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Abstract: Antimicrobial resistance is one of the most significant threats to health and economy around
the globe and has been compounded by the emergence of COVID-19, raising important consequences
for antimicrobial resistance development. Contrary to conventional targeting approaches, the use
of biomimetic application via nanoparticles for enhanced cellular targeting, cell penetration and
localized antibiotic delivery has been highlighted as a superior approach to identify novel targeting
ligands for combatting antimicrobial resistance. Gram-positive bacterial cell walls contain lipoteichoic
acid (LTA), which binds specifically to Toll-like receptor 2 (TLR2) on human macrophages. This
phenomenon has the potential to be exploited for the design of biomimetic peptides for antibacterial
application. In this study, we have derived peptides from sequences present in human TLR2 that bind
to LTA with high affinity. In silico approaches including molecular modelling, molecular docking,
molecular dynamics, and thermodynamics have enabled the identification of these crucial binding
amino acids, the design of four novel biomimetic TLR2-derived peptides and their LTA binding
potential. The outcomes of this study have revealed that one of these novel peptides binds to LTA
more strongly and stably than the other three peptides and has the potential to enhance LTA targeting
and bacterial cell penetration.

Keywords: TLR2-derived peptides; biomimetic; human Toll-like receptor 2; lipoteichoic acid

1. Introduction

The World Health Organization has declared antimicrobial resistance as among the
top 10 human health threats worldwide. Bacterial infection as a result of antimicrobial
resistance has caused of millions of deaths all over the world and is predicted to cause
millions more, especially in countries where clean water, proper sanitation, and infection
prevention and control are lacking [1].

Current treatments of bacterial infections have suboptimal targeting of bacterial cells,
which results in elevated exposure to healthy cells and probiotics, increased frequency of
administration, lack of association with the bacteria, minimal concentration of treatment
at the bacterial infection site and prolonged treatment period [2,3]. Lack of effective
antimicrobials puts the success of current treatments at greater risk [1]. There is slow
progress in the discovery and development of new antimicrobial agents, exacerbating the
burden of antimicrobial resistance on morbidity and mortality rates [4]. Hence, innovative
strategies for targeted treatment are necessary to curb the current resistance of bacteria
to antimicrobials.

Researchers are harnessing biomimetic strategies for enhanced targeting of therapies
for various diseases, including cancer [5], viruses [6], fungal infections [7], central nervous
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system diseases [8], and bacterial infections [9]. Biomimetic strategies in drug delivery
take advantage of mechanisms of interaction between living cells and biological pathways,
activities and structures and have been used to enhance the targeting, pharmacokinetics,
circulation time, antibacterial activity and biosafety of nanoparticle formulations [9,10].
Biomimetics have been used to enhance the synthesis and drug delivery of nanosystems for
antibacterial application in various ways [11]. Some of them include the use of biomasses
from protein, fungi, and plants for the synthesis of antibacterial nanoparticles for their
beneficial capping and bioreduction activities [12,13], while others involve mimicry of
cell surface structures [14] and extracellular matrix structures [15] for enhanced pharma-
cokinetic parameters, disruption of biofilm and bacterial toxin neutralization [16], and
prevention of biofilm formation and bacterial adhesion on surfaces of biomedical device
implants [17], among other benefits.

In this study, we have created a novel biomimetic approach that uses nature’s binding
specificity to design biomimetic peptides for targeting Gram-positive bacteria, specifically
Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). When a host
is infected by Gram-positive bacteria, as a host defense mechanism, the innate immune
system becomes activated when membrane-bound pattern recognition receptors (PRRs) of
human macrophages such as Toll-like receptor 2 (TLR2) recognize bacterial lipoteichoic
acid (LTA) on Gram-positive bacterial cell walls [18]. The novelty of our strategy lies in
the exploitation of the natural and unique affinity of the convex surface of TLR2 for LTA
on Gram-positive bacterial cell walls [19,20]. We have taken advantage of this unique
phenomenon and derived four peptides from naturally occurring amino acid sequences
present in human TLR2 that bind to and interact with LTA with high affinity, which
can be used to design targeted delivery systems. Due to the biomimetic components of
these peptides, they may possess beneficial properties as pathogen recognition pattern,
cell-penetrating peptides, which include enhanced targeting to LTA, improved antibac-
terial efficiency, biocompatibility, and biodegradability. This is the first report of such
a biomimetic approach, which includes an in silico assessment of the binding potential of
these biomimetic TLR2-derived peptides (BTp1, BTp2, BTp3, BTp4) to LTA. Based on the
stability and strength of binding of these peptides to LTA, they may have the potential to
be used in the surface modification of antibacterial nanoparticles for enhanced targeting
of LTA on bacterial cell walls and bacterial cell penetration to deliver antibacterial drugs
during bacterial infection.

2. Materials and Methods
2.1. Receptor and Ligand Acquisition/Design and Preparation

The 3D crystal structure of human TLR2 was acquired from RSCB Protein Data
Bank [21] (PDB: 6nig), while the 3D structure of LTA was acquired from PubChem [22]
(ID: 137349712). The geometry of the LTA ligand was optimized using Avogadro [23],
and UCSF Chimera software [24] was used to add hydrogens and charge to the ligand.
The peptides were designed and optimized using Schrödinger Maestro software [25] and
prepared for molecular docking using UCSF Chimera software (Version 1.14).

2.2. Molecular Docking

Molecular docking is a frequently used approach in structure-based drug design
to predict the most favorable binding conformations of ligands to target molecules [26].
Herein, molecular docking was applied in two separate instances: to predict the confor-
mation of LTA that binds with the highest affinity to TLR2; and to predict the preferable
conformations and binding affinities of novel peptides to LTA. The software that were
used to prepare molecules and perform docking include UCSF Chimera, AutoDock MGL
tools and AutoDockVina [27] and Raccoon [28], using default parameters. The ligand
conformations that bound with strongest affinity (kcal/mol) were thereafter subjected to
molecular dynamic simulations.
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2.3. Molecular Dynamics Simulation

To provide a more in-depth understanding of the physical movements between, firstly,
LTA and TLR2, and secondly, the peptides and LTA, molecular dynamic simulations were
performed on the complexes for 10 and 500 ns, respectively. The PMEMD engine of the
Amber 18 suite was used to perform all simulations [29]. Atomic partial charges were
produced by ANTECHAMBER using General Amber Force Field commands. The Leap
module solvated the systems within a water box (10 Å TIP3P). To neutralize the systems,
Na+ or Cl− counter-ions were introduced. An initial 2500 step minimization was carried
out, with a restraint potential of 500 kcal/mol. A 1000 step full minimization was carried out
thereafter, without restraints. This was followed by gradual heating to 300 K for 50 ps, such
that each system provided a fixed number of atoms and volume. A potential harmonic
restraint of 10 kcal/molÅ−2 was performed on the solutes of the systems. Thereafter,
systems were equilibrated for 500 ps. An isobaric-isothermal ensemble (NPT) was imitated
throughout the simulations (1 bar system pressure, constant number of atoms), using the
SHAKE algorithm to constrain hydrogen bonds and a Langevin thermostat with collision
frequency of 1 ps–1.

2.4. Post-Dynamic Analyses

The root-mean-square fluctuation (RMSF), root-mean-square deviation (RMSD) and
thermodynamic energy of the systems were calculated to further analyze the systems’
stability and energy inputs. The co-ordinates of each system were recorded every 1 ps and
the trajectories were analyzed via the AMBER 18 CPPTRAJ module [30].

Thermodynamic Energy Calculation and Per-Residue Energy Decomposition Analysis
were conducted to establish the free energy of binding (∆Gbind) of the novel peptides to
LTA. Molecular mechanics integrated with the generalized Born surface area continuum
solvation (MM/GBSA) method [31] were used.

The molecular dynamics simulation generated a trajectory of 500,000 snapshots, which
were averaged to produce ∆Gbind. The binding affinities between the peptides and LTA
may be defined as Equations (1)–(5):

∆Gbind = Gcomplex − Greceptor − Gligand (1)

∆Gbind = Egas + Gsol − TS (2)

Egas = Eint + EvDW + Eele (3)

Gsol = GGB + GSA (4)

GSA = γSASA (5)

where:

Eele Electrostatic potential energy from Coulomb forces
Egas Gas-phase energy (based on FF14SB force field terms)
Eint Internal energy
EvdW van der Waals energy
Gsol Solvation free energy
GGB Polar solvation energy
GSA Non-polar solvation energy
S Total entropy of solute
SASA Solvent accessible surface area (water probe radius of 1.4 Å)
T Total entropy of temperature

A per-residue energy decomposition was also calculated to predict the energy contri-
bution of each amino acid residue to the total ∆Gbind at the peptide binding site, using the
AMBER14 MM/GBSA approach.
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3. Results and Discussion
3.1. Binding Affinity of TLR2 to LTA

Molecular docking of LTA to the binding site on human TLR2 revealed the nine
best poses of LTA bound to TLR2, with their respective binding affinities (Figure 1). The
conformation of LTA that bound with highest affinity to TLR2 and with zero RMSD is
indicated by mode number 1 in Figure 1, with binding energy of −7.7 kcal/mol.
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Figure 1. Binding affinities of nine best poses of LTA (left) and all nine conformations superimposed
in the binding site of TLR2 (right).

3.2. Molecular Dynamics of TLR2/LTA Complex for Acquisition of Binding Site Amino Acid Residues

The docking pose of LTA with the strongest binding affinity (−7.7 kcal/mol) to TLR2
was selected to be simulated with TLR2 for 10 ns to establish the most accurate prediction of
the interaction between LTA and TLR2. After simulating the complex, binding site amino
acid residues were identified using Schrödinger Maestro and UCSF Chimera software
(Figure 2).
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3.3. Design of Potential Biomimetic TLR2-Derived Targeting Peptides

Using the amino acid residues of TLR2 that bind with LTA (highlighted in Figure 2),
we identified four regions of significance for binding and used their amino acid sequences
to design peptides with sequences as follows: CTLNGV, RRLHIPRF, YDLLYSLT and
SKVFLVP. Upon drawing 3D structures of the novel biomimetic TLR2-derived peptides
(BTp1, BTp2, BTp3, and BTp4, respectively) using Schrödinger Maestro software, their
geometries were optimized, and structures minimized.

3.4. Binding Affinity of Biomimetic TLR2-Derived Peptides to LTA

Thereafter, molecular docking of each peptide to LTA revealed the nine best poses
of LTA bound to each peptide, with their respective binding affinities (Table 1). The best
binding pose of BTp1 bound with −2.5 kcal/mol to LTA, BTp2 with −3.4 kcal/mol, BTp3
with −2.9 kcal/mol and BTp4 with −3.8 kcal/mol. Therefore, BTp2 and BTp4 bind with
strongest affinity to LTA, compared to BTp1 and BTp3.

Table 1. Binding affinity of the top nine poses of four novel peptides to lipoteichoic acid.

Peptide Bound to Lipoteichoic Acid Binding Affinity

BTp1: CTLNGV
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3.5. Molecular Dynamics, Stability, Thermodynamics and Per-Residue Binding Free Energy of
BTp /LTA Complexes

The conformations of each peptide that bound with strongest affinity to LTA (high-
lighted in bold and cyan in Table 1) from molecular docking studies were then subjected
to molecular dynamics simulations for 500 ns each, to validate the docking scores and
to provide a more in depth understanding of the atomic interactions between LTA and
the peptides. Figure 3A illustrates snapshots at 100 ns intervals of each of the four novel
peptides simulated with LTA for 500 ns each. The graphs in Figure 3B depict RMSD
calculations of simulations of each novel peptide bound to LTA, and finally superimposed
onto one graph for comparison purposes. In addition, MM/GBSA thermodynamic energy
calculations and per-residue energy decomposition of every complex are provided in detail.
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From Figure 3, information regarding the stability of the four simulations can be
deduced. Figure 3A confirms that BTp1 and LTA bound unstably, as evident in the 100 ns
snapshot when they detached from each other and in the 400 ns snapshot (Figure S1)
when they were only bound via a hydrogen bond between THR2 and O12, and a carbon
hydrogen bond between CYS1 and O12, of BTp1 and LTA, respectively. RMSD calculations
(Figure 3B) confirmed instability of the complex as the system did not reach convergence
throughout the simulation and the energy fluctuated beyond a 2 Å range (~4 Å). The
energy fluctuation of each residue throughout the simulation was established via RMSF
calculations, which showed that during the 500 ns simulation of the BTp1 and LTA bound
complex, GLY5 of BTp1 was the most stably bound residue as its energy fluctuated the
least, while the energy of VAL6 fluctuated the most (Figure S5).

Figure 4A,C present specific energy contributions of each amino acid residue of BTp1
that contributes to binding. Van der Waals (vdW) contribution to binding is predominantly
from LEU3 and ASN4, while electrostatic (EEL) energy contribution stems from ASN4.
These two residues are significant to the binding of BTp1 to LTA. Finally, Figure 4B also
provides the different energy contributions of each component of the system, which shows
the total binding free energy of the bound complex is −11.77 kcal/mol.
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BTp1 to residues of TLR2.

On the other hand, Figure 3A also shows that BTp2 and LTA bound tightly and
consistently throughout the simulation, compared to BTp1. The second RMSD graph
in Figure 3B indicates that after 454 ns, the system reached convergence and energy
fluctuations remained within a 2 Å range. Particularly, at 400 ns (Figure S2), just before the
system reached convergence, multiple interactions between BTp2 and LTA were observed.
Hydrogens bonds were formed between ARG1 and O12, ARG2 with O12, H4 and H54,
HIS4 with O10, ILE5 with H5, H42 and H43, ARG7 with O8, and PHE8 with O8, of BTp2
and LTA, respectively. In addition, HIS4 of BTp2 interacts with H67 of LTA via a Pi-Sigma
bond. These data support the results from molecular docking studies, which demonstrated
stronger binding of BTp2 to LTA, than BTp1. From Figure S5, we can see that the ARG7 of
BTp2 fluctuated the most in the system, along with ARG1 and ARG2, with the highest RMSF
values, while PRO6 fluctuated the least. Further analyses show in Figure 5A,C specific
energy contributions of each amino acid residue of BTp2 that contributes to binding. From
this, most of the vdW and EEL energy contribution to binding is predominantly from ARG7,
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which is in accordance with results of RMSF calculations. Furthermore, Figure 5B also
provides the different energy contributions of each component of the system, which shows
the total binding free energy of the bound complex is −24.07 kcal/mol. This is stronger
than binding of BTp1 to LTA, which supports binding affinity results from molecular
docking studies that showed BTp2 binds better to LTA than BTp1.
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The trajectory of the BTp3/LTA system in Figure 3A showed that BTp3 remained
bound to LTA throughout the 500 ns simulation, more strongly than BTp1 but less than
BTp2. However, the third RMSD analysis in Figure 3B showed that the system did not
reach convergence, as evident by the large spike in energy after 421 ns. Moreover, energy
deviations were greater than 2 Å (~6 Å), indicating the instability of the complex. In
addition, Figure S3 clearly shows that at 400 ns, the complex is stable with several bonds
and interactions, while at 500 ns, many of the interactions are lost. In more detail, the
400 ns snapshot shows a carbon hydrogen bond between TYR1 and H54, and alkyl interac-
tions between LEU3 with C23 and C35, and LEU7 with C23 and C31, of BTp3 and LTA,
respectively, while the 500 ns snapshot only shows carbon hydrogen bond interactions
between SER6 and H56, and SER6 and H57, of BTp3 and LTA, respectively.

Furthermore, Figure 6A,C show specific energy contributions of each amino acid
residue of BTp3 that contributes to binding. Most of the EEL energy contribution to binding
is from THR8, while vdW contribution is mainly from LEU4. Furthermore, Figure 6B also
shows the total binding free energy of the bound complex is −17.81 kcal/mol, which is
stronger than binding of BTp1 to LTA, but less than that of BTp2.

From molecular docking studies, BTp4 bound the strongest to LTA, compared to the
other peptides. This was supported by the snapshots of the 500 ns trajectory of BTp4
bound to LTA in Figure 3A, which showed that the complex remained bound throughout
the entire simulation. In addition, the fourth RMSD graph in Figure 3B indicates that
the system reached convergence after 480 ns as fluctuations remained within a 2 Å range.
After reaching convergence, at 500 ns (Figure S4), an alkyl interaction exists between VAL3
and C31, and hydrogen bonds are formed between VAL3 with H5 and H10, PHE4 and
H55, LEU5 with H4, H54 and H57, and 2 hydrogen bonds between PRO7 and O12, of
BTp4 and LTA, respectively. In addition, Figure 7A,C show specific energy contributions
of each amino acid residue of BTp4 that contributes to binding. Most of the EEL energy
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contribution to binding is from SER1 and LYS2, while vdW and total energy contribution is
mainly from PHE4. Furthermore, Figure 7B also shows the total binding free energy of the
bound complex is −12.71 kcal/mol, which is still less than binding of BTp2 to LTA.
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Taken together, from the initial molecular docking studies, BTp2 and BTp4 showed the
highest potential to bind to LTA, with stronger binding affinities than BTp1 and BTp3. After
molecular dynamics simulations and post-analyses, only complexes of BTp2 and BTp4
bound to LTA reached convergence, which supported data from molecular docking studies.
From this, the most stable peptide that bound to LTA during the 500 ns simulation was BTp2,
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in terms of RMSD calculations (Figure 3B), as the energy fluctuations were within a ~2 Å
range throughout the 500 ns simulation. All other peptides bound to LTA with large energy
fluctuations and overall higher energy averages during the simulations. Furthermore,
BTp2 binds to LTA with the most negative total binding free energy of −24.07 kcal/mol,
compared to all other peptides (BTp2 > BTp3 > BTp4 > BTp1), which suggests that this is
the most favorable peptide/LTA bound state. A similar study in rohu fish was conducted
to understand the binding between LTA and rohu TLR2 where the binding was found to
be −1.92 kcal/mol with only one hydrogen bond present in the interaction plot [32]. Fish
TLRs are structurally homologus to human TLRs with a structural sequence identity of
~30–70% [33]. In regard to this, our four novel proposed biomimetic TLR2-derived peptides
have stronger binding affinity and more hydrogen bonds interacting between peptides
residues and LTA suggesting their competitive binding to LTA.

3.6. Lipophilicity of BTp2

Lipophilicity influences the absorption, distribution, metabolism and excretion (ADME)
properties of a compound. The logp value gives an idea as to whether or not a compound
will penetrate living tissue—a positive logp value suggests that the compound is more
lipophilic and will be able to penetrate cell membranes [34,35]. Using the online tool called
SwissADME [36], BTp2 was found to have a positive logp value of 1.44 and can therefore
pass through cell membranes [35]. Hence, BTp2 not only has the potential to target LTA,
but also the potential to be a cell-penetrating peptide. This property will enhance the cell
penetration capability of the peptide if used for nanoparticle surface modifaction or coating
a drug delivery system.

4. Conclusions

Biomimicry has been applied in drug delivery to benefit from the advantages that come
with natural biological pathways [10]. In this study, we aimed to design four biomimetic
peptides derived from human TLR2 to evaluate their mimicry resmblelance to human
TLR2 and target bacterial LTA as well as their possible cell-penetrating peptide properties.
These targeting peptides can be used to surface modify nanodrug delivery systems for
enhanced targeting of LTA on bacterial cell walls and improved delivery of antibacterial
treatments. This study was a preliminary phase of this evaluation, to determine the poten-
tial of these novel peptides to bind to LTA and remain stably bound. However, previous
literature reporting compounds identified from in silico approaches has demonstrated
successful progression in which the experimental findings concured with the data from
molecular modeling [37–40]. Molecular docking studies, molecular dynamic simulations,
post-analyses and thermodynamic energy calculations have shown that all four peptides
bind to LTA, but BTp2 and BTp4 bind more strongly than the others. From our results,
we have established that BTp2 (RRLHIPRF) bound to LTA more strongly and stably than
the other three peptides, and possesses favourable lipophilic properties to enable its cell-
penetrating functions. This peptide, therefore, has the potential to target and bind to LTA
on bacterial cell walls and permeate the cell membrane, and can be used to surface modify
nanodrug delivery systems for enhanced bacterial cell targeting, penetration and improved
delivery of antibacterial agents. This serves as a platform for further formulation work into
enhanced, targeted nano-antibiotic delivery systems for the treatment of Gram-positive
bacterial infection.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines9081063/s1, Figures S1–S4: Interaction bonds between all biomimetic TLR2-
derived peptides with LTA; Figure S5: Mean energy fluctuations (RMSF calculations) of each peptide
over 500 ns.
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