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Abstract: Plants play a pivotal role in drug discovery, constituting 50% of modern pharmacopeia.
Many human diseases, including age-related degenerative diseases, converge onto common cellular
oxidative stress pathways. This provides an opportunity to develop broad treatments to treat a
wide range of diseases in the ageing population. Here, we characterize and assess the toxicological
effects of finger lime (Citrus australasica), mountain pepper (Tasmannia lanceolata), and small-leaved
tamarind (Diploglottis australis) extracts. The characterization demonstrates that these Australian
native plants have antioxidant potential and, importantly, they have high concentrations of distinct
combinations of different antioxidant classes. Using zebrafish larvae as a high-throughput pre-clinical
in vivo toxicology screening model, our experiment effectively discriminates which of these extracts
(and at what exposure levels) are suitable for development towards future therapies. The LC50-96h
for finger lime and tamarind were >480 mg/L, and 1.70 mg/L for mountain pepper. Critically,
this work shows that adverse effects are not correlated to the properties of these antioxidants, thus
highlighting the need for combining characterization and in vivo screening to identify the most
promising plant extracts for further development. Thus, we present a high-throughput pre-clinical
screening that robustly tests natural plant products to utilize the diversity of antioxidant compounds
for drug development.

Keywords: zebrafish; plant toxicity screening; phytochemical characterization; antioxidant capacity;
native Australian plants; finger lime; mountain pepper; tamarind

1. Introduction

Novel drugs sourced from natural flora are essential for developing new therapeutic
approaches. The chemical compounds present in plants can be classified into primary or
secondary metabolites based on their physiological role, chemical structure and biosyn-
thetic derivation [1,2]. Primary metabolites support core cellular functions and include
small molecules such as sugars, amino acids, and polysaccharides [2]. Secondary metabo-
lites support peripheral functions in plant cells and are derived from primary metabolic
pathways [2]. Secondary metabolites include terpenoids, phenolics, flavonoids, alkaloids,
and glycosides. These secondary metabolites have formed the basis for treating many
diseases, and act as an valuable source for bioactive ingredients in nutraceuticals and
modern medicines [1–3]. Due to their therapeutic potential against a wide range of diseases,
natural plant product drug discovery is an important step before envisioning translational
development. As a megadiverse country, Australia has a unique flora setting with more
than 25,000 endemic plant species [4]. Many of these contain unique combinations of
metabolites that might act synergistically toward supporting cellular and human health.
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Three Australian plants were selected in this study, finger lime (Citrus australasica), moun-
tain pepper (Tasmannia lanceolata), and tamarind (Diploglottis australis) (courtesy of Julie
Weatherhead and Anthony Hooper, Peppermint Ridge Farm, Tynong North VIC 3813,
Australia). Finger lime is a small tree found in the southern and northern regions of New
South Wales, Australia [5,6]. The fruit is cylindrical, with colour ranging from green to
pink. It is used for cooking and different preparations. Mountain pepper is a medium
to large shrub, endemic to the rainforests of Tasmania and the south-eastern region of
the Australian mainland [7]. The berries, leaves and bark of this species have historical
uses as food and medicine [6,8]. Tamarind fruit has a high antioxidant capacity and has
mainly been used as a nutritious food. The fruit has reported antibacterial and anticancer
properties [9,10]. Despite its ethnobotanical usage and antioxidant properties [11], limited
studies have assessed its therapeutic properties. Importantly, toxicological studies on these
plants are scarce.

Many studies have focused on the antioxidant potential of natural compounds [12–15].
This is particularly relevant to the aging process, which is driven by a series of interrelated
mechanisms, among which oxidative stress, inflammation status, and autophagy function
through diverse signalling pathways. Among these, the potential anti-aging benefits of
polyphenol antioxidants have gained increasing scientific interest due to their capacity to
modulate oxidative damage and inflammation [12,13,16,17]. Although reactive oxygen
species (ROS) production in cells is involved with normal function in cell signalling, exces-
sive ROS build-up results in oxidative stress, leading to cellular damage [17,18]. Most ROS
result from mitochondrial metabolism [19], and an imbalance between ROS generation
and endogenous antioxidants can induce mitochondrial dysfunction and, consequently,
cell death [19,20]. Thus, growing evidence suggests a crucial connection between ROS
formation and age-related disorders, including cardiovascular, neurodegenerative diseases,
and cancer [20,21]. In unique combinations, Australian plants produce natural antioxidant
compounds [7,11,22] in both hydrophilic and lipophilic fractions [22]. These could be used
to treat oxidative stress-related diseases in which mitochondrial metabolism imbalance
plays a central role by stimulating pro-regenerative/survival factors. Even though in-
terest in antioxidant compounds from native Australian plants has increased in the last
decade [7,11,23], the benefits as well as the adverse effects of such compounds are yet to be
evaluated systematically.

For drug discovery, the toxicology screening of plant extracts must first be completed to
identify safe concentrations and minimize potential adverse effects for subsequent efficacy
testing [24]. Here, we present a non-invasive, rapid high-throughput in vivo screening
system to aid in such systematic evaluation. Zebrafish are an established vertebrate model
suitable for chemical toxicological screening [25,26] and represent an important pre-clinical
in vivo bridge between in vitro assays and mammalian in vivo studies [27,28]. Here, we
use zebrafish to assess the safe concentrations and acute toxicity of finger lime, mountain
pepper, and tamarind extracts as potential candidates for future antioxidant treatments.
By systematically accumulating data on different native plants, we will be able to use this
screening platform and subsequent antioxidant efficacy testing in the same model to start
identifying useful synergistic combinations of compounds and dive further into the cellular
pathways that drive the most beneficial cellular processes.

2. Materials and Methods
2.1. Materials

Extraction was performed using analytical-grade ethanol (Thermo Fisher Scientific
Inc., Scoresby, VIC, Australia). For the quantification of polyphenols and antioxidant po-
tential, Folin-Ciocalteu’s phenol reagent, gallic acid, L-ascorbic acid, vanillin, hexahydrate
aluminium chloride, sodium phosphate, iron(III) chloride hexahydrate (Fe[III]Cl3·6H2O),
sodium phosphate dibasic hepta-hydrate, sodium phosphate monobasic monohydrate,
trichloroacetic acid, hydrated sodium acetate, hydrochloric acid, ethylenediaminetetraacetic
acid (EDTA), ferrozine, iron (II) chloride, iron (III) chloride, 3-hydrobenzoic acid, ammonium



Antioxidants 2022, 11, 1280 3 of 17

molybdate, quercetin, catechin, iron (II) sulphate heptahydrate, DPPH, 2,4,6tripyridyl-s-
triazine (TPTZ), potassium ferrocyanide (III), and ABTS were purchased from Sigma-
Aldrich (Castle Hill, NSW, Australia). Sodium carbonate anhydrous and hydrogen per-
oxide (30%) were purchased from Chem-Supply Pty Ltd. (Adelaide, SA, Australia) and
98% sulfuric acid was purchased from RCI Labscan (Rongmuang, Thailand). For HPLC
and LC-MS, analytical-grade reagents including methanol, ethanol, acetonitrile, formic
acid, iron (III) chloride anhydrous and glacial acetic acid, as well as 96 well-plates, were
purchased from Thermo Fisher Scientific Inc. (Scoresby, VIC, Australia). Standards for
HPLC quantification were purchased from Sigma and HPLC vials (1 mL) were purchased
from Agilent Technologies (Melbourne, VIC, Australia).

2.2. Preparation of Plant Extracts

Fresh finger lime fruits (Citrus australasica), mountain pepper leaf (Tasmannia lanceolata),
and tamarind fruits (Diploglottis australis) were collected from Peppermint Ridge Farm,
Melbourne, Australia. The plant material collected was stored at −80 ◦C, thawed prior
to extraction, and blended to reduce the particle size and facilitate the extraction with the
solvent. One gram of plant material was prepared by adding 10 mL of analytical-grade
ethanol (70%). The bottles containing the samples were covered with aluminium foil and
placed in a shaking incubator at 120 rpm at 4 ◦C for 24 h. The extracts were filtered using
a paper filter to remove the particles in suspension. The solvent from the extracts was
removed by lyophilization. The purified samples were stored at −80 ◦C and covered from
light until use.

2.3. Determination of Total Phenolic Content (TPC) and Antioxidant Activity

Total phenolics and their antioxidant activities were estimated by following the meth-
ods of Ali et al. [29]. For TPC, a total of 50 µL of the extracted sample or standard and
Folin-Ciocalteu (F-C) reagent (1:1 ratio) were mixed before 200 µL milli-Q water was added
and the mixture was dark-incubated for 5 min. Then, 25 µL of 10% Na2CO3 was added
and the absorbance at 765 nm was recorded after 1 h. Gallic acid (0–200 µg/mL) was
used to generate the standard curve for the quantification of TPC. DPPH (modified from
Chou et al. [30]) and ABTS (described by Bashmil et al. [31]) assays must be conducted in
the dark (presence of red light). For DPPH, 275 µL (0.1 mM DPPH) and 25 µL sample or
standard were mixed and incubated for 30 min in the dark before spectrophotometer read-
ing at 517 nm. DPPH was measured by comparing the Trolox (0–100 µg/mL). For ABTS,
after 16 h, absorbance was calibrated at 0.70± 0.02 and 10 µL sample or standard was mixed
with 290 µL ABTS dye in the dark and incubated for 6 min at room temperature, and the
calibration line was obtained by running Trolox (0–200 µg/mL) in methanol. For RPA, 50 µL
solution of 0.2 M phosphate buffer and 1% potassium ferricyanide in the ratio of 1:1 (v/v)
were mixed with 10 µL sample or standard and incubated for 20 min at room temperature,
and then the reaction was stopped with 25 µL 10% TCA. Furthermore, 85 µL Milli Q water
and 10 µL FeCl3 were added and incubated for 15 min at room temperature in the dark,
and absorbance at 750 nm was recorded. RPA was measured by comparing the Trolox
(0–600 µg/mL) as an external standard through the spectrophotometer. All experiments
were performed in triplicate.

2.4. Screening for Bioactive Compounds in Plant Extracts

Polyphenolic compounds were identified following Ali et al. [32] with modifications
using the Agilent 6520 Accurate-Mass QTOF machine. Synergi Hydro-RP (4 µm particle
size, 4.6 mm internal diameter, and 250 mm length with 80 Å pore size) was used for the
separation of phenolic compounds and the flow rate was set at 600 µL/min. Ten microlitres
of extract was injected while the gradient was set to 0–30 min (10–35% B), 30–35 min
(35–40% B), 35–50 min (40–55% B), 50–60 min (55–75%), 60–70 min (75–90% B), 70–75 min
(90–100% B), 75–77 min (100% B), 77–79 min (100–10% B), and 79–80 min (10% B) intervals.
The mobile phase A was 0.1% formic acid in water and mobile phase B was 95% acetonitrile
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with 0.1% formic acid. A full scan mode was achieved in the range of 90–1300 amu with the
following conditions: a capillary voltage (3.5 kV), nozzle voltage (500 V), and drying gas
flow rate (9 L/min) at 325 ◦C; nebulization was set to 45 psi, and 10, 15 and 30 eV collision
energies were used. Acquisition (4 spectra/second) was achieved in auto MS/MS positive
and negative mode. MassHunter Workstation Software (version B.06.00, Santa Clara, CA,
United States) was used for the extraction and identification of phenolic compounds. These
experiments were completed in duplicate.

2.5. Quantification of Individual Bioactive Antioxidant Compounds in Plant Extracts

The quantification of individual compounds was achieved by following the method
of Sharifi-Rad et al. [33] with modifications. Agilent 1200 Series HPLC (Agilent, Santa
Clara, CA, United States) equipped with a photodiode array (PDA) was used by following
the same gradient, mobile phase and column as LCMS but injecting 20 µL of each extract.
The detection wavelengths were set at 280 nm, 320 nm, and 370 nm by using the PDA
detector with 1.25 scan/s (peak width = 2 min) spectra acquisition rate. Fifteen (15)
compounds were quantified in triplicate on a dry weight basis (µg/g).

2.6. In Vivo Acute Toxicity Test of Australian Plants

Zebrafish (Danio rerio) of the AB strain were raised and maintained at the Danio
Rerio University of Melbourne facility (DrUM, Melbourne, Australia) in accordance with
local animal guidelines and husbandry and breeding ethics. All in vivo experiments were
conducted in compliance with the Australian code for the care and use of animals for
scientific purposes and the regulation of the Animal welfare and Animal Ethics Committee
of the University of Melbourne (Melbourne, Australia). Embryos were collected from
breeding zebrafish adults into E3 medium (5 mM NaCl; 0.17 mM KCl; 0.33 mM CaCl2;
0.33 mM MgSO4). Fertilised eggs undergoing normal morphological development (i.e.,
“healthy”) within the first three hours post-fertilization were selected using a LEICA M80
stereomicroscope (Leica, Wetzlar, Germany).

For assessing the acute effects of the extracts, preliminary tests were carried out (data
not shown) based on the Fish Embryo Acute Toxicity Test (OECD 236, 2013) [26]. For
each plant extract, a stock solution was freshly prepared in autoclaved E3 medium and
diluted to obtain increasing concentrations as follows: 15; 30; 60; 120; 240; and 480 mg/L for
finger lime and tamarind; and 0.59; 0.84; 1.2; 1.72; 2.45; and 3.5 mg/L for mountain pepper;
or E3 only for the controls. At 3 hpf, zebrafish embryos were exposed in a static system as
described by Caceres-Velez et al. [34]. Briefly, healthy embryos were pre-exposed to their
relevant concentration and then placed into 46-well plates (one embryo/well) containing
500 µL/well of test solution. Three independent replicates were tested for each treatment
with a total of 60 embryos per concentration of each compound. For each fish, daily (24,
48, 72, and 96 h of exposure) phenotypic and behavioural endpoints were evaluated using
a stereomicroscope (LEICA M80, Leica, Wetzlar, Germany). These included: (a) signs
of mortality (coagulation, dead embryo/larvae) and morbidity (heart beating, no blood
circulation in the tail, and balance disorder); (b) alterations (hatching, pigmentation and
yolk sac absorption delays, cardiac and yolk sac edema); and (c) malformations (in the
head, eyes, spine, tail, and somites). Balance disorder was considered as a behavioural trait.

2.7. Statistical Analysis

The data were analysed by one-way analysis of variance (ANOVA) followed by
Dunnett’s multiple comparisons test, and a Probit model was fitted for determining the
LC50. GraphPad Prism 9.3.0 (GraphPad Software, San Diego, CA, USA) was used with the
level of significance set at 5%.
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3. Results and Discussion
3.1. Characterization of Australian Native Plant Extracts
3.1.1. Total Phenolic Content and Antioxidant Activity

The chosen native Australian plants showed a distinct combination of antioxidants,
as measured through the TPC, DPPH, ABTS and RPA assays (Table 1). Overall, higher
antioxidant activity was found in mountain pepper and tamarind while the least antioxidant
activity was observed in finger lime.

Table 1. Estimation of total phenolic content (TPC) and antioxidant activities of finger lime, mountain
pepper and tamarind.

Variables TPC
(mg GAE/g)

DPPH
(mg TE/g)

ABTS
(mg TE/g)

RPA
(mg TE/g)

Finger lime 0.71 ± 0.00 c 0.44 ± 0.06 b 0.92 ± 0.05 b 0.69 ± 0.04 c

Mountain
pepper 5.91 ± 0.32 a 4.48 ± 0.03 a 6.68 ± 0.54 a 13.23 ± 0.17 a

Tamarind 3.72 ± 0.12 b 4.07 ± 0.00 a 6.86 ± 0.35 a 12.52 ± 0.46 b

The results per gram of sample are presented as mean ± standard deviation (n = 3). Superscript letters (a–c)
indicate significantly different groups (Tukey’s honestly significant difference (HSD) multiple rank test at
p < 0.05). DPPH—2,2′-diphenyl-1-picrylhydrazyl assay. RPA—reducing power assay; ABTS—2,2′-azino-bis-3-
ethylbenzothiazoline-6-sulfonic acid assay. GAE—Gallic acid equivalent; TE—Trolox Equivalent.

Mountain pepper showed the highest TPC (5.91 ± 0.32 mg GAE/g) in this study
and finger lime, the lowest (0.71 ± 0.00 mg GAE/g). Finger lime total phenolics were
previously measured by Konczak and colleagues (2010) [35] in the range of 6.8–9.2 µm/g
(0.0068–0.0092 mg/g) FW and quantified by Sommano and colleagues (2013) [36] as 4.57 mg/g
antioxidant. For tamarind, Shlini and Siddalinga (2011) [37] previously quantified 1.4 mg/g
total phenolics. These values are very similar to those obtained in one of our other studies,
where extraction with 80% methanol and 1% formic acid in finger lime and mountain
pepperberry showed TPC 3.86 ± 0.51 mg GAE/g and 4.10 ± 0.34 mg GAE/g, respec-
tively (data not published). These values are also comparable with related plants we
analysed previously, where the quantification of total polyphenols in black pepper, black
cardamom, black cumin, and green cardamom yielded 8.06 ± 0.08, 5.54 ± 0.19, 4.02 ± 0.23,
and 3.30 ± 0.32 mg GAE/g, respectively [29]. Berries are generally recognized as being
excellent sources of antioxidants, and mountain pepper and tamarind had 2 to 3 times
higher TPC and antioxidant concentrations than Australian-grown blueberries, strawber-
ries, blackberries, and raspberries [38].

DPPH and ABTS are commonly used assays for the measurement of the total antioxi-
dant potential of plant extracts. The highest DPPH value was found in mountain pepper
(4.48 ± 0.03 mg/g), while the lowest value was found in finger lime (0.44 ± 0.06 mg/g).
The same trend was observed for RPA and ABTS. Sommano et al. (2013) [37] previously
reported the 28.46 TE mg/100g Trolox equivalent antioxidant capacity (TEAC) of finger
lime, which is in the same order of magnitude as our values.

Different in vitro assays can be applied to quantify the targeted antioxidant potential
of these plants. These data highlight the difference between these values across studies,
which could be due to extraction conditions (solvent type and ratio, solvent concentration,
time and temperature), plant genotypes, and growth conditions (temperature, moisture,
and edaphic factors), which may influence the phenolic content in the plants [39], as previ-
ously reported by Ali et al. [32]. This emphasizes the need to perform such characterization
for every batch of plants used for further toxicology and efficacy testing. As an example,
TPC and antioxidant concentrations vary widely across varieties, stage of ripening, and the
part of the fruit (peel versus pulp) of bananas [31], and it is widely known that the method
of extraction can markedly affect the estimation of antioxidant concentrations [40].
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3.1.2. Identification of Individual Bioactive Antioxidant Compounds in Plant Extracts

The untargeted characterization and identification of these targeted antioxidant bioac-
tive metabolites of plants extracts was attained using HPLC-ESI-QTOF-MS/MS in posi-
tive and negative mode (Figures S1 and S3). Our analysis identified a total of 96 bioac-
tive metabolites that were confirmed by fragment mass spectra using the personal com-
pound database and library (PCDL) for metabolites, online libraries, and published liter-
ature (Table S1). These included 25 phenolic acids, 44 flavonoids, 19 other polyphenols,
3 stilbenes, 2 lignans, 1 sesquiterpenoids, and 2 other non-phenolic metabolites. The high-
est number of bioactive metabolites (62) were identified in mountain pepper, while 44 and
32 bioactive metabolites were identified in tamarind and finger lime, respectively.

Phenolic Acids

Due to their antioxidant potential and associated health benefits, phenolic metabolites
have gained much interest in recent decades in drug discovery [17]. Phenolic acids are
a highly diversified group of aromatic, non-flavonoid secondary metabolites. They are
present in all land plants in free, soluble, insoluble, conjugated, or bound forms. Phenolic
acids with C1-C6 and C3-C6 backbones are classified into hydroxybenzoic and hydrox-
ycinnamic acids. As they represent ubiquitous constituents/compounds of plants that
have raised interest due to their potential health effects [41], we directly assessed their
abundance in our samples. A total of 25 phenolic acids (a similar range is seen across
botanicals) were identified based on their MS/MS spectra (see Table S1 for a comprehensive
list and further detail, including mode of ionization, m/z, fragment, and sample detected
in). Well-known phenolic acids encountered at relatively high abundance in our samples
included chlorogenic acid, gallic acid, and 2-hydroxybenzoic acid, which were all identified
and quantified in finger lime, mountain pepper, and tamarind. Caffeic acid, previously
identified in tamarind seeds by El-Haddad et al. [42], was also identified in all three sam-
ples. Furthermore, cinnamic acid (previously identified in star anise [30]) was identified
in mountain pepper and tamarind (Figure S2), and ferulic acid was detected in mountain
pepper and finger lime (Figure S2). These phenolics have been specifically highlighted as
they are recognized for their medicinal properties [43,44].

Flavonoids

Flavonoids are the largest group of phenolic compounds with antioxidant, anti-
inflammatory, anti-cancer, anti-mutagenic, and anti-diabetic properties [19,29]. In this
study, a total of 44 flavonoids were identified in the native Australian plants tested (see
Table S1 for a comprehensive list and further detail, including mode of ionization, m/z,
fragment, and sample detected in). The following flavonoids were common to all three of
our samples: catechin, luteolin, procyanidin dimer B2, procyanidin trimer, and procyanidin
tetramer. These were also detected by Sudjaroen et al. [45] in tamarind, as well as apigenin
6-8-di-C-glucoside (C27H30O15), and myricetin 3-O-rhamnoside (C21H20O12). Quercetin
3-O-arabinoside and quercetin 3′-O-glucuronide were only identified in mountain pepper
and finger lime, and 3′-hydroxydaidzein was only identified in mountain pepper and
tamarind. These flavonoids have been reported for their potent biological activities [46–50].

Other Biologically Relevant Compounds Identified

A number of other subclasses of compounds have been described as having partic-
ularly potent health effects, including as antioxidants. Of these, our samples contained a
great variety of individual compounds, the common ones of which are described here. An-
thocyanins are the main red-to-purple pigments in plants [51] and have been shown to have
antioxidant, anti-cancer, neuro- and cardioprotective and anti-diabetic health potential [52].
Excitingly, a total of eight anthocyanins were identified in our samples, with one in Aus-
tralian native finger lime, two in mountain pepper, and seven in tamarind (Table S1).

Lignans and stilbenes are also subclasses of phenolic compounds with substantial
antioxidant, anti-carcinogenic, and anti-inflammatory activity [32]. In this study, through
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LC-MS/MS-QTOF (Table S1), a total of four lignans and stilbenes were tentatively identi-
fied in mountain pepper, whereas a fifth stilbene was encountered only in finger lime and
tamarind. Of particular interest, mountain pepper contained 3,4,5,4′-Tetramethoxystilbene,
a resveratrol analog [53] which has been reported as an anti-cancer bioactive compound,
and dihydroresveratrol, both of which are likely to afford positive health effects. Curcu-
menol is a sesquiterpene tentatively identified in mountain pepper which has strong antioxi-
dant, anti-inflammatory, anti-tumour, neuro-protective, and hepatoprotective activities [54].
Additionally, a total of 19 other polyphenols were identified in finger lime (4), mountain
pepper (11) and tamarind (10) (Table S1). Esculin is a hydroxycoumarin identified in moun-
tain pepper. Coumarin and umbelliferone were detected in mountain pepper and tamarind.
Coumarins and derivatives are a widespread group in plants which have a number of
health benefits [55,56].

Overall, our native plant extracts contained many bioactive compounds, including
those that have previously been identified to carry a variety of potent health benefits, and
also other related compounds belonging to the same subclasses. Thus, the LC-MS/MS-
QTOF employed here remains a powerful analytical tool to identify unknown bioactive
compounds and their relative abundance and unique combinations within different plant
species for development in drug science. The in-depth characterization and identification of
these compounds in complex biological samples will be critical to further establish scientific
approaches for the separation and purification of these compounds to test their individual
and synergistic biological potentials.

3.1.3. Targeted Quantification of Bioactive Metabolites in Plant Extracts

The quantification of targeted bioactive metabolites was achieved by peak area com-
putation and the results are reported in µg/g in Table S2. A total of 20 compounds were
targeted, from which 15 compounds were quantified in finger lime, mountain pepper
and tamarind. These included phenolic acids (nine), flavonoids (four), stilbenes (one),
and other polyphenols (one). Phenolic acids, present in all samples, were the most abun-
dant, and were also the class with the most described health benefits, suggesting that they
might provide the most relevant antioxidant activity for therapeutic benefit.

By far the most abundant and present in all three samples were quinic acid derivatives
(5-caffeoylquinic acid, 1,5-dicaffeoylquinic acid, and 3-feruloylquinic acid), suggesting
that they might carry the greatest contribution to the total antioxidant activity quantified
as shown above. 5-Caffeoylquinic acid (compound 3) was the most abundant pheno-
lic acid in finger lime (132.91 ± 15.95 µg/g), mountain pepper (654.41 ± 43.44 µg/g) and
tamarind (327.81± 54.81 µg/g). Previously, Sakulnarmrat and Konczak [57] also quantified
5-caffeoylquinic acid in a highly purified mountain pepper leaf (also called Tasmanian pep-
percorn). Gallic acid was quantified in mountain pepper (21.80 ± 2.24 µg/g) and tamarind
(106.87 ± 14.93 µg/g), respectively. 1,5-Dicaffeoylquinic acid (134.73 ± 9.02 µg/g), 3-
feruloylquinic acid (123.38 ± 5.63 µg/g), catechin 3-glucoside (15.88 ± 1.44 µg/g) and
carvacrol (15.10 ± 0.05 µg/g) were only found in mountain pepper while pyrogal-
lol (35.14 ± 8.73 µg/g) and PCB2 (41.02 + 5.93 µg/g) were only identified and quan-
tified in tamarind. The highest concentration of catechin was quantified in tamarind
(141.75 ± 9.29 µg/g), while catechin in the range of 18–22 µg/g was also found in moun-
tain pepper and finger lime. Moreover, luteolin was quantified in mountain pepper
(15.62 ± 1.34 µg/g) and tamarind (47.20 ± 8.69 µg/g). Catechin, procyanidin B2 and
luteolin were also quantified by Sudjaroen et al. [45] in tamarind. Gallic acid, cate-
chin, caffeic acid, coumaric acid, and cinnamic acid in tamarind were also quantified by
El-Haddad et al. [42]. The described variation in values between our study and previous
studies might be due to differences in genotypes, growth condition, or extraction method
used, thus highlighting the importance of characterizing each sample to be correlated to
any in vivo screening experiments.

The profile and comparative abundance of phenolic compounds quantified in moun-
tain pepper, finger lime, and tamarind are represented in Figure 1. Phenolic acids were
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the most abundant group quantified in this study. A total of nine phenolic acids were
quantified, from which 5-caffeoylquinic acid (chlorogenic acid) was found with a higher
concentration in mountain pepper (MP) compared to other metabolites. Caffeic acid was
found in a higher concentration in tamarind. Furthermore, flavonoids (four), terpenoids
(one) and other polyphenols (one) were also quantified in this study.
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3.2. In Vivo Acute Toxicity of Australian Plants

In order to estimate safe concentrations of finger lime, mountain pepper, and tamarind
using an in vivo model, toxicological tests were performed during the embryo-larva devel-
opment of zebrafish. Figure 2 shows the total adverse phenotypic and behavioural effects
observed during 96 h of exposure for all plant extracts tested. The adverse effects observed
with a frequency ≥80% of all tests conducted were hatching, yolk sac absorption delay,
cardiac edema, and bradycardia for the zebrafish exposed to finger lime extract; mortality,
hatching, and pigmentation delay for the mountain pepper group; and hatching delay for
the tamarind group.
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3.2.1. Mortality and Morbidity

The control groups (0 mg/L) showed normal morphology and low mortality≤5% over
the complete experiment. The LC50-96h were calculated by scoring for egg coagulation
(comprised from time (0–24 h) of exposure), dead embryos (before hatching, 24–48 h of
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exposure) and dead larvae (after hatching, 48–96 h of exposure), which were summarized
as mortality (Figure 3). For finger lime and tamarind, the LC50-96h values were higher
than the maximum concentration tested (480 mg/L) and for mountain pepper the LC50-
96h was 1.70 mg/L. When mortality was analysed per day, the majority of embryos died
during the first 24 h of exposure for finger lime for all the concentrations tested, except for
15 mg/L, where mortality peaked 48 h after exposure (Figure 3D). For mountain pepper,
the mortality was concentration-dependent and lethality was primarily observed through
egg coagulation (at 24 hpf) at concentrations of 0–1.2 mg/L and 3.5 mg/L (Figure 3E,
p ≤ 0.001); and dead embryos (at 48 hpf) at 1.72 (p < 0.001) and 2.45 mg/L (p < 0.001).
Although tamarind did not lead to more than 10% mortality for all concentrations tested,
it was possible to identify, as shown in Figure 3C, that egg coagulation was predominant at
30, 120, and 240 mg/L; dead embryo was predominant at 480 mg/L; and dead larvae at 0
and 60 mg/L. Thus, mountain pepper extract showed the highest toxicity overall. Much
of the observed mortality due to exposure to these plant extracts occurred mainly during
the first 24 h of exposure, which encompasses the critical early developmental period in
zebrafish embryo development. This was particularly true for mountain pepper and finger
lime, although in the tamarind-exposed groups a second wave of mortality seemed to occur
during 96 h of exposure, which could represent accumulated welfare issues.
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(C,F). Cumulative mortality observed at 96 h of exposure are shown in panel (A) for finger lime, (B) for
mountain pepper, and (C) for tamarind. The mortality frequency observed at different experimental
times of exposure is shown for finger lime (D), mountain pepper (E), and tamarind (F). The colours
in (D–F) represent the age at which mortality was observed (in hours post-fertilization). Data show
the mean ± SD, n = 60. Asterisks indicate statistical significance when compared to control groups:
p < 0.001 (***).

Proxies for morbidity (bradycardia, non-circulation in the tail, and balance alteration)
were observed at 96 h of exposure and are reported in Figure 4. Finger lime exhibited
a concentration-dependent effect (CE) on bradycardia (240 and 480 mg/L, Figure 4A)
and balance alteration (480 mg/L, Figure 4A), showing statistically significant differences
(p < 0.05) across the concentrations tested. Non-circulation in the tail did not have a CE
in the finger lime groups. When exposed to mountain pepper (Figure 4B) and tamarind
(Figure 4C), no CE was observed for bradycardia and non-circulation in the tail.
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Figure 4. Morbidity assessments of zebrafish development for the whole organism exposed at 96 h
post-fertilization to different concentrations of finger lime (A), mountain pepper (B), and tamarind
(C). In (C), bradycardia is represented for groups exposed to tamarind. Non-Cir. Tail = non-circulation
(of blood) in the tail; Balance A = balance alteration. Colours in (A,B) represent the concentrations
tested (mg/L). Data represent the mean ± SD, n = 60. Asterisks indicate statistical significance when
comparing the exposed groups with the control groups: p < 0.05 (*) and p < 0.001 (***).
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3.2.2. Developmental Alterations

Zebrafish exposed to finger lime exhibited CE on yolk sac absorption delay, and yolk
sac and cardiac edema (Figure 5A), while no CE was observed for balance, hatching,
or pigmentation delays. The mountain pepper- and tamarind-exposed groups showed
some similarities: there was a CE for hatching delay, but no CE for pigmentation delay
(Figure 5B,C). However, the concentrations showing a significant effect were different for
the two plants: hatching delay for mountain pepper was statistically significant (p < 0.001)
from the lowest concentration tested (0.59 mg/L), while for tamarind, it was significant
from 60 mg/L (p < 0.01). For pigmentation delay, the effect was similar (p < 0.001) from
concentrations ≥ 0.84 for mountain pepper and 480 mg/L for tamarind.
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Figure 5. Developmental alterations observed in organisms exposed at 96 h post-fertilization to
different concentrations of finger lime (A), mountain pepper (B), and tamarind (C) extracts. The alter-
ations observed were hatching delay (Hatching D), pigmentation delay (Pig. D), developmental delay
(Dev. D), yolk sac absorption delay (Yolk Sac AD), yolk sac edema (Yolk Sac E), and cardiac edema
(Cardiac E). Bar colours represent the concentration tested in mg/L. Data represent the mean ± SD,
n = 60. Asterisks indicate statistical significance when comparing the exposed groups with the control
groups: p < 0.05 (*), p < 0.01(**) and p < 0.001 (***).
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3.2.3. Malformations

Head, eye, spine, and tail malformations showed no statistical differences compared to
the control groups for the finger lime (Figure 6A) and mountain pepper extracts (Figure 6B).
For tamarind groups, these malformations were not observed through this acute toxicologi-
cal assessment.
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Figure 6. Malformations observed in zebrafish exposed at 96 h post-fertilization to different con-
centrations of finger lime and mountain pepper extracts. Each colour bar denotes the concentration
tested in mg/L for finger lime (A) and mountain pepper (B). Malformations were mainly observed in
the head, eyes, spine and tail. No statistically significant difference was observed when comparing
the exposed and control groups for both finger lime and mountain pepper, and no malformations
were observed for tamarind. Data represent the mean ± SD, n = 60.

Despite the promising antioxidant capacity of the phytochemical profiles of finger
lime, mountain pepper, and tamarind extracts [5,7,58,59], there is limited understanding of
their potential toxicological effects in live vertebrate models. We comprehensively assessed
the effects of plant extracts from these plants on zebrafish, a high-throughput in vivo
model with ~75% genetic homology and high physiological and behavioural similarities to
humans [60,61].

There are few toxicological in vitro studies published on finger lime [5] and mountain
pepper [7,23,58,62], and no published in vitro and in vivo studies to date on tamarind.
Shami et al., 2013, studied the antibacterial activity and antioxidant capacity of a mix of
plants containing Backhousia citriodora, Terminalia ferdinandiana, Citrus australasica (finger
lime) and Lophopyrum ponticum, commonly known as Australian wheatgrass sprouts [5].
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In that study, they were able to describe that the ethanolic and peptidic plant extracts had
high/efficient (not good) antibacterial activity against S. aureus, E. coli, and B. cereus [5].
However, the plant compounds were not tested individually, and further studies are needed
to isolate and identify bioactive compounds in the mixture that could be used as sources to
develop novel biopharmaceuticals against infectious diseases.

Winnett et al. (2014) studied the potential of mountain pepper to block microbial
and fungal food spoilage, indicating its therapeutic potential against infectious disease [7].
Rayan et al. (2017) described that methanolic, aqueous and ethyl acetate mountain pepper
berry and leaf extracts displayed effective G. duodenalis growth inhibitory activity [62].
These authors found that methanolic extracts were the most potent growth inhibitors with
IC50 values of approximately 180 µg/mL and 420 µg/mL for the berry and leaf methanolic
extracts, respectively. Similarly, Wright et al. (2017) and Aldosary et al. (2019) have demon-
strated the effectiveness of different mountain pepper extracts against food-poisoning
pathogens, such as C. perfringens [58] and Y. enterocolitica [23]. The anti-proliferative activity
against these microorganisms could be explained by the combination of phenolic acids and
flavonoids in the plant extracts, with flavonoids shielding lipids, proteins and DNA from
oxidative damage [63]. However, further toxicological studies are required to verify the
safety of these extracts before being considered for therapeutic uses.

A few studies have tested mountain pepper extracts in aquatic organisms. Rayan et al.
(2017), Wright et al. (2017), and Aldosary et al. (2019) assessed their toxicological ef-
fects in Artemia fransiscana [58,62] and Artemia nauplii [23,62]. All extracts were non-toxic
to both invertebrate models, with LC50 values substantially greater than 1000 µg/mL
(or LC50 > 1000 µg/mL). In contrast, the LC50 value of mountain pepper extract calculated
in zebrafish embryos was much lower (LC50-96h = 1.70 mg/L), which could be explained
by differences in extracts and test conditions. For instance, these authors prepared the
extracts using different solvents such as methanol, water, ethyl acetate, chloroform and
hexane, and we used ethanol; the plant material and solvent proportion they used was
1 g:50 mL of solvent, and the extracts here were prepared using 1 g:10 mL of ethanol (70%);
the medium used was seawater for the Artemia spp. assays and E3 medium for the zebrafish
embryos; and the time of exposure was 72 h for Artemia spp. and 96 h for zebrafish. It re-
mains critical to standardise these parameters for comparable studies and to correlate the
preparation of extracts with toxicology for the future efficacy testing of the compounds.

The adverse effects and lethality observed after exposure to mountain pepper extracts
were more frequent than to the finger lime and tamarind extracts. These effects could
be attributed to the presence of eriodictyol 7-O-glucoside, estragole, and syringaresinol
specifically identified in the mountain pepper extract (Table S1). The toxicity of these
isolated compounds was previously reported in different models [64–66]. Singh et al.
(2022) performed an in silico docking study of eriodictyol 7-O-glucoside observing AMES
toxicity and carcinogenicity with poor intestinal absorption [64]. The authors suggested
that this compound is not suitable in pharmaceutical formulations, not fulfilling the drug
likeness and ADMET (absorption, distribution, metabolism, excretion, and toxicity) criteria.
Estragole is a compound known to be toxic for Drosophila melanogaster [67], genotoxic and
hepatocarcinogen, forming DNA adducts in rodent liver [65]. Kirsch et al. (2020) [66]
predicted in silico that syringaresinol can act through different mechanisms such as cellular
stress and chromosomal damage. However, in vitro assays in HepG2 and HT29 cells
showed that no such toxicities (cytotoxicity, DNA damage and DNA strand breaks) were
induced by physiological and higher concentrations of syringaresinol [66].

It is important to mention that the toxic effects observed in zebrafish larvae exposed
to mountain pepper, finger lime and tamarind extracts could also be explained by the
interactions of the compounds present in their extracts leading to the altered potentiation of
individual compounds. The toxicity of plant extracts and their isolated compounds could
limit their relevance for pharmaceutical applications. Thus, it is necessary to assess the risk
of the compounds identified in these plants using different preclinical models.
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4. Conclusions

Despite the incredible diversity of native Australian plants, the detailed screening
of their bioactive metabolites is still scarce. In this study, a total of 96 metabolites were
identified using LC-ESI-QTOF-MS/MS. The combination and abundance diversity of
these metabolites in different extracts might have potentially distinct benefits for different
pathologies. Continued systematic comparison will, in future, allow us to start correlat-
ing which compounds influence LC50 most strongly and drive unwanted toxic effects,
which compounds are particularly bioactive and provide high antioxidant activity in vivo,
and which combinations synergistically support health benefits. Future work based on
such knowledge will support the separation, purification and more targeted combination of
metabolites whilst reducing toxic effects. Our established rapid in vivo screening pipeline
supported by in-depth biochemical characterisation will facilitate the assessment and opti-
misation of unique combinations by allowing us to assess biological activities, interactions,
and utility towards clinical translation. This study presents a comparative framework
towards identifying, assessing, and optimising the safe and effective use of plant resources
as therapeutics.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antiox11071280/s1, Figure S1: Base peak chromatogram (BPC) of
finger lime (A,D), mountain pepper (B,E) and tamarind (C,F) in negative (red colour) and positive
(black colour) mode; Figure S2: LC-ESI-QTOF-MS/MS identification of cinnamic acid. Chromatogram
(A) and a mass spectrum (B) obtained for mountain pepper in negative mode. The MS/MS product ion
mass spectra were confirmed through the LC-MS library and database (C). Cinnamic acid produced
mass spectra at m/z 103 after the loss of CO2 from precursor ion (D); Figure S3: Chromatogram and
mass spectrum of some selected compounds obtained by LC-MS/MS; Table S1: LC-ESI-MS/MS-
QTOF metabolites profiling of finger lime, mountain pepper and tamarind; Table S2: HPLC-PDA
quantification of targeted phenolic compounds (µg/g) in plant extracts.
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