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Purpose. Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cancer globally, and radiotherapy plays a crucial
part in its treatment. This study was designed to identify potential genes related to radiation resistance in HNSCC. Method. We
first used text mining to obtain common genes related to radiotherapy resistance and HNSCC in published articles. Functional
enrichment analyses were conducted to identify the significantly enriched pathways and genes. Protein and protein interactions
were performed, and the most significant gene modules were determined; then, genes in the gene modules were validated at
transcriptional levels and overall survival. Gene set variation analysis (GSVA) score was calculated, and the association between
GSVA score and survival/pathway was estimated. Immune cell infiltration, methylation, and genetic alteration analysis of these
genes was conducted in HNSCC patients. Finally, potential sensitive anticancer drugs related to target genes were obtained.
Result. We identified 583 common genes through text mining. After further validation, a four-gene signature (EPHB2, SPP1,
SERPINE1, and VEGFC) was constructed. The patients with higher GSVA scores have a worse prognosis than those with
lower GSVA scores. Differences in methylation of these four genes in HNSCC tumor tissue and normal tissue were compared,
with higher methylation levels of EBPH2 and SPP1 in normal tissue and higher methylation levels of SERPINE1 in the tumor.
Immune cell infiltration revealed that the increased expression of these genes was closely related to the infiltration level of CD4
+ T cell, neutrophil, macrophage, and dendritic cell. Thirty drugs, including 22 positively and eight negatively correlated drugs
that most correlated with related genes, were available for treating HNSCC. Conclusion. In this study, we identified four
potential genes as well as corresponding drugs that might be related to radioresistance in HNSCC patients. These candidate
genes may provide a promising avenue to further elevate radiotherapy efficacy.

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is the
sixth most common type of cancer diagnosed in the world,
with 890,000 new cases and 450,000 deaths annually [1, 2],
and the incidence increases year by year [3]. HNSCC origi-
nates from mucosal epithelium cells in the oral cavity, oro-
pharynx, hypopharynx, and larynx, accounting for 90% of

all head and neck cancer [4]. The main risk factors of
HNSCC include smoking, heavy drinking, exposure to envi-
ronmental pollutants, and infection with human papilloma-
virus and EB virus.

The treatment of HNSCC differs according to the stage of
disease, anatomical site, and surgical accessibility, including
surgery, radiotherapy, systemic chemotherapy, targeting, and
immunotherapy. As a noninvasive and function-preserving
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therapy, radiation therapy plays a crucial role in curative-
intent treatments for head and neck cancers. It can be used
as a single treatment for early tumors or combined with sur-
gery or concurrent chemotherapy as a treatment for advanced
tumors [5].

Although there has been tremendous progress in treat-
ment in recent years, the survival rate of head and neck can-
cer has not been significantly improved [6, 7]. The efficacy of
radiotherapy is affected by the sensitivity of radiotherapy,
and radiotherapy resistance would lead to treatment failure.
A mechanism for radiotherapy resistance is hypoxia. Ade-
quate oxygen can maintain the sensitivity of tumor tissue
to radiotherapy, and hypoxia can lead to radiotherapy resis-
tance, thereby reducing the effect of radiotherapy. In addi-
tion to hypoxia, there are several molecular and biological
mechanisms of radiation resistance, including alterations in
intracellular pathways involved in DNA damage and repair,
apoptosis, proliferation, and angiogenesis [8]. A couple of
signaling pathways related to radiotherapy resistance have
been intensively studied, and the three most clinically rele-
vant pathways are EGFR, PI3K/Akt/mTOR, and P53 [9].

Identifying potential genes and pathways associated with
radiotherapy resistance may facilitate proper treatment
selection and improve outcomes. With the development of
bioinformatics, text mining and data analysis have been

applied to several aspects of cancer research, such as identi-
fying potential key gene targets, signaling pathways, and pre-
dicting the outcomes [10, 11].

In this study, we first used text mining to obtain com-
mon genes, which represent the genes related to radiother-
apy resistance and HNSCC in published articles. Secondly,
a four-gene signature associated with radioresistance was
identified, and the roles of the gene signature in the progno-
sis, pathway, methylation, immunity, and genetic alterations
of HNSCC were explored. Finally, multiple potential tar-
geted drugs associated with radioresistance were established
for HNSCC patients. Figure 1 shows the workflow of this
study.

2. Materials and Methods

2.1. Text Mining. The database pubmed2ensembl was used
to perform text mining. pubmed2ensembl provides links
between literature and genes, which can be used for data
mining. When a query is executed, it extracts all genes
related to the search keywords from available biological liter-
ature [12]. Firstly, we inputted the keywords “radioresis-
tance,” “radiation resistance,” and “radiotherapy resistance”
into the website, respectively, and then, the system extracted
all related genes. After removing the duplicate genes, these
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Figure 1: The workflow of the study. GSRR: gene set of radioresistance; GSHNSCC: gene set of head and neck squamous cell carcinoma.
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gene sets made up the gene set of radioresistance (GSRR).
Secondly, we performed a query using the keyword “head
and neck squamous cell carcinoma,” and the gene sets of
head and neck squamous cell carcinoma (GSHNSCC) were
obtained. The intersection of GSRR and GSHNSCC was
common genes and then used for further analysis.

2.2. Functional and Signal Pathway Enrichment Analysis.
GO provides a controlled glossary of terms to clarify the
characteristics of a gene product through their annotations.
The GO terms reflect what is currently known about a gene
in terms of biological process (BP), cellular component
(CC), and molecular function (MF) [13, 14]. Furthermore,
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
[15] provides data sources of known biological pathways to
mark a gene or group of genes/proteins with their respective
KEGG pathways. The GO and KEGG enrichment analysis of
common genes was conducted using an online tool DAVID

[16], a functional annotation and bioinformatics microarray
analysis website. FDR ðfalse discovery rateÞ < 0:05 was con-
sidered statistically significance.

Genes from the significant enrichment terms for BP, CC,
MF, and KEGG signal pathways were downloaded from the
website DAVID, extracted using R software, and used in the
following analysis.

2.3. Protein-Protein Interaction Analysis and Gene Module
Analysis. The database STRING was used to display the
protein-protein interaction (PPI) network of the screened
genes. There are seven ways in which proteins interact with
each other built into the database, including text mining,
experiments, databases, coexpression, cooccurrence, neigh-
borhood, and gene fusion. The genes selected from the GO
and pathway enrichment analysis were used as the input
set. The minimum required interaction score was set to
0.90 (highest confidence) to further narrow the candidate
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Figure 2: Functional enrichment of common genes. (a–c) The top ten significant GO terms of common genes. (d) The top ten significant
KEGG pathways of common genes.
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gene field. The interaction file was downloaded in TSV for-
mat and processed using Cytoscape software. The plugin
Molecular Complex Detection (MCODE) and STRING in

Cytoscape were used to extract significant gene modules in
the PPI network. The parameter settings were default values,
except the K-core was set to 9. Then, the two most

(a)

(b)

Figure 3: The construction of protein-protein interaction (PPI) networks and significant gene module analysis. (a) The entire PPI networks
of common genes. (b) The two most significant gene modules in the PPI networks.
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Figure 4: Verification of the filtered four genes and their functional annotation. (a) Validation of the gene expression of EPHB2, SPP1,
SERPINE1, and VEGFC in HNSC datasets. The cutoff: ∣log2 fold change ðFCÞ ∣ ≥1, and P < 0:01 (∗ indicates P < 0:01). (b) Overall
survival analysis of EPHB2, SPP1, SERPINE1, and VEGFC in HNSC datasets. (c) Chord plot for functional enrichments of four genes.
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significant gene modules, including 50 genes, in the PPI net-
work were selected for further analysis.

2.4. Verification of the Genes in TCGA/GTEx. To screen for
specific genes, we verified the gene expression levels and
OS of these 50 genes on the webserver GEPIA, which could
deliver fast and customizable functionalities based on The
Cancer Genome Atlas (TCGA) and Genotype-Tissue
Expression (GTEx) data [17]. As for gene expression valida-
tion involved in 519 HNSCC tumor samples and 44 normal
samples, the threshold with ∣log2 FC ∣ ≥1 and P value < 0.01
was considered statistically significant. For overall survival
(OS) analysis of the HNSCC dataset, 362 patients with avail-
able OS time data were classified into the low-expression and
high-expression groups according to the median transcripts
per kilobase million (TPM), and log-rank P < 0:05 was con-
sidered to be significant.

2.5. Gene Set Variation Analysis. To further observe the per-
formance of these four genes as a whole in various aspects,
the gene set variation analysis (GSVA) [18] score, which rep-
resents the integrated level of the expression of a gene set,
was calculated through the R package GSVA. Moreover,
the association between GSVA score and survival/pathway/
methylation in HNSCC was estimated using the online web-
site GSCA [19].

2.6. Immune Cell Infiltration Analysis. The composition and
abundance of immune cells in the tumor microenvironment
occupy a crucial role in tumor progression and the efficacy
of immunotherapy. The website Tumor Immune Estimation
Resource [20] (TIMER, https://cistrome.shinyapps.io/timer/
) was utilized to further explore the potential association of
gene expression and immune infiltration levels of immune
cells, including B cell, CD8+ T cell, CD4+ T cell, macro-
phage, neutrophil, and dendritic cell (DC). P < 0:05 was con-
sidered statistically significant.

2.7. Genetic Alteration Analysis. We further investigated the
genetic alterations of these four genes at the DNA level using
the cBioPortal. cBioPortal [21] (http://www.cbioportal.org)
is a comprehensive online tool providing us with visual
and multidimensional cancer genomics data based on
TCGA database.

2.8. Drug Sensitivity and Gene Expression. To explore poten-
tial drugs that can regulate the sensitivity of radiotherapy, we
used the online website GSCA to further seek sensitive drugs
related to target genes. The database contains the IC50 of
265 small molecules in 860 cell lines and its corresponding
mRNA gene expression from Genomics of Drug Sensitivity
in Cancer (GDSC) [19]. These drug candidates that target
genes associated with radiotherapy resistance may herald
the arrival of new potential therapies. Materials and

Table 1: The top six gene ontology enrichment terms of identified four genes (∗terms that do not meet the P value < 0.05 conditions are not
shown).

Category Term Description Count Gene P value

GOTERM_BP_
FAT

GO:0022603
Regulation of anatomical structure

morphogenesis
4

SERPINE1, SPP1, VEGFC,
EPHB2

2:51E − 04

GOTERM_BP_
FAT

GO:0051240
Positive regulation of multicellular organismal

process
4

SERPINE1, SPP1, VEGFC,
EPHB2

6:34E − 04

GOTERM_BP_
FAT

GO:2000026
Regulation of multicellular organismal

development
4

SERPINE1, SPP1, VEGFC,
EPHB2

0.001102607

GOTERM_BP_
FAT

GO:0001525 Angiogenesis 3 SERPINE1, VEGFC, EPHB2 0.001811168

GOTERM_BP_
FAT

GO:0009605 Response to external stimulus 4
SERPINE1, SPP1, VEGFC,

EPHB2
0.001927546

GOTERM_BP_
FAT

GO:0048514 Blood vessel morphogenesis 3 SERPINE1, VEGFC, EPHB2 0.002552747

GOTERM_CC_
FAT

GO:0031093 Platelet alpha granule lumen 2 SERPINE1, VEGFC 0.011315988

GOTERM_CC_
FAT

GO:0031091 Platelet alpha granule 2 SERPINE1, VEGFC 0.01540963

GOTERM_CC_
FAT

GO:0034774 Secretory granule lumen 2 SERPINE1, VEGFC 0.017656309

GOTERM_CC_
FAT

GO:0060205 Cytoplasmic membrane-bounded vesicle lumen 2 SERPINE1, VEGFC 0.021528882

GOTERM_CC_
FAT

GO:0031983 Vesicle lumen 2 SERPINE1, VEGFC 0.021732419

GOTERM_CC_
FAT

GO:0005615 Extracellular space 3 SERPINE1, SPP1, VEGFC 0.027662649

GOTERM_MF_
FAT

GO:0005102 Receptor binding 4
SERPINE1, SPP1, VEGFC,

EPHB2
8:41E − 04
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Figure 5: Continued.
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Methods should contain sufficient detail so that all proce-
dures can be repeated. It may be divided into headed subsec-
tions if several methods are described.

3. Results

3.1. Text Mining. Based on the text mining strategy
described in Methods, after deleting the duplicates, 1218
genes were found in GSRR, 1359 genes were found in
GSHNSCC, and 583 genes were common to both lists.

3.2. Functional and Signal Pathway Enrichment Analysis.
The common genes were uploaded to the DAVID website
to identify the GO and pathway terms. Figures 2(a)–2(d)
show the top 10 significant enrichment terms for BP, CC,
MF, and KEGG signal pathways. In BP annotation, it was
mainly involved in response to organic substance, positive

regulation of metabolic process, and cellular response to
chemical stimulus (Figure 2(a)). In CC annotation, it was
significantly involved in the extracellular region, cytosol,
and membrane-bounded vesicle (Figure 2(b)). In MF anno-
tation, it was mainly enriched in enzyme binding, receptor
binding, and carbohydrate derivative binding (Figure 2(c)).
As for signal pathway enrichment, it was primarily involved
in the pathways in cancer, PI3K-Akt signaling pathway, and
HTLV-I infection (Figure 2(d)), respectively. We extracted
the genes that were all significantly enriched in BP, CC,
MF, and KEGG signaling pathways, and there were 353
common genes left for the subsequent analysis.

3.3. Protein-Protein Interaction Analysis and Gene Module
Analysis. The screened genes were entered into the STRING
website, and the TSV file was obtained, then downloaded,
and analyzed using Cytoscape software.
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Figure 5: GSVA and methylation analysis. (a) Boxplot showing the GSVA score of the tumor and normal tissue groups. (b–e) OS, PFS, DFS,
and DFI analysis between higher and lower GSVA score in HSCC patients. (f) Overview of the relationship between GSVA score and
activity of tumor-related pathways. (g) Correlation between GSVA score and EMT pathway activity. (h) Correlation between GSVA
score and cell cycle pathway activity. (i–k) Methylation analysis of EPHB2, SPP1, and SERPINE1.
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The obtained PPI networks consisted of 329 genes/nodes
and 3068 edges (Figure 3(a)), and 24 genes were not
involved in the PPI networks. Then, the two most significant
gene modules were clustered via MCODE APP built-in
Cytoscape. Module 1 consisted of 33 genes/nodes and 191
edges, while module 2 was made up of 17 genes/nodes and
95 edges (Figure 3(b)).

3.4. Verification of the Genes in TCGA/GTEx. We verified
the expression between normal and cancerous tissues and
the survival between high and low expression of these 50
genes in GEPIA (Figures S1–S4). Finally, four genes were
filtered (EPHB2, SPP1, SERPINE1, and VEGFC). Their
expression in tumor tissues was significantly higher than in
normal tissues (Figure 4(a)), and the OS of high expression
is worse than low expression (Figure 4(b)). Moreover, the
functional annotation of these four genes was conducted
using DAVID. Enrichment analysis showed that these four
candidate genes are significantly enriched in regulation of

anatomical structure morphogenesis (BP, P = 2:51E − 04),
platelet alpha granule lumen (CC, P = 0:011), and receptor
binding (MF, P = 8:41E − 04), respectively (Figure 4(c),
Table 1).

3.5. Gene Set Variation Analysis. GSVA score was calculated
and compared between tumor and normal samples in
HNSCC samples on the GSCA. The GSVA score of the
tumor group was significantly higher than that of the normal
tissue group (Figure 5(a)). Furthermore, the association
between GSVA score and survival (includes overall survival
(OS), progression-free survival (PFS), disease-specific sur-
vival (DSS), and disease-free interval (DFI)) was estimated,
and it was found that the GSVA score had a significant rela-
tionship with OS, PFS, DSS, and DFI in HNSCC patients
(Figures 5(b)–5(e)). These findings suggest that this 4-gene
signature has a high potential for predicting poor prognosis
in HNSCC patients by assessing their risk score based on
related gene expression levels.
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Figure 6: Association of gene expression and immune infiltration levels of immune cells including CD4+ T cell, CD8+ T cell, macrophage,
dendritic cell, neutrophil, and B cell.

13Computational and Mathematical Methods in Medicine



A
lte

ra
tio

n 
fre

qu
en

cy

2%

4%

6%

8%

10%

Mutation
Amplification
Deep deletion
Multiple
alterations

(T
CGA, n

atu
re 

20
15

)

(T
CGA, fi

reh
ose 

leg
acy

)

(T
CGA, p

an
 ca

ncer
 at

las
)

(a)

Study of origin

SERPINE1

VEGFC

EPHB2

SPP1

6%

2.9%

0.8%

0.7%

Genetic alteration Missense mutation (unknown significance) Splice mutation (unknown significance)

Truncating mutation (unknown significance) Amplification Deep deletion

No alterations

Study of origin
Head and neck squamous cell carcinoma (TCGA, firehose legacy)

Head and neck squamous cell carcinoma (TCGA, Nature 2015)

Head and neck squamous cell carcinoma (TCGA, Pancancer atlas)

(b)

Figure 7: Continued.

14 Computational and Mathematical Methods in Medicine



Figure 5(f) shows the correlation between GSVA score
and activity of cancer-related pathways in HNSCC. These
four genes were positively correlated with EMT pathway
activity (P value = 0.00, FDR = 1:5e − 12, Figure 5(g)) and
negatively associated with cell cycle pathway activity (P
value = 0.00, FDR = 8:3e − 03, Figure 5(h)).

3.6. Methylation Analysis. Differences in methylation of
these four genes in HNSCC tumor tissue and normal tissue
were compared (Figures 5(i)–5(k)), with higher methylation
levels of EBPH2 and SPP1 in normal tissue and higher
methylation levels of SERPINE1 in tumor (P < 0:05). There
is no difference in methylation levels of VEGFC between
the two groups.

3.7. Immune Infiltration Cell Analysis. We used the TIMER
database to explore the association between the expression
of the selected genes and immune infiltrating cells, including
B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil,
and dendritic cell (DC) in HNSCC. The result revealed that
the expression of EPHB2 was positively correlated with all of
these immune cells’ expression levels. The expression of
SPP1 was positively correlated with the expression levels of

CD4+ T cell, macrophage, neutrophil, and DC. The expres-
sion of SERPINE1 was positively correlated with the expres-
sion levels of CD4+ T cell, neutrophil, and DC, while
negatively associated with B cell and CD8+ T cell. The
expression of VEGFC was positively correlated with CD4+
T cell, neutrophil, and DC, while negatively correlated with
B cell and CD8+ T cell (Figures 6(a)–6(d)).

3.8. Genetic Alteration Analysis. At the cBioPortal, we exam-
ined the genetic alterations of these four prognostic genes in
3 HNSCC studies from TCGA. Overall, we found that these
genes were altered in 126 (9%) of all case, with 30 (10.75%)
of 279 cases (TCGA, Nature 2015), 50 (9.43%) of 530 cases
(TCGA, Firehose Legacy), and 46 (8.8%) of 523 cases
(TCGA, PanCancer Atlas), respectively (Figure 7(a)). The
amplification of SERPINE1 and the deep deletion of VEGFC
were the most frequent copy number alterations (CNA)
among these genes (Figure 7(b)).

3.9. Discovery of Gene-Related Sensitive Drugs. The four
genes were used for drug-sensitivity analysis on the website
GSCA. Figure 7(c) summarizes the top 30 drugs most asso-
ciated with gene expression in pan-cancer. The drugs are
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Figure 7: Genetic alteration analysis and exploration of targeted drugs. (a, b) Genetic alteration analysis of the four genes in three HNSCC
datasets. (c) Correlation between GDSC drug sensitivity and gene expression.
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ranked by the integrated level of correlation coefficient and
FDR of searched genes, including 22 positively correlated
drugs and eight negatively correlated drugs. Information
on these sensitive drugs may provide new ideas for further
alleviating radioresistance. Results and Discussion may be
presented separately, or in one combined section, and may
optionally be divided into headed subsections.

4. Discussion

HNSCC is one of the most common malignant tumors that
seriously threaten human health, and radiotherapy plays a
crucial part in its treatment. Radiotherapy resistance can
reduce the local efficacy of HNSCC patients and lead to
tumor recurrence and distant metastasis and is significantly
associated with poor prognosis. Identifying new genes
related to radiation resistance in HNSCC may further
improve the prognosis of these patients. In this study, we
adopted the approach of text mining and bioinformatics,
and finally, four potential genes (EPHB2, SPP1, SERPINE1,
and VEGFC) were found.

The erythropoietin-producing hepatocellular carcinoma
receptor B2 (EPHB2), an essential member of the
erythropoietin-producing hepatocellular carcinoma (EPH)
receptor family, has been confirmed to be highly expressed
in various tumors, such as breast cancer, meningioma, colo-
rectal cancer, gastric cancer, and lung cancer [22]. High
expression of EPHB2 is considered a proto-oncogene by pro-
moting blood vessel formation by enhancing cancer cell motil-
ity, invasion, and metastasis. Thus, the EPHB2 gene is
regarded as a pro-oncogene. EPHB2 is found to play a critical
role in the progression from early-stage cutaneous squamous
cell carcinoma to an advanced stage, and it is speculated to
be a therapeutic target for invasive cutaneous squamous cell
carcinoma [23]. Another study has demonstrated that EPHB2
expression regulates angiogenesis both in vitro and in vivo and
that EPHB2 overexpression is associated with poor prognosis
and tumor angiogenesis in HNSCC patients [24]. Bhatia et al.
observed the expression of EPHB2 in the myeloblastoma cell
line, and the cell line was more sensitive to radiotherapy after
the EphB2 was knocked out. The radiosensitization effect was
partly mediated by enhancing G2/M cell cycle arrest. It sug-
gests that blocking the EPHB2 receptor may be a way to
improve radiation sensitivity in medulloblastoma [25].

Secreted phosphoprotein 1 (SPP1), also known as osteo-
pontin (OPN), is an extracellular matrix protein closely
associated with malignant tumors [26]. It is highly expressed
in breast cancer [27], non-small-cell lung cancer [28], pros-
tate cancer [29], and liver cancer [30]. It is associated with
tumor invasion and metastasis, apoptosis inhibition, angio-
genesis, and chemotherapy resistance [31]. The level of
SPP1 mRNA in HNSCC was higher than that in noncancer-
ous tissues, and high SPP1 mRNA level was associated with
poor overall survival of HNSCC patients [32]. Another study
showed that the serum SPP1 level of HNSCC with positive
cervical lymph nodes was significantly higher than that with
negative cervical lymph nodes, and researchers concluded
that SPP1 might play an essential role in developing cervical
lymph nodes metastasis in NHSCC patients [33].

Serpin family E member 1 (SERPINE1), also named
plasminogen activator inhibitor type 1 (PAI-1), is a fibrino-
lysis inhibitor found to be abnormally expressed in gastric
cancer [34], colon cancer [35], diffuse lower-grade gliomas
[36], and other cancers. It is a biomarker of the poor prog-
nosis of the malignant tumor. Overexpression of SERPINE1
promotes tumor progression, lymph node metastasis, and
lung metastasis of HNSCC and is associated with poor prog-
nosis [37]. Yang et al. found that SERPINE1 was signifi-
cantly overexpressed in HNSCC and correlated with the
prognosis of HNSCC patients [38]. Wang et al. constructed
a 6-gene signature (including SERPINE1) that can be used
to predict the survival of HNSCC patients [39]. Similar to
our findings, Lee et al. found that SERPINE1 was associated
with radioresistance in HNSCC, and knockdown of SER-
PINE1 increased radiosensitivity in head and neck cancer
tumor-initiating cells [40].

Vascular endothelial growth factor-C (VEGFC) is one
of the most crucial lymphangiogenic growth factors, which
can stimulate the formation of tumor lymphatics [41].
Recent evidence suggests that VEGFC is also an immuno-
modulator that modulates the immune system, making
tumor cells more likely to evade immune surveillance
[42]. Tacconi et al. demonstrated that VEGFC could accel-
erate tumor growth via fostering cancer immune escape
[43]. High expression of VEGFC is significantly associated
with poor prognosis in various malignancies, including
lung cancer [44], gastric cancer [45], thyroid cancer [46],
colorectal cancer [47], and HNSCC [48]. Furthermore, a
study showed that silencing VEGFC can increase the
radiosensitivity of nasopharyngeal carcinoma CNE-2
cells [49].

Previous studies on radiosensitivity in head and neck
cancer have identified some related genes. Some are based
on the gene expression levels of cell lines [50, 51], and
some are based on gene expression levels in tumors and
patient survival data [52, 53]. Foy et al. analyzed the data
from the public database by data mining. They found that
13 genes were associated with in vitro and in vivo radiore-
sistance for HPV-negative HNSCC [54]. Although these
genes were related to disease-free survival, the detection
of 13 genes makes it an inconvenience for clinical applica-
tion. In contrast, our four-gene signature is more condu-
cive to clinical use. Similar to our finding, Shen et al.
adopted the method of bioinformatics to explore expres-
sion profile chip data from Gene Expression Omnibus
(GEO) and the RNAseq tertiary dataset from TCGA data-
base of HNSCC, three key genes (TGFBI, SPP1, and
LAMB3) related to HNSCC prognosis were identified
[55]. In another study, differentially expressed genes from
TCGA were analyzed and significantly enriched in the
GO and KEGG pathways of mitosis, cell cycle, Wnt,
JAK/STAT, and TLR signaling pathways [56]. Liu et al.
identified an eight-mRNA signature and a nomogram to
predict the prognosis of HNSCC and also found that the
EMT pathway plays a crucial role in their signature [57].
However, the three researches mentioned above were only
based on TCGA (and GEO) dataset and have not been
validated by other relevant evidence and experiments. In
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this study, the initial genes were obtained from a large
number of published literature based on the text mining
method, and then, the differences in expression and sur-
vival were verified in TCGA/GTEx database.

To further validate these candidate genes’ expression and
prognostic value as a whole, we conducted gene set variation
analysis, showing that a high GSVA score predicts poor sur-
vival, which consists of the single gene survival analysis.

Immunotherapy plays a critical role in the treatment of
HNCSS, especially in recurrent and metastatic diseases
[58]. Tumor-infiltrating lymphocytes and immunological
scores are linked to HNSCC prognosis and predicted radia-
tion and chemotherapy effectiveness [59]. HNSCC is an
immunosuppressive cancer that causes a broad range of
immunosuppressive cells to be generated. Here, we exam-
ined the relationship between the candidate genes and
immune cells and found that the infiltration of CD4+ T cell,
neutrophil, macrophage, and dendritic cell was closely
related to the high expression of genes. However, in HNSCC,
the fundamental mechanism of immune infiltration against
tumor response is still unknown. Jiang et al. argue that mac-
rophages, T cells CD8, and T cells CD4 memory are the
most commonly infiltrated subtypes of immune cells in
HNSCC [60], while Wang et al. found a higher abundance
of B cells, CD8+ T cells, neutrophils, and DCs in the low-
risk group compared with the high-risk group, which pre-
dicts better prognosis [61]. We hypothesize that this is
related to the heterogeneity of head and neck tumors and
the fact that some immune cells have different subtypes that
have reverse effects on prognosis.

To further validate these candidate genes’ expression and
prognostic value as a whole, we conducted gene set variation
analysis, showing that a high GSVA score predicts poor sur-
vival, which consists of the single gene survival analysis. How-
ever, this study has certain limitations; firstly, the data on gene
expression levels were obtained from public databases, and
tumor specimens from patients in our hospital were not col-
lected for verification. Secondly, the specific relationship and
mechanism between these genes and radiotherapy resistance
need to be further verified by experiments.

5. Conclusions

In this study, adopting the method of text mining and bioin-
formatics, we finally screened out four genes (EPHB2, SPP1,
SERPINE1, and VEGFC) and corresponding signaling path-
ways that might be related to radiotherapy resistance in
HNSCC patients. These genes are more highly expressed in
tumors than in normal tissue and are associated with a poor
prognosis of HNSCC. This study improves our understand-
ing of the pathogenesis and underlying molecular mecha-
nism of radiotherapy resistance and provides clues for
further elevated radiotherapy efficacy in HNSCC patients.
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