth. An alternative
strategy to force product-growth coupling is to alter fluxes of ATP
and NADPH so as to create an imbalance in the ATP/NADPH ratio
(Kramer and Evans, 2011) that can only be alleviated by produc-
tion of fuel. The Synechocystis linear electron flow (LEF) generates
ATP/NADPH at a ratio of 1.28–1.5, depending on the exact stoi-
chiometry of the ATP synthase. CO2 fixation, biomass formation,
and other maintenance reactions create an overall demand of ATP/
NADPH42 (Knoop and Steuer, 2015). Therefore, additional ATP
generating reactions such as cyclic electron flow (CEF) or alter-
native electron flow (AEF) are employed to ensure that ATP and
NADPH are supplied in the proper proportion. If these ATP-gen-
erating reactions are knocked out, fluxes of NADPH-consuming
reactions, such as biofuel synthesis, must increase in order to al-
low growth and satisfy mass balances. For example, Erdich et al.
used elementary flux mode analysis of a cyanobacteria GEM con-
taining ethanol synthesis reactions (ATP/NADPH¼1) and found
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that elementary metabolic modes (EMs) where ethanol and
growth occurred simultaneously carried no flux through several
ATP-generating AEF reactions (Erdrich et al., 2014).

The M3 reaction knockouts for fatty-acid derived 1-octanol
follow this strategy. The in silico M3 strain is weakly coupled and
produces 1-octanol at high growth rates (Fig. 5A). Components of
CEF and AEF that could pump protons into the thylakoid lumen
and thus generate ATP are required knockouts (see schematic,
Fig. 6). The ATP-forming acetate kinase is a required knockout as is
the periplasmic ATP synthase. The latter is not experimentally
possible, since a knockout of ATP synthase genes would eliminate
both periplasmic and thylakoid ATP production. We interpret this
knockout as a need to further lower ATP production and ATP
synthesis was reduced in M3 compared to wild type by 7.5% (5.3–
4.9 mmol/DW h). This reduced ATP production lowers the LLS
maximum theoretical productivity of M3 relative to iJN678_OctFA.
M3 also requires knockout of several NADPH-consuming reactions,
including both the CEF and CO2 uptake reactions of NDH-1 dehy-
drogenase. A knockout of NDH-1 has been reported, but was not
viable at high light (4200 μE) due to the absence of CEF
(Battchikova et al., 2011). This was confirmed in the model: no
growth was observed above a simulated light intensity of 100 μE
when CEF was removed (data not shown, also (Nogales et al.,
2012)). OptForce also required that NADPH generation be in-
creased so that flux through ferredoxin-NADPþ oxidoreductase
(FNOR) was required to be 34% higher than in iJN678_OctFA (6.7–
Fig. 6. Electron transport chain in Synechocystis as modeled in iJN678. Reactions that
spiratory proteins; Blue, cyclic electron flow proteins. NAD(P)H indicates that both NADH
references to color in this figure legend, the reader is referred to the web version of th
9.0 mmol/gDW.h). However, increase in FNOR flux above
9.5 mmol/gDW h resulted in no FBA solution, presumably due to
inability to dissipate the excess NADPH. The M3 knockouts also
give growth coupling for other fatty-acid derived products, in-
cluding longer chain alcohols and alkanes (Fig. S5-S6).

An alternative to knockout of ATP-producing reactions is to
increase ATP-consumption (Adolfsen and Brynildsen, 2015; Hä-
dicke et al., 2015). One potential ATP-burning futile cycle for fatty-
acid derived products is the ATP-dependent activation with ACP
and subsequent thiolysis of the fatty acid intermediate. Thioes-
terases (Jing et al., 2011) and acyl-ACP synthetases (Kaczmarzyk
et al., 2016) with varying chain-length specificity have been
characterized. We incorporated the Tes/Aas futile cycle into the M3
model and forced flux through, which significantly strengthened
the coupling between growth and 1-octanol (Fig. 5C). A similar
strengthening of coupling was observed when either a phos-
phoenolpyruvate synthase/pyruvate kinase and adenylate kinase
or a glutamine synthase/glutaminase futile cycle was implemented
(Fig. S7-S8). Implementation of the former cycle increased specific
productivity of lactate in E. coli, despite consuming pyruvate pre-
cursor (Hädicke et al., 2015). Together, these results indicate that
the product-growth coupling can be modulated by ATP-burning
futile cycles, but at the expense of growth (see also Supplemental
Note 1). However, we note that futile cycles may increase sus-
ceptibility to reactive oxygen species (Adolfsen and Brynildsen,
2015).
are knocked out in M3 are indicated. Green, photosynthesis proteins; Yellow, re-
and NADPH-utilizing reactions are present in the model. (For interpretation of the

is article.)
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Limonene biosynthesis requires a relatively low number of
NADPH (4 NADPH/10C) compared to octanol (8 NADPH/8C). Fur-
thermore, there are no reduction steps in the limonene pathway
after the biomass/limonene branch point at geranyl diphosphate,
so that flux diversion to limonene at this point does not recycle
NADPH or NADH. Nevertheless, we were able to find a product-
growth coupling strategy for limonene using OptForce, which re-
quires a significant number of reaction knockouts (Table S6,
Fig. 7C). Similar to the coupling strategy for fatty-acid based fuels,
components of the CEF and AEF were required knockouts and the
ATP synthase flux must be restricted by at least 16% relative to
wild type (5.4–4.5 mmol/DW h). This significant downregulation is
necessary due to the low NADPH demand of limonene; when we
added an NADPH oxidation reaction to the terminal synthesis step
(4 NADPH oxidized), coupling was possible without knockdown of
ATP synthase.
4. Discussion

We present genetic engineering strategies to obtain cyano-
bacteria strains where biofuel productivity is increased or coupled
to growth. An advantage of growth-coupled production strains is
that adaptive evolution can be used to improve both growth and
production rate, as the strain evolves to the FBA-predicted flux
distribution. To visualize an evolutionary progression for the M1
and M3 strains, we used MOMA to estimate the flux distributions
after these knockouts. The MOMA-predicted flux of M1 was quite
favorable, resulting in high butanol productivity. However, MOMA
predicted no growth for strains M3 and M4 (Fig. 7). This is likely
due to the large number of gene knockouts needed to couple
growth to biofuel, which results in a massive perturbation from
the reference flux. It is likely that not all knockouts are needed to
improve biofuel productivity. The M1, M3, and M4 reaction
knockouts could be used to limit the reactions “pool” considered
by OptGene, which could then be used find the effective combi-
nations. When we recomputed OptGene with only M1, M3, and
M4 knockouts considered (Subset C), the BPCY of mutants for
1-butanol, 1-octanol, and limonene were generally higher than for
when the larger subsets were considered (Fig. 7).

A combination of methods for predicting intracellular fluxes is
useful since the true objective function may not be biomass for-
mation, but rather ATP generation, a minimization of total in-
tracellular flux, or a combination of these (Bordbar et al., 2014).
Cyanobacteria in particular pose a challenge to the biomass as-
sumption since their flexible metabolism, which provides robust-
ness necessary for survival in a fluctuating marine environment,
can be considered suboptimal for growth. Recent works have ex-
plored cyanobacteria metabolism under diurnal cycles and as-
sumed that the cellular objective function changes depending on
external conditions (Knoop et al., 2013; Rügen et al., 2015; Saha
et al., 2016). With this caveat in mind, the general themes of the
two coupling strategies appear to be robust and are consistent
with strategies found using other methods. The M1 knockout
strategy applies to other alcohols produced via reverse beta-oxi-
dation and our work shows that modulating ATP and NADPH
production can be applied to a range of products with different
energy requirements. Our strategies for fatty-acid derived 1-oc-
tanol (M3) and limonene (M4) also have several overlapping
knockouts with a recent work that used Elementary Mode Analysis
to find knockouts which coupled ethanol production to growth in
cyanobacteria (Erdrich et al., 2014). The EMA approach has the
benefit of visualizing many possible flux distributions (elementary
modes) within the allowed flux space, including those that are not
maximal growth. A desired degree of product-biomass coupling
can be defined and algorithms such as CASOP can be used to
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compute which reaction deletions are needed to remove all pos-
sible elementary modes outside of this cutoff (Klamt and Maha-
devan, 2015).

The knockout strategies reported here were found to be
somewhat model-dependent, as transfer to a second GEM did not
result in coupling unless extra reactions were knocked out (Sup-
plemental Note 2). The discrepancy among GEMs is a reflection of
the incomplete knowledge of cyanobacteria metabolism, which
influences the number of needed knockouts. For example, strate-
gies that rely on co-factor imbalance require knowledge of the
cofactor usage of an enzyme (King and Feist, 2013). Here the
models tend to be conservative and if the co-factor preference of
an enzyme is not known, then both are included. In the M1 re-
action target list the NDH-1 reaction using NADH is a necessary
knockout while the NDH-1 reaction using NADPH is not. The
preferred co-factor for NDH-1 is presumed to be NADPH (Ma et al.,
2006), though there is some experimental evidence supporting
NADH activity (Ooyabu et al., 2008). The required knockout of
GlcD2 glycolate oxidase (O2 requiring) in M1 is another illustrative
example. The model iJN678 contains two glycolate oxidation re-
actions. The glycolate dehydrogenase GlcD1 (sll0404) catalyzes
NADþ-dependent glycolate oxidation and does not have detect-
able O2-dependent oxidase activity (Eisenhut et al., 2006). A sec-
ond glycolate dehydrogenase/oxidase GlcD2 (slr0806) was identi-
fied in Synechocystis, but its activity was not characterized (Ei-
senhut et al., 2008), so it is not known if GlcD2 has oxygen-de-
pendent glycolate oxidase activity. The reaction may have been
included in iJN678 based on the prevalence of oxygen-dependent
glycolate oxidases in plants. Therefore, the knockouts of NADH-
dependent NDH-1 and GlcD2 may not be necessary in practice to
achieve coupling in M1. Of course, it is possible that as new re-
actions are experimentally verified, they will add to the reaction
knockout list.

The flux capacity of reactions can also be constrained based on
experimental evidence, such as enzyme kinetics and expression
data (Reed, 2012) and could also obviate some knockouts. In-
tegration of transcriptomics and proteomics data will improve the
accuracy of the cyanobacteria GEM and could reduce the number
of required knockouts. For example, three type-2 NADH dehy-
drogenases are required knockouts in the M1 strain, since they can
oxidize NADH at high fluxes in silico. However, RNA-Seq showed
that these type-2 NADH dehydrogenases are each expressed at less
than 10% of the NDH-1 (Anfelt et al., 2013) and experimental
evidence for their activity was not found (Howitt et al., 1999). A
similar case can be made against pyruvate: ferredoxin oxidor-
eductase, which is another target in M1. This enzyme is known to
be inhibited by O2 and is likely not active in photoautotrophic
conditions (McNeely et al., 2011). Overall, these cofactor and flux
constraints could reduce the required gene knockouts to achieve
the M1 mutant butanol to 3 (FPK slr0453, GLUSx sll1502, MDH
sll0891).

Even considering cofactor and flux constraints, the number of
gene knockouts for the M3 (fatty alcohols) and M4 (limonene)
strains is at least 6. A central question is whether these strains can
be realized in practice. While there are several selection and
counter-selection methods available for cyanobacteria (Begemann
et al., 2013; Cheah et al., 2012; Viola et al., 2014), sequential gene
knockout and antibiotic cassette curing is time-consuming and to
date no strain with more than 4 knockouts has been reported. The
type-II CRISPR/Cas tool is a powerful way to realize gene knock-
outs and has been applied recently in cyanobacteria for single
knockouts (Wendt et al., 2016). A CRISPRi knockdown tool could
repress four genes simultaneously at 50–90% in Synechocystis (Yao
et al., 2015). One limitation of CRISPRi is that it is not possible to
knockdown just one gene in an operon. Therefore, more advanced
genetic engineering techniques must be developed in
cyanobacteria in order to perform systems-level engineering.
5. Conclusions

We used available genome-scale models and algorithms and
found metabolic engineering strategies for creating growth-cou-
pled cyanobacteria biofuel strains. The relative dearth of NADH-
utilizing reactions in Synechocystis allowed for coupling of fer-
mentative butanol with relatively few gene knockouts. Lowering
the ATP/NADPH ratio in the cell is a general approach for coupling
fatty-acid derived products such as alcohols and alkanes and ter-
penes such as limonene. Advances in genome engineering tech-
niques will allow testing of these genetic interventions and in-
tegration of systems-biology data will refine the models to be
more accurate.
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