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1  |  INTRODUC TION

Brain size is often theorized to be important in the life history of 
species and has been linked to many traits such as innovation rates 
(Lefebvre et al., 2004), sociality (Dunbar & Shultz, 2007) and lon-
gevity (Minias & Podlaszczuk, 2017). It is important to note that it 
is often the relative and not the absolute size of the brain that is of 
interest. To control for allometric scaling (larger species have larger 
brains), brain size is measured relative to body size. There exists a 

large diversity of relative brain size measures (Healy & Rowe, 2007), 
but some decades ago the use of residual brain size was proposed 
and quickly became the most popular measure (Jerison, 1973). This 
measure is the residual from a model that has log body size as pre-
dictor and log brain size as response variable. It is an intuitively at-
tractive approach, since it measures whether the brain is smaller or 
larger than expected from allometry alone. Multiple challenges were 
recognized early on. Probably the most debated is the effect of phy-
logeny (Armstrong, 1983). When comparing across multiple species 
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nested at different levels of taxonomy, how does one estimate the 
“true” slope of the model? Several techniques have been proposed 
to mitigate this, but the debate is ongoing (Burger et al., 2019; Font 
et al., 2019).

More recently, another statistical caveat has been highlighted 
(for an overview, see Freckleton (2002)). The use of residuals leads 
to biased estimates if a correlation exists between the predictor 
variables, as is often the case in the comparative literature. The 
proposed solution is to include body size in a multiple regression, 
which is very similar to the use of residual brain size, if and only 
if relative brain size is the response variable. This approach takes 
care of both the phylogenetic signal (since the model can include 
the phylogenetic variance– covariance matrix) and correct estima-
tion of uncertainty. However, one major issue has been overlooked: 
if relative brain size is a predictor variable, including body size as a 
second predictor leads to incorrect inference. This becomes clear 
when looking at the causal structure of such a case. The best way to 
decide which variables to include in an analysis is the use of causal 
graphs (Glymour et al., 2016; Wright, 1934). Laubach et al. (2021) 
presented a simple guide to draw Directed Acyclic Graphs (DAG), 
in which all variables are connected with arrows that indicate the 
direction of causality.

To point out the difference between the case with relative brain 
size as response versus predictor variable, I will present the under-
lying assumed causal structure visualized in Figure 1. To avoid dis-
cussion about directionality, I have simply named the third variable z. 
This might be confusing, so I will give an example for both cases and 
explain the evolutionary causal structure. In the first case, brain size 
is the response variable. The social brain hypothesis is possibly the 
most hotly debated version of this case. Here, brain size is a function 
of body size and some measure of sociality (z). The idea is that social 
species experience evolutionary pressure to increase brain size to 
deal with complex social situations. First brought up by Jolly (1966), 
this hypothesis has since received much attention both with residual 
brain size and absolute brain size as response variable (for a review, 
see Acedo- Carmona and Gomila (2016)). The second case, where 

relative brain size is a predictor variable, has received less atten-
tion, but several studies have attempted to show that relative brain 
size can cause longevity, with relatively larger brained species living 
longer (DeCasien et al., 2018; Jiménez- Ortega et al., 2020; Street 
et al., 2017; Yu et al., 2018). The understanding is that cognitive abil-
ity causes both increased brain size and the ability to survive longer. 
This might be unintuitive, since mechanistically cognition is caused 
by the brain, but in an evolutionary context it makes sense, since 
species that require more cognitive flexibility experience evolution-
ary pressure to increase brain size. Body size also causes an increase 
in longevity through several processes (e.g., reduced predation risk, 
lower metabolism).

In the first case, both body size and z cause brain size (see 
Figure 1a). To decide how to best estimate the direct effect of z on 
brain size, one needs to make sure that all back- door paths are closed. 
In other words, all arrows that point toward z need to be considered. 
But since there are no such arrows in this case, there is no need to 
include additional variables. However, body size explains most of the 
variation in brain size. Therefore, it is still a good idea to include this 
variable to get a more precise estimate of the effect of z on brain 
size. Or in other words on relative brain size, since allometry is now 
accounted for.

The second case is causally more opaque (see Figure 1b). In 
general, the question of interest is how cognitive ability influences 
the third variable z. But since cognitive ability cannot be measured 
reliably across species (therefore denoted by a U for unobserved), 
relative brain size is used as a proxy. This is where it becomes tricky. 
The assumption is that it is the extra bit of brain that is caused by the 
need for cognitive ability. And it is therefore relative brain size that 
needs to be included as proxy. The variable we initially measured 
is absolute brain size, and is a collider in this DAG. A collider is a 
variable that is caused by two or more other variables. When in-
cluding a collider in the analysis, it opens up a back- door path, in our 
case through body size. This is problematic because the estimated 
effect of brain size on z now also contains some of the effect of 
body size on z. Therefore, the estimated effect of body size on z will 
be biased. There is no way to correct for this using the variables in 
the DAG in a multiple regression. To include both relative brain size 
and body size, one needs a system that contains regressions with 
brain size as response (of body size) and as predictor (of the third 
variable).

A structural equation model is such a system. It contains regres-
sions for each variable and allows brain size to be response and pre-
dictor variable simultaneously (Bowen & Guo, 2011). When fitted 
using a Bayesian approach, information flows in both directions, 
since the likelihood is computed for the whole system at each step. 
The aim of this paper is to show the estimation bias in multiple lin-
ear regressions using a simulation and propose a simple Bayesian 
structural equation model as a solution that can be easily adapted 
to most comparative studies. I also provide a version of the struc-
tural equation model with ulam from the rethinking package as front- 
end (McElreath, 2020) so that models can be adapted within the R 
environment.

F I G U R E  1 Directed	Acyclic	Graph	of	the	two	cases.	Arrows	
indicate the direction of causality. z stands for the third variable 
of interest. (a) Case I: brain size is the response variable. (b) Case 
II: relative brain size is a proxy predictor variable. U stands for the 
unobserved cognitive ability.
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2  |  METHODS

To show the difference between a case where relative brain size is 
the response variable and where it is a predictor variable, I simulated 
two simple cases with three variables (all codes are publicly available 
at https://github.com/simeo nqs/Using_relat ive_brain_size_as_predi 
ctor_varia ble- _serio us_pitfa lls_and_solut ions). To simplify the simu-
lation, I have not attempted to simulate realistic values for body size 
and relative brain size, but just used values with mean = 0 and stand-
ard deviation = 1. This allows me to draw general conclusions that 
are not sensitive to the scale of the variables. It should also be noted 
that body and brain size are normally measured on the natural scale, 
but log- transformed before analysis. The assumption is that causal 
effects are linear on the log– log scale. I have therefore simulated 
both body and brain size to be on the logarithmic scale.

I simulated 20 datasets per case and present parameter esti-
mates for all datasets. Frequentist linear models were fitted with the 
lm function from R (R Core Team, 2021). Bayesian models were fitted 
using the cmdstanr	package	 (Gabry	&	Češnovar,	2021), which runs 
the No U- turn Sampler in Stan (Gelman et al., 2015) with four chains 
and default sampler settings (1000 warmup and 1000 sampling it-
erations). Rhat, divergent transitions and effective sample size were 
monitored by the package and if issues arose these were reported 
in the results.

To test if sample size had an effect on which model performed 
best, additional simulations were run and analyzed for 20 and 1000 
species (see Appendix A1). To test if more or less informative priors 
had an effect on which model performed best, and how often the 
best model included the true effect in the credible interval, addi-
tional simulations were run with informative and vague priors (see 
Appendix A1).

2.1  |  Case I: relative brain size as response variable

In the first case, absolute brain size is caused by body size and z. The 
interest of the study is to what extent z causes additional variation 
in brain size (when the effect of body size is accounted for). In other 
words, to what extent z correlates with relative brain size. I simulated 
20 datasets with 100 species with the following structure:

I analyzed the resulting data with a frequentist linear model and 
with the Bayesian equivalent. Then I plotted the estimated coeffi-
cient of body size and z to show how well parameters were retrieved. 
Additionally, I reported the bias (difference between estimate and 
simulated value) and coverage (proportion of times the true value 
was within 2SE distance from the frequentist estimates and 2SD 
from the Bayesian estimates).

To test how models performed with an additional path from 
body size to z, I ran an additional simulation with this causal struc-
ture (see Appendix A1).

2.2  |  Case II: relative brain size as 
predictor variable

In the second case, both body size and relative brain size are predic-
tors of z. For simplicity, I removed the unobserved variable from the 
simulation, and instead included a direct effect of relative brain size 
on z and absolute brain size. In this way, absolute brain size is the 
sum of the brain tissue needed for enervating the body and the ad-
ditional brain tissue, which is ultimately caused by other variables. 
Such a situation is still realistic when considering developmental 
time as a function of body size and relative brain size. The interest 
of the study is therefore to what extent relative brain size causes z. I 
simulated 20 datasets with 100 species with the following structure:

I analyzed the resulting data with both a frequentist and Bayesian 
linear model where brain size and body size were included as predic-
tor variables. Additionally, I analyzed the data with a Bayesian struc-
tural equation model that included submodels for all causal paths:

The model includes a regression for each variable. Body size is 
not a function of any variable. Brain size is a function of body size. z 
is a function of body size and relative brain size (where relative brain 
size is the difference between the actual and predicted brain size). 
Relative brain size in this model is very similar to residual brain size, 
but since it is computed at each iteration information flows in both 
directions and measurement error is correctly estimated. The last 
three lines of the model are the priors for all parameters. Note that 
the priors for the slopes (β and γ) are set to normal(0, 1), which reg-
ularizes them slightly and center them around no effect of the pre-
dictors. For empirical studies theory might provide more informative 
priors, which would further increase the accuracy of the model.

body size ∼normal (0, 1)

z ∼normal (0, 1)

brain size ∼normal
(

�brain, 1
)

�brain =1∗body size+1∗ z

body size ∼normal (0, 1)

relative brain size ∼normal (0, 1)

brain size =1∗ relative brain size+1∗brain size

z ∼normal
(

�z, 1
)

�z =1∗brain size+1∗ relative brain size

body size ∼ normal
(

�body, �body
)

brain size ∼normal
(

�brain, �brain
)

�brain[i]
=�brain+�body ∗body size[i]

z ∼normal
(

�z, �z
)

�z[i]
=�z+�body ∗body size[i] +�brain ∗

(

brain size
[i]

−�brain[i]

)

�body, �brain, �z ∼normal (0, 1)

�body, �body, �brain ∼normal (0, 1)

�body, �brain, �z ∼exponential (1)

https://github.com/simeonqs/Using_relative_brain_size_as_predictor_variable-_serious_pitfalls_and_solutions
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To test how models performed in case of unequal magnitude of 
the effect of body size and brain size on z (case II), additional simula-
tions were run (see Appendix A1) with either strong body size effect 
(βbody = 2,	βbrain = 0.5)	or	strong	brain	size	effect	(βbody = 0.5,	βbrain = 2).

To visualize the results, I plotted all parameter estimates of the 
main model (for z) and reported the bias (difference between esti-
mate and simulated value) and coverage (proportion of times the 
true value was within 2SE distance from the frequentist estimates 
and 2SD from the Bayesian estimates).

3  |  RESULTS

For case I, where relative brain size was the response variable, both 
models estimated the parameters very well (see Figure 2, Table 1), 
also with an additional path from body size to z (see Appendix A1, 
Figure A11). For case II, where relative brain size was a predictor vari-
able, the effect of brain size was estimated well by all models, but the 
effect of body size was only estimated correctly by the structural equa-
tion model (see Figure 3, Table 1). Both the frequentist and Bayesian 
linear model estimated the effect of body mass to be essentially 0.

Results were similar for simulations with smaller and larger sam-
ple sizes (see Appendix A1, Figures A1– A4). Results were also simi-
lar for models with vague and informative priors (see Appendix A1, 
Figures A5– A8). The informative priors constrained the Bayesian lin-
ear models estimate of the body size effect to positive values, but none 
of the posterior distributions included the true value of the body size 
effect. In other words, even if the model is run with the prior centered 
tightly around the correct value, it estimates the effect to be absent. 
Also when varying the magnitude of the effects of body size and brain 
size, the structural equation model was the only model to correctly es-
timate the effect of body size (see Appendix A1, Figures A9 and A10).

4  |  DISCUSSION

Several recent papers have claimed to study the effect of relative 
brain size by including both absolute brain size and body size as predic-
tors (González- Lagos et al., 2010; Isler & Van Schaik, 2009; Maklakov 
et al., 2011; Samia et al., 2015; Sol et al., 2022; Street et al., 2017). 
These studies also reported the direct effect of body size and some-
times drew conclusions based on the sign of this effect. Since all these 
studies used some version of a linear model (be it phylogenetic and/
or Bayesian), they actually tested the effect of absolute brain size 
since including body size only accounts for allometry in the response 
variable. The simulations in this paper showed that including body size 
as additional predictor to control for allometric scaling of brain size 
works well if relative brain size is the response variable, but not if rela-
tive brain size is a predictor variable. Perhaps counter- intuitively, the 
effect of brain size was still estimated correctly by all models. It was 
the body size effect that was biased in the linear models. Simulations 
with a strong body size effect still found a positive coefficient for 
this effect, but were biased towards lower values (see Appendix A1, 
Figure A9). In simulations with a strong brain size effect, the body size 
coefficients were even negative (see Appendix A1, Figure A10).

One way to create some intuition about what is going on is that 
absolute brain size (which was the actual predictor variable included 
in the linear models) contains information about both body size and 
relative brain size. In a sense, this variable controls for part of the 
body size effect already. In other words, there are two paths from 
relative brain size (or the unobserved cognitive ability from the DAG) 
to z: one path is direct and one path is a back- door path through 
the allometric effect of body size. In another case, where body size 
itself does not have an effect on z, it does not actually need to be 
included at all (Walmsley & Morrissey, 2022). In this simple exam-
ple, using absolute brain size would be fine. The variation in brain 

F I G U R E  2 Parameter	estimates	from	
the linear model and Bayesian linear 
model with brain size as response variable. 
Dashed gray line is the true value. Orange 
density plots are normal distributions 
based on the mean and SE from the 
linear model. Purple density plots are the 
posterior distributions from the Bayesian 
model.
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size due to allometric scaling would just create noise. However, in 
empirical studies, the causal structure is often more complex, and 
researchers should always check if using absolute brain size leads 
to bias. Using absolute brain size would also lead to a less precise 
estimate of the effect of brain size, so using relative brain size from a 
structural equation model would still be preferable.

Structural equation models are similar to phylogenetic path anal-
ysis (Gonzalez- Voyer & von Hardenberg, 2014) and multivariate re-
gressions (Izenman, 2013). However, both these techniques do not 
allow the inclusion of the difference between the observed and pre-
dicted brain size from one model as predictor for a second model. A 

potentially even more powerful approach was put forward by Smaers 
and Vinicius (2009) and involves reconstructing the ancestral states 
of both body size and brain size. Recently, this approach was used to 
model brain evolution in mammals, and it was shown that relatively 
large brains can be achieved by divergent paths (Smaers et al., 2021). 
The authors contest the notion that there is a universal scaling be-
tween body and brain size, and instead propose that relatively large 
brains can just as well be a result of selection toward smaller bod-
ies. Despite this observation, there might still be value in the use of 
relative brain size for two reasons. First, the largest noncognitive 
effects were due to a shift in the slope of the body to brain relation. 

Case Parameter Model
Mean 
bias

SD 
bias Coverage n

Response Body Linear 0.01 0.06 1.00 20

Response Body Bayesian linear 0.02 0.06 1.00 20

Response z Linear 0.01 0.10 1.00 20

Response z Bayesian linear 0.02 0.10 0.95 20

Predictor Body Linear 1.03 0.16 0.00 20

Predictor Body Bayesian linear 1.02 0.16 0.00 20

Predictor Body SEM 0.08 0.16 0.90 20

Predictor Brain Linear −0.02 0.10 0.95 20

Predictor Brain Bayesian linear −0.01 0.10 0.90 20

Predictor Brain SEM −0.01 0.10 0.90 20

Note: The mean and standard deviation of the bias are calculated from the distance between the 
point estimate and simulated value. Coverage is the proportion of times that the simulated value 
was within the point estimate ±2 SE/SD.	N is the number of replicates.

TA B L E  1 Bias	and	coverage	for	all	
models

F I G U R E  3 Parameter	estimates	from	the	linear	model,	Bayesian	linear	model,	and	Bayesian	structural	equation	model	with	relative	brain	
size as predictor variable. Dashed gray line is the true value. Orange density plots are normal distributions based on the mean and SE from 
the linear model. Purple and green density plots are the posterior distributions from the Bayesian models.
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Such a shift would be less likely to affect results when considering a 
lower order taxonomic group (e.g., only primates) and could be par-
tially accounted for by including multiple slopes (e.g., one per family). 
Second, running a Bayesian multiregime OU modeling approach is 
not straightforward and becomes really difficult when many covari-
ates are included, since no step- by- step guide or R package exists. A 
compromise is to first study the allometric patterns in the taxon of 
interest and then decide if relative brain size can be used as proxy 
for cognitive ability.

For this paper, I drew all independent variables from normal dis-
tributions with zero mean and standard deviation one. I furthermore 
simulated z as a function of relative brain size, rather than simulat-
ing both z and brain size as a function of the unobserved cognitive 
ability (as depicted in Figure 1b). I chose to do this to illustrate that 
even under simple conditions, a multiple linear regression cannot 
estimate the effect of body size correctly. In empirical studies, the 
exact causal structure will be different, but the general observation 
that one cannot control for allometry in a multiple linear regression 
when brain size is not the response variable still stands. A regular 
confounder check as described by Laubach et al. (2021) should in-
form the design of the model. One example of relative brain size 
as predictor variable is the study of life history and innovativeness. 
Sol et al. (2016) suggested that relative brain size predicts both the 
innovation propensity and maximum life span of birds. They recog-
nized the critique on using residuals, but still used this approach, 
because they wanted to remove the allometric effects from brain 
size and not from innovation propensity. This was a valid argument 
since the original critique assumed a case where x1 and x2 are both 
causing y (Freckleton, 2002). When x1 and x2 are correlated, the use 
of a residual of y ∼ x1 creates a bias. In the case of life history and 
innovativeness, the causal structure is different and this particular 
problem does not arise. However, in an empirical study measure-
ment error, missing data and phylogenetic covariance still need to 
be accounted for. With the use of a structural equation model, one 
obtains direct estimates of relative brain size, which includes uncer-
tainty stemming from measurement uncertainty on body size and on 
brain size. This can also be plotted directly, allowing researchers to 
visualize how certain the correlation of relative brain size with the 
third variable is.

Another potential problem with the use of residuals was brought 
up by Rogell et al. (2020). They show that many studies have op-
posite signs between the model with absolute brain size and the 
model with residual brain size. They argue that coefficients from 
linear models are difficult to interpret in a biologically meaningful 
way, when body size and brain size are strongly correlated. In con-
trasts, Walmsley and Morrissey (2022) show that collinearity does 
not cause bias per se, and that sign reversal between simple and mul-
tiple regressions are simply due to the fact that these answer differ-
ent biological questions. They do, however, point out that estimating 
the effect of an agent (z) on brain size using multiple regression can 
be biased if body size is to some extend caused by brain size. As a 
preliminary solution they propose a Methods of Moments estima-
tor and show that this approach correctly estimates the coefficients 

in the simulated data. In the current study, the average correlation 
between body size and brain size was 0.69, which is not as strong as 
in some empirical studies, but still clearly problematic for the linear 
models. The SEM estimates did not suffer under these conditions. 
Adding additional correlation in case I did not bias the parameter 
estimates of the multiple regressions, but it did increase uncertainty 
slightly (see Appendix A1, Figure A11).

Structural equation models allow for the inclusion of measure-
ment error, imputation of missing data and phylogenetic covariance. 
Smeele et al. (2022) published their R script for such an applied struc-
tural equation model, which can be modified to fit most comparative 
questions. Furthermore, the Bayesian implementation is useful in 
cases with low sample size. Prior information about parameters can 
be used to increase accuracy. For example, it is highly unlikely that 
an increase in body size would directly lead to a decrease in brain 
size. The prior for this relationship could therefore be set to only 
include positive values. This creates a clear advantage over frequen-
tist linear models, which allow any real number and can therefore 
produce scientifically nonsensical results.

5  |  CONCLUSION

The aim of this paper was to show that multiple regressions fail to es-
timate causal effects when relative brain size is a predictor variable. 
Multiple other approaches can be used instead and the design of the 
model should be based on the assumed causal structure of the system. 
I provide a simple structural equation model, which works for the sim-
ulated data. Future studies should make sure all back- door paths are 
closed for their DAG and potentially include additional components to 
control for measurement error, missing data and phylogeny. The use 
of these models is not limited to relative brain size, but can be used for 
any comparative study in which multiple causal paths are of interest.
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APPENDIX A

A.1 | Supplemental methods

A.1.1. | Sample size
The main text contained results for data sets with 100 species. 
To see how the models perform with a smaller or larger dataset, I 
simulated data for 20 and 1000 species, with 20 simulations per case 
and sample size.

A.1.2. | Priors
The main text contained results for Bayesian models with slightly 
regularising priors. In emperical data sets, one can often choose 
more informative priors. To test the effect of this I analysed the 
dataset with 100 species with priors that only allow for positive 
slopes, with the mean set to the simulated value (1). I also restricted 
the priors for the intecept parameters to normal(0, 0.25).

To further test the robustness of the models I analysed the data 
with vague priors, settings intercept and slope to normal(0, 10) and 

standard variation parameters to exponential(0.1) (note that the 
mean for the exponential distribution is the inverse of the rate, such 
that the mean standard deviation here is 10).

A.1.3. | Effect magnitude
The main text assumes equal magnitude for the body size and brain 
size effect. To test how the models performed when the body and 
brain effects on z are unequal in magnitude, I ran two additional 
simulations with either strong body size effect (�body = 2, �brain = 0.5

) or strong brain size effect (�body = 0.5, �brain = 2). All other settings 
and analysis were the same as in the main text.

A.1.4. | Additional causal path
To test how the multiple regressions can deal with additional 
causal complexity I simulated a case with brain size as the response 
variable (similar to case I), but with an additional causal path from 
body size to z. All other settings and analysis were the same as in 
the main text.

F I G U R E  A 1 Model	with	sample	size	
20. Parameter estimates from the linear 
model and Bayesian linear model with 
brain size as response variable. Dashed 
gray line is the true value. Orange density 
plots are normal distributions based on 
the mean and SE from the linear model. 
Purple density plots are the posterior 
distributions from the Bayesian models.
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F I G U R E  A 2 Model	with	sample	size	
1000. Parameter estimates from the linear 
model and Bayesian linear model with 
brain size as response variable. Dashed 
gray line is the true value. Orange density 
plots are normal distributions based on 
the mean and SE from the linear model. 
Purple density plots are the posterior 
distributions from the Bayesian models.
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F I G U R E  A 3 Model	with	sample	size	20.	Parameter	estimates	from	the	linear	model,	Bayesian	linear	model,	and	Bayesian	structural	
equation model with relative brain size as predictor variable. Dashed gray line is the true value. Orange density plots are normal distributions 
based on the mean and SE from the linear model. Purple and green density plots are the posterior distributions from the Bayesian models.
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F I G U R E  A 4 Model	with	sample	size	1000.	Parameter	estimates	from	the	linear	model,	Bayesian	linear	model	and	Bayesian	structural	
equation model with relative brain size as predictor variable. Dashed gray line is the true value. Orange density plots are normal distributions 
based on the mean and SE from the linear model. Purple and green density plots are the posterior distributions from the Bayesian models.
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F I G U R E  A 5 Model	with	informative	
priors. Parameter estimates from the 
linear model and Bayesian linear model 
with brain size as response variable. 
Dashed gray line is the true value. Orange 
density plots are normal distributions 
based on the mean and SE from the 
linear model. Purple density plots are the 
posterior distributions from the Bayesian 
models.

−0.5 0.0 0.5 1.0 1.5

linear model

0
1

2
3

4
5

de
ns

ity

effect z

z

−0.5 0.0 0.5 1.0 1.5

Bayesian linear model

0
1

2
3

4
5

de
ns

ity

effect z

−0.5 0.0 0.5 1.0 1.5

body

0
1

2
3

4
5

de
ns

ity

effect body size
−0.5 0.0 0.5 1.0 1.5

0
1

2
3

4
5

de
ns

ity

effect body size



    |  11 of 13SMEELE

F I G U R E  A 6 Model	with	vague	priors.	
Parameter estimates from the linear 
model and Bayesian linear model with 
brain size as response variable. Dashed 
gray line is the true value. Orange density 
plots are normal distributions based on 
the mean and SE from the linear model. 
Purple density plots are the posterior 
distributions from the Bayesian models.
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F I G U R E  A 7 Model	with	informative	priors.	Parameter	estimates	from	the	linear	model,	Bayesian	linear	model	and	Bayesian	structural	
equation model with relative brain size as predictor variable. Dashed gray line is the true value. Orange density plots are normal distributions 
based on the mean and SE from the linear model. Purple and green density plots are the posterior distributions from the Bayesian models.
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F I G U R E  A 8 Model	with	vague	priors.	Parameter	estimates	from	the	linear	model,	Bayesian	linear	model	and	Bayesian	structural	
equation model with relative brain size as predictor variable. Dashed gray line is the true value. Orange density plots are normal distributions 
based on the mean and SE from the linear model. Purple and green density plots are the posterior distributions from the Bayesian models.
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F I G U R E  A 9 Model	with	strong	effect	of	body	size	and	weak	effect	of	brain	size.	Parameter	estimates	from	the	linear	model,	Bayesian	
linear model and Bayesian structural equation model with relative brain size as predictor variable. Dashed gray line is the true value. Orange 
density plots are normal distributions based on the mean and SE from the linear model. Purple and green density plots are the posterior 
distributions from the Bayesian models.
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F I G U R E  A 1 0 Model	with	strong	effect	of	brain	size	and	weak	effect	of	body	size.	Parameter	estimates	from	the	linear	model,	Bayesian	
linear model and Bayesian structural equation model with relative brain size as predictor variable. Dashed gray line is the true value. Orange 
density plots are normal distributions based on the mean and SE from the linear model. Purple and green density plots are the posterior 
distributions from the Bayesian models.
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F I G U R E  A 11 Model	with	relative	
brain size as response variable and an 
additional causal path from body size to 
z. Parameter estimates from the linear 
model and Bayesian linear model. Dashed 
gray line is the true value. Orange density 
plots are normal distributions based on 
the mean and SE from the linear model. 
Purple density plots are the posterior 
distributions from the Bayesian model.
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