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Introduction: High body mass index (BMI) is a positive associated phenotype of
type 2 diabetes mellitus (T2DM). Abundant studies have observed this from a clinical
perspective. Since the rapid increase in a large number of genetic variants from the
genome-wide association studies (GWAS), common SNPs of BMI and T2DM were
identified as the genetic basis for understanding their associations. Currently, their
causality is beginning to blur.

Materials and Methods: To classify it, a Mendelian randomisation (MR), using genetic
instrumental variables (IVs) to explore the causality of intermediate phenotype and
disease, was utilized here to test the effect of BMI on the risk of T2DM. In this article,
MR was carried out on GWAS data using 52 independent BMI SNPs as IVs. The pooled
odds ratio (OR) of these SNPs was calculated using inverse-variance weighted method
for the assessment of 5 kg/m2 higher BMI on the risk of T2DM. The leave-one-out
validation was conducted to identify the effect of individual SNPs. MR-Egger regression
was utilized to detect potential pleiotropic bias of variants.

Results: We obtained the high OR (1.470; 95% CI 1.170 to 1.847; P = 0.001), low
intercept (0.004, P = 0.661), and small fluctuation of ORs {from −0.039 [(1.412 – 1.470)
/ 1.470)] to 0.075 [(1.568– 1.470) / 1.470)] in leave-one-out validation.

Conclusion: We validate the causal effect of high BMI on the risk of T2DM. The low
intercept shows no pleiotropic bias of IVs. The small alterations of ORs activated by
removing individual SNPs showed no single SNP drives our estimate.

Keywords: body mass index, type 2 diabetes mellitus, casual effect, Mendelian randomisation, phenotype

INTRODUCTION

Diabetes mellitus (DM) is characterized by a bunch of chronic metabolic diseases leading to insulin-
secretion deficiency (Olokoba et al., 2012; Pan et al., 2013; Shi and Hu, 2014). High blood sugar
levels in DM patients over a prolonged period impair body tissues, such as eye, kidney, heart, and
so on. Currently, more than 400 million people suffer from diabetes worldwide, of which type
2 DM (T2DM) makes up about 90% (Olokoba et al., 2012; Pan et al., 2013; Shi and Hu, 2014).
Most patients who suffer from T2DM are over the age of 40 (Olokoba et al., 2012; Pan et al., 2013;
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Shi and Hu, 2014). In theory, people have a long time to prevent
T2DM under the right direction. To this end, researchers go out
of their way to investigate the causes of T2DM.

Observational studies exposed that body mass index (BMI)
was strongly associated with the risk of being diagnosed with
T2DM (Sanada et al., 2012; Ganz et al., 2014; Chen et al., 2015,
2016; Zhao et al., 2017). In Sanada et al. (2012) conducted
a 10-year retrospective cohort study on 969 men and 585
women (Sanada et al., 2012). They observed high BMI was
an independent and dose-dependent risk factor for T2DM in
Japanese patients (Sanada et al., 2012). In Ganz et al. (2014)
directed a case-control study to assess the association between
BMI and the risk of T2DM in the United States (Ganz et al.,
2014). A positive association between them was found in 12,179
cases (> = 18 years old) and 25,177 controls (Ganz et al., 2014).
The analogous studies without considering genetic factors almost
came to a consistent conclusion.

After identifying a large number of BMI-associated and
T2DM-associated loci in genome-wide association studies
(GWAS), their common associated variants were then
interpreted as the underlying cause of BMI and the risk of
T2DM. In 2007, the first common variant in the FTO gene of
BMI and T2DM was reported in European descents (Frayling
et al., 2007). Subsequently, corresponding investigations sprung
up for validating the existing common locus and identifying
their novel common variants of BMI and T2DM (Andreasen
et al., 2008; Herder et al., 2008; Cauchi et al., 2009; Legry et al.,
2009; Webster et al., 2010; Song et al., 2012; Xi et al., 2014).
In 2014, a meta-analysis of 42 studies for BMI and T2DM
associated variants was conducted (Xi et al., 2014). Eventually,
4 statistically significant associated variants (FTO rs9939609,
SH2B1 rs7498665, FAIM2 rs7138803, GNPDA2 rs10938397)
were identified for both in Europeans.

Whether a higher BMI increases the risk of T2DM or T2DM
affects BMI or their common genetic factors take effect, is still
unknown according to current observations. In addition, after
considering confounding factors, the causal relationship between
BMI and T2DM may be reverse. To estimate the causal effect
of BMI on the risk of T2DM, we conducted this Mendelian
randomization (MR) study, which is an instrumental variable
(IV) based method to infer causality of exposure and disease
in observation studies. Genetic variants that are associated
with intermediate phenotypic exposures are introduced as IVs
by MR to estimate the effect of phenotypic exposures on a
disease outcome (Figure 1A). Due to random distribution of
gene variants during gametogenesis, IV-based analysis can avoid
reverse causality. The basic principle of estimating the influence
of BMI on the risk of T2DM using MR is shown in the Figure 1B,
where Z (e.g., variants) represents IV, X indicates exposure BMI,
and Y is disease T2DM. Two assumptions should be suitable for
the case before using MR.

1© The variants are robustly associated with BMI.
2© The variants are independent of the T2DM without

considering BMI and confounders. It means the only
way to influence the T2DM by the variants is via an
intermediate.

The two assumptions mean the variants should be associated
with BMI but not with T2DM. Therefore, the conclusions based
on MR could not result from the common genetic factors of
BMI and T2DM.

MATERIALS AND METHODS

Two summary-level data of GWAS datasets were utilized by MR
analysis. One of them was for extracting significant BMI SNP
sets to meet the assumption 1. And the other was for extracting
no significant T2DM SNP sets to meet assumption 2. The
intersections of these two SNP sets were then analyzed using MR.

Summary-Level Data for Associations
Between Genetic Variants and BMI
In Locke et al. (2015) conducted a meta-analysis of BMI using
GWAS on Metabochip studies (Voight et al., 2012). Totally,
322,154 individuals of European descents and 17,072 individuals
of non-European descent were analyzed. As a result, 97 BMI-
associated SNPs (P < 5 × 10−8) were identified for European.
The corresponding SNPs, effect allele (EA), allele frequencies,
beta coefficients, and standard errors (SEs) were extracted
from Genetic Investigation of Anthropometric Traits (GIANT)
consortium (Locke et al., 2015) as summary-level data for
associations between genetic variants and BMI.

Summary-Level Data for Associations
Between Genetic Variants and T2DM
Morris et al. (2012) carried out a combined meta-analysis of
European descents on two GWAS data sets (Yang et al., 2010;
Lee et al., 2011), which involved 22,669 cases and 58,119 controls.
All the variants were then genotyped with Metabochip involving
1,178 cases and 2,472 controls of Pakistani descent. The analytical
result contains novel susceptibility locus together with other
SNPs, SEs and their P-values on the risk of T2DM. These were
utilized as summary-level data for associations between genetic
variants and T2DM.

Data Processing and Analysis
Two summary-level datasets were processed into assumption-
oriented data (Figure 2). According to assumption 2, genetic
pleiotropy can result in over-precise estimates in subsequent
analysis. According to the application principles of Mendelian
randomization analysis, the study is based on Mendel’s second
law of inheritance: the separation and combination of genetic
gametes controlling different traits do not interfere with each
other; in the formation of gametes, the paired genetic gametes
that determine the same trait are separated from each other,
and the genetic gametes that determine different traits are
freely combined. When the two genes are not completely
independent, they will show a certain degree of linkage,
a situation called linkage disequilibrium (LD), which will greatly
affect the exclusiveness of the variable tool to phenotypic
inheritance, leading the subsequent calculations bias generally
called “over-precise estimates.” To avoid this situation, these
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FIGURE 1 | Mendelian randomisation analysis using genetic variants as instrumental variables for estimating the influence of BMI on T2DM. (A) Causal effect in
Mendelian randomisation. (B) The basic principle of estimating the influence of BMI on the risk of T2DM.

FIGURE 2 | The schematic of data processing and analysis.

loci with potential LD were removed from 97 BMI-associated
SNPs, which was done by Noyce et al. (2017) in the previous
study. The 97 SNPs were first ranked from the smallest to
largest P-values. Then for the top ranked SNPs, Noyce et al.
(2017) removed those in LD (R2 threshold of 0.001) or those
within 10,000 kb physical distance based on a reference dataset
(Devuyst, 2015) from the 97 SNPs. This process was iterated
for the remaining SNPs. As a result, 78 BMI-associated SNPs
(P < 5 × 10−8) without potential LD of each other were
obtained. According Xi et al. (2014), meta-analysis, four SNPs
(rs9939609, rs7498665, rs7138803, rs10938397) were found at
the T2DM-associated locus, and were also further removed from
these 78 SNPs. In addition, those SNPs with P-value less than
0.05 by Morris et al. (2012) were removed as well. Finally, 52
SNPs that confirmed to the two MR assumptions were retained
for MR analysis.

Three subjects involving the influence of BMI on the risk
of T2DM (Figure 2), the sensitivity of the disproportionate
effects of variants, and the detection of bias due to pleiotropy
were investigated in MR analysis. These issues were analyzed by
MR method, leave-one-out validation, and MR-Egger regression
(Bowden et al., 2015), respectively.

• MR method

MR method was described in the previous study (Bowden
et al., 2015) and summarized for evaluating the influence of BMI
on the risk of T2DM as below. Assuming X, Y, and Z are BMI,
T2DM, and variants, respectively, Wald ratio (βXY ) of BMI to
T2DM through specified variant is calculated as follows:

βXY = βZY/βZX, (1)

where βZY represents the per-allele log(OR) of T2DM from
summary-level data of Morris et al. (2012) study. βZX is the per-
allele log(OR) of BMI from summary-level data of Locke et al.
(2015) study. SE of BMI-T2DM association of each Wald ratio is
defined as follows:

SEXY = SEZY/SEZX, (2)

where SEZY and SEZX represent the SE of the variant-T2DM
and variant-BMI associations from corresponding summary-
level data, respectively. Subsequently, 95% confidence intervals
(CIs) were then calculated from the SE of each Wald ratio.
These summarized data were then estimated using inverse-
variance weighted (IVW) linear regression for meta-analysis. The
meta-analysis model for the point estimate is according to the
heterogeneity of the summarized data. Fixed effect model is used
for no significant heterogeneity, and random-effect model is used
for others.

To evaluate the genetic heterogeneity of summarized data,
Cochran’s Q-test and statistic I2 were utilized here. Cochran’s
Q-test follows a χ2 distribution with k−1 degrees of freedom,
where k represents the number of variants for analysis.
I2 = (Q−(k−1))/Q × 100% ranges from 0 to 100%. P < 0.01
and I2 > 50% were defined as the significant heterogeneity here
(Zhang et al., 2015).

• Leave-one-out validation

To test the sensitivity of variants, we designed a leave-one-out
validation measure. In brief, to test the influence of an SNP to
the conclusion, the SNP was removed from the 52 SNPs to carry
out IVW point estimate. The fluctuation of the results before and
after removing the SNP reflects the sensitivity of this SNP. Here
this process was iterated for each of these 52 SNPs.
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TABLE 1 | Associations of genetic variants with BMI and T2DM.

BMI T2DM T2DM T2DM

SNP Chr Gene BP beta BMI SE BMI P beta SE P

rs977747 1 TAL1(N) TAL1(N) 47457264 0.017 0.003 2.18E-08 −0.010 0.020 0.63

rs657452 1 AGBL4(N) 49362434 0.023 0.003 5.48E-13 −0.010 0.020 0.45

rs3101336 1 NEGR1(B,C,D,N) 72523773 0.032 0.003 2.66E-26 0.010 0.020 0.66

rs12401738 1 FUBP1(N); USP33(D) 78219349 0.02 0.003 1.15E-10 0.000 0.020 0.86

rs11165643 1 PTBP2(D,N) 96696685 0.022 0.003 2.07E-12 0.030 0.019 0.11

rs543874 1 SEC16B(N) 176156103 0.05 0.004 2.62E-35 0.039 0.019 0.093

rs2820292 1 NAV1(N) 200050910 0.018 0.003 1.83E-10 −0.010 0.020 0.45

rs10182181 2 NCOA1(B) 25003800 0.031 0.003 8.78E-24 −0.020 0.015 0.34

rs1016287 2 LINC01122(N) 59,159,129 0.0229 0.0034 2.25E-11 0.030 0.019 0.17

rs2121279 2 LRP1B(N) 142759755 0.024 0.004 2.31E-08 0.030 0.024 0.18

rs1460676 2 FIGN(N) 164275935 0.021 0.004 4.98E-08 0.020 0.024 0.49

rs1528435 15 UBE2E3(N) 65864222 0.018 0.003 1.20E-08 0.020 0.020 0.21

rs17203016 2 CREB1(B,N); KLF7(B) 207963763 0.021 0.004 3.41E-08 0.020 0.024 0.45

rs7599312 2 ERBB4(D,N) 213121476 0.021 0.003 1.17E-10 0.020 0.015 0.4

rs492400 2 PLCD4(B,Q); CYP27A1(B); USP37(N); TTLL4(M,Q);
STK36(B,M); ZNF142(M); RQCD1(Q)

219057996 0.015 0.003 6.78E-09 −0.010 0.015 0.54

rs6804842 3 RARB(B) 25081441 0.018 0.003 2.48E-09 0.020 0.020 0.21

rs2365389 3 FHIT(N 61211502 0.02 0.003 1.63E-10 −0.010 0.015 0.7

rs13078960 3 CADM2(D,N) 85890280 0.029 0.004 1.74E-14 0.020 0.020 0.44

rs16851483 3 RASA2(N) 142758126 0.048 0.008 3.55E-10 −0.010 0.034 0.82

rs13107325 4 SLC39A8(M,N,Q) 103407732 0.047 0.007 1.83E-12 0.039 0.042 0.38

rs11727676 4 HHIP(B,N) 145878514 0.037 0.006 2.55E-08 −0.077 0.045 0.12

rs205262 6 C6orf106(N); SNRPC(Q) 34671142 0.021 0.003 1.75E-10 0.000 0.020 0.97

rs2033529 6 TDRG1(N); LRFN2(D) 40456631 0.018 0.003 1.39E-08 0.020 0.020 0.32

rs2207139 6 TFAP2B(B,N) 50953449 0.045 0.004 4.13E-29 0.039 0.024 0.14

rs9400239 6 FOXO3(B,N); HSS00296402(Q) 109084356 0.017 0.003 1.61E-08 0.010 0.020 0.62

rs13201877 6 IFNGR1(N); OLIG3(G) 137717234 0.024 0.004 4.29E-08 0.030 0.029 0.23

rs13191362 6 PARK2(B,D,N) 162953340 0.029 0.005 7.34E-09 0.020 0.029 0.4

rs1167827 7 HIP1(B,N); PMS2L3(B,Q); PMS2P5(Q);
WBSCR16(Q)

75001105 0.02 0.003 6.33E-10 – 0.024 0.24

rs2245368 7 PMS2L11(N) 76,446,079 0.0317 0.0057 3.19E-08 0.049 0.033 0.15

rs6465468 7 ASB4(B,N) 95007450 0.016 0.003 4.98E-08 −0.030 0.019 0.23

rs2033732 8 RALYL(D,N) 85242264 0.018 0.003 4.89E-08 −0.010 0.020 0.63

rs4740619 9 C9orf93(C,M,N) 15624326 0.017 0.003 4.56E-09 0.020 0.020 0.29

rs10968576 9 LINGO2(D,N) 28404339 0.025 0.003 6.61E-14 0.000 0.020 1

rs6477694 9 EPB41L4B(N); C9orf4(D) 110972163 0.017 0.003 2.67E-08 0.010 0.020 0.42

rs1928295 9 TLR4(B,N) 119418304 0.018 0.003 7.91E-10 0.030 0.015 0.12

rs10733682 9 LMX1B(B,N) 128500735 0.019 0.003 1.83E-08 0.030 0.019 0.057

rs7899106 10 GRID1(B,N) 87400884 0.038 0.007 2.96E-08 −0.020 0.034 0.67

rs11030104 11 BDAF(B,M,N) 27641093 0.042 0.004 5.56E-28 0.010 0.025 0.49

rs12286929 11 CADM1(N) 114527614 0.021 0.003 1.31E-12 0.010 0.020 0.5

rs11057405 12 CLIP1(N) 121347850 0.03 0.005 2.02E-08 −0.095 0.044 0.055

rs10132280 14 STXBP6(N) 24998019 0.022 0.003 1.14E-11 0.030 0.019 0.12

rs3736485 15 SCG3(B,D); DMXL2(M,N) 49535902 0.016 0.003 7.41E-09 0.020 0.015 0.29

rs16951275 2 M4P2K5(B,D,N); LBXCOR1(M) 181259207 0.03 0.004 1.91E-17 0.030 0.019 0.21

rs758747 16 NLRC3(N) 3567359 0.023 0.004 7.47E-10 0.000 0.025 0.97

rs3888190 16 ATXN2L(Q); SBK1(Q,D); SULT1A2(Q); TUFM(Q) 28796987 0.031 0.003 3.14E-23 0.010 0.015 0.77

rs1000940 17 RABEP1(N) 5223976 0.018 0.003 1.28E-08 0.010 0.025 0.49

rs1808579 18 NPC1(B,G,M,Q); C18orf8(N,Q) 19358886 0.016 0.003 4.17E-08 0.030 0.019 0.13

rs7239883 18 LOC284260(N); RIT2(B,D) 38401669 0.015 0.003 1.51E-08 0.020 0.015 0.34

rs29941 14 KCTD15(N) 78969207 0.018 0.003 2.41E-08 0.000 0.020 0.92

rs2287019 19 QPCTL(N); GIPR(B,M) 50894012 0.035 0.004 4.59E-18 −0.030 0.029 0.33

rs6091540 20 ZFP64(N) 50521269 0.019 0.003 2.15E-11 0.010 0.020 0.8

rs2836754 21 ETS2(N) 39213610 0.017 0.003 1.61E-08 −0.020 0.020 0.18
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FIGURE 3 | Forest plot of Wald ratios and 95% CIs from BMI-associated SNPs.
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• MR-Egger test

To ensure that violations of our analysis were not biasing
the estimate of the directional causal association, MR-Egger
regression asymmetry test was used (Bowden et al., 2015). The
MR-Egger regression is adapted from Egger regression, which
is a tool to detect small study bias in meta-analysis and test for
bias from pleiotropy. The estimated value of the intercept in MR-
Egger regression can be interpreted as an estimate of the average
pleiotropic effect across the genetic variants. An intercept that
differs from zero is indicative of overall directional pleiotropy.
The slope coefficient from MR-Egger regression provides a bias
estimate of the causal effect.

All statistical tests for MR analysis were undertaken using
the R Package of meta-analysis1 and Mendelian Randomization
(Yavorska and Burgess, 2017).

RESULTS

Among the 97 BMI-associated SNPs (Locke et al., 2015),
19 SNPs with LDs, 2 T2DM-associated SNPs (rs7138803,
rs10938397) from Xi et al. (2014) study, 20 T2DM-associated
SNPs and 1 unmapped SNPs from Morris et al. (2012) study,
and 3 uncertain SNPs were removed (Supplementary Table 1).
52 BMI-associated SNPs were eventually selected for the MR
analysis in Table 1. Each line of the table documents 12 items
involving the SNP, EA and its frequencies, beta coefficients of the
SNP on the risk of BMI and T2DM, and SEs.

The Influence of BMI on the
Risk of T2DM
The pooled results using IVW method from 52 individual SNPs
showed that high BMI significantly increases the risk of T2DM.
Due to the lack of evidence of heterogeneity between variants
of the summarized data (P = 0.499 and I2 = 0%; Figure 3), the
fixed-effect model was utilized here for meta-analysis. The OR
of T2DM per 5kg/m2 higher BMI was 1.470 (95% CI 1.170 to
1.847; P = 0.001). In addition, we analyzed the effect of BMI on
the risk of T2DM by six other methods involving Simple median,
Weighted median, Penalized weighted median, Penalized IVW,
Robust IVW, and Penalized robust IVW methods (Zhao et al.,
2017). The results were shown in Table 2, which are consistent
with the result based on IVW method.

Sensitivity Analysis
ORs from leave-one-out analysis were shown in Figure 4. In
comparison with the observed result (1.470) from 52 SNPs, the
OR increased by 0.075 [(1.568 – 1.470) / 1.470] after removing
rs10182181. The ORs after removing other SNPs range from
1.412 to 1.507, which means that the small fluctuation {from
−0.039 [(1.412 – 1.470) / 1.470] to 0.025 [(1.507 – 1.470)
/ 1.470]} can be activated by most of the individual SNPs.
These results demonstrated that no single SNP drives the IVW
point estimate. The detailed results about Heterogeneity test and

1http://cran.r-project.org/web/packages/meta/index.html

TABLE 2 | Associations of genetic variants with BMI and T2DM.

Method OR Lower OR Upper OR P-value

Simple median 1.767 1.252 2.492 0.001

Weighted median 1.790 1.270 2.524 0.001

Penalized weighted median 1.956 1.383 2.770 0.000

Penalized IVW 1.531 1.215 1.931 0.000

Robust IVW 1.542 1.178 2.016 0.003

Penalized robust IVW 1.573 1.240 1.998 0.000

meta-analysis of the leave-one-out analysis were shown in the
Supplementary Table 2.

Pleiotropic Effect Analysis
Figure 5 shows the symmetrical inverted funnel of the point
estimate from individual variants. The effect estimated from MR-
Egger regression was 1.24 (95% CI 0.553 to 1.928; P = 0.493),
with an intercept of 0.004 (95% CI −0.013 to 0.020; P = 0.661;
Figure 6). Together these findings provided evidence against
the possibility that horizontal pleiotropic effects tend to be bias
IVW estimates.

DISCUSSION

In this study, we exposed the causal effect of BMI on the risk
of T2DM using MR method. Here, two-summary level data
involving association between genetic variants and BMI from
Locke et al. (2015) study and association between genetic variants
and T2DM from Morris et al. (2012) study were utilized for this
purpose. According to the previous investigation, the MR was
viewed as a meta-analysis of multiple genetic variants (Bowden
et al., 2015; Nordestgaard et al., 2017; Noyce et al., 2017; Wei et al.,
2017). Since there was very low heterogeneity between variants
of the summarized data (P = 0.499 and I2 = 0%) (Figure 3),
the fixed-effect model was utilized for meta-analysis. The pooled
results of point estimates using IVW method indicate that the
OR of T2DM per 5 kg/m2 higher BMI was 1.470 (95% CI 1.170
to 1.847; P = 0.001). This evidence suggested that high BMI
increases the risk of T2DM.

Sensitivity analysis and bias analysis were then carried out
for genetic variants. To test whether the results are influenced
by individual SNPs, we conducted the leave-one-out validation.
Results in Figure 4 indicate very small fluctuations after the
removal of individual SNPs. The statistical evidence of MR-Egger
regression (P = 0.493) with a very low intercept (0.004; Figure 6)
indicates no significant bias of our data and no pleiotropic effect
of the genetic variants, respectively.

The inference that the causal effect of BMI on the risk
of T2DM from this study is valuable for both investigations
and clinical practice. Although abundant observational studies
identified the association between BMI and T2DM, a causal
effect cannot be ascertained from these investigations. Especially
when their common SNPs were identified in recent studies, these
genetic variants were then deemed as the primary cause of the
BMI-T2DM association by some of the researchers. In brief,
current studies cannot help to understand how BMI is associated
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FIGURE 4 | Scatter plot of the ORs in leave-one-out analysis. Red dot is the result without missing SNPs. Blue dots represent the results after missing one SNP.

FIGURE 5 | Funnel plot for pleiotropic effect analysis of the variants.
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FIGURE 6 | The associations of individual SNPs with BMI and T2DM. Bars
represent 95% CIs. The slopes of the blue and black lines show the estimates
of genetic variants using IVW method and MR-Egger method, respectively.

with T2DM. The observation of this causal effect suggested that
helping to decline BMI could be used as a potential method when
developing T2DM prevention strategies. Excessive BMI means
that the body is overweight or in most cases obese, and this
is most likely as the real initial cause of T2DM. Obesity has
become a pandemic disease worldwide, which has resulted in a
significant increase in the incidence of diabetes, non-alcoholic
fatty liver disease and coronary heart disease (Milic et al., 2014;
Rao et al., 2015; Zhou et al., 2017). In obesity, the hypertrophy,
hypoxia of fat cells, endoplasmic reticulum stress, lipids toxicity
and many other factors can lead to adipocytokines dysfunction,
increased vascular permeability, along with promoting immune
cell infiltration into fat tissue, release of more inflammatory
factors, and formation of a vicious circle of inflammatory
reactions, leading to the persistence of chronic inflammatory
states. It is now widely believed that inflammation plays a key
mediator role in the development of type 2 diabetes (Ramalho
and Guimaraes, 2008; Engin, 2017). Therefore, strengthening
exercise, maintaining a reasonable diet and good fitness are still
the iron we must adhere to.

Our study benefits from both the GWAS data and MR method.
Clinical statistics using typical methods exposed large number
of the associations between diseases and phenotypic exposures.
With the rapid increase in the identifications about the genetic
basis of diseases and phenotypic exposures, using genetic variants
for precise estimates of the causal effect of phenotype on disease
by MR method, attracts more and more attention (Benn et al.,
2017; Richmond et al., 2017; Rodriguez-Broadbent et al., 2017;
Went et al., 2017). For example, Noyce et al. (2017) utilized
the MR method for assessing the causal influence of BMI on
the risk of Parkinson disease (PD). Nordestgaard et al. (2017)
estimated the effect of BMI on Alzheimer’s disease (AD). On
account of multiple genetic variants of phenotypes, Bowden et al.
(2015) proposed a strategy to view MR with multiple instruments
as a meta-analysis and an MR-Egger method for analyzing

bias caused by pleiotropy, which was widely used in current
studies. Considering the fuzzy relation between BMI and T2DM,
we conducted this MR analysis to specify their relationship.

The two assumptions were described in the “Introduction”
section for our MR study. Following assumption 1, 97 BMI-
associated SNPs were extracted from summary-level data of
Locke et al. (2015) study. After removing SNPs with LD and
T2DM-associated SNPs, 52 SNPs conforming to the assumption
2 were assigned for further analysis. In addition, MR requires that
the genetic variants are independent of any known confounding
variables. During to the lack of information about potential
confounding factors of BMI and T2DM, no confounders were
considered in this study. Therefore, our observation may be
limited by this weakness. Link prediction (Liu et al., 2017; Zhang
et al., 2017; Peng et al., 2018a) and artificial intelligence methods
(Cabarle et al., 2017; Peng et al., 2018b; Wei et al., 2017, 2018b,c)
may be used to solve this problem, which has been successfully
applied in the prediction of disease genes (Peng et al., 2017;
Zeng et al., 2017), miRNAs (Zeng et al., 2016, 2018; Zou et al.,
2016), RNA methylation (Wei et al., 2018a), and drug-induced
hepatotoxicity (Su et al., 2018).

In summary, the MR analysis in this article verified that high
BMI can increase the risk of T2DM. It helps us to understand
the pathogenic factor of T2DM. It also may help to enhance
the molecular and phenotypic annotations of T2DM and human
diseases (Cheng et al., 2016, 2018c), which could be further
applied in analyzing diseases in a system biology perspective
(Cheng et al., 2018a,b; Hu et al., 2018).

AUTHOR CONTRIBUTIONS

LC, JH, RT, and YH conceived and designed the experiments. LC,
HZ, HJ, and SY analyzed the data. LC wrote this manuscript. All
authors read and approved the final manuscript.

FUNDING

This work was supported by the Major State Research
Development Program of China (No. 2016YFC1202302), the
National Natural Science Foundation of China (Grant No.
61871160, and 61502125), the Heilongjiang Postdoctoral Fund
(Grant No. LBH-TZ20, and LBH-Z15179), and the China
Postdoctoral Science Foundation (Grant No. 2018T110315, and
2016M590291).

ACKNOWLEDGMENTS

The authors thank for Guiyou Liu for the improvement of
this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2019.
00094/full#supplementary-material

Frontiers in Genetics | www.frontiersin.org 8 February 2019 | Volume 10 | Article 94

https://www.frontiersin.org/articles/10.3389/fgene.2019.00094/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.00094/full#supplementary-material
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00094 February 12, 2019 Time: 18:58 # 9

Cheng et al. Causal Effect of BMI on the Risk of T2DM

REFERENCES
Andreasen, C. H., Stender-Petersen, K. L., Mogensen, M. S., Torekov, S. S.,

Wegner, L., Andersen, G., et al. (2008). Low physical activity accentuates the
effect of the FTO rs9939609 polymorphism on body fat accumulation. Diabetes
Metab. Res. Rev. 57, 95–101. doi: 10.2337/db07-0910

Benn, M., Nordestgaard, B. G., Frikke-Schmidt, R., and Tybjærg-Hansen, A.
(2017). Low LDL cholesterol, PCSK9 and HMGCR genetic variation, and risk of
Alzheimer’s disease and Parkinson’s disease: Mendelian randomisation study.
BMJ 357:j3170. doi: 10.1136/bmj.j1648

Bowden, J., Smith, G. D., and Burgess, S. (2015). Mendelian randomization
with invalid instruments: effect estimation and bias detection through egger
regression. Int. J. Epidemiol. 44, 512–525. doi: 10.1093/ije/dyv080

Cabarle, F. G. C., Adorna, H. N., Jiang, M., and Zeng, X. (2017). Spiking neural
P systems with scheduled synapses. IEEE Trans. Nanobiosci. 16, 792–801. doi:
10.1109/TNB.2017.2762580

Cauchi, S., Stutzmann, F., Cavalcanti-Proenca, C., Durand, E., Pouta, A.,
Hartikainen, A. L., et al. (2009). Combined effects of MC4R and FTO common
genetic variants on obesity in european general populations. J. Mol. Med. 87,
537–546. doi: 10.1007/s00109-009-0451-6

Chen, F., Guo, Z., Wu, M., Zhou, Z., and Luo, W. (2015). [Impact of dynamic
changes of waist circumference and body mass index on type 2 diabetes mellitus
risk]. Zhonghua Yu Fang Yi Xue Za Zhi 49, 1092–1097.

Chen, X. Y., Wu, Z. F., Wang, X. C., Dong, X. L., Zhu, J. F., Chen, T., et al. (2016).
[Association between body mass index and its change and type 2 diabetes
mellitus risk in a prospective study]. Zhonghua Liu Xing Bing Xue Za Zhi 37,
1332–1335. doi: 10.3760/cma.j.issn.0254-6450.2016.10.003

Cheng, L., Hu, Y., Sun, J., Zhou, M., and Jiang, Q. (2018a). DincRNA:
a comprehensive web-based bioinformatics toolkit for exploring disease
associations and ncRNA function. Bioinformatics 34, 1953–1956. doi: 10.1093/
bioinformatics/bty002

Cheng, L., Jiang, Y., Ju, H., Sun, J., Peng, J., Zhou, M., et al. (2018b). InfAcrOnt:
calculating cross-ontology term similarities using information flow by a random
walk. BMC Genomics 19:919. doi: 10.1186/s12864-017-4338-6

Cheng, L., Wang, P., Tian, R., Wang, S., Guo, Q., Luo, M., et al. (2018c).
LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs
in human and mouse. Nucleic Acids Res. 47, D140–D144. doi: 10.1093/nar/
gky1051

Cheng, L., Sun, J., Xu, W., Dong, L., Hu, Y., and Zhou, M. (2016). Oahg: an
integrated resource for annotating human genes with multi-level ontologies. Sci.
Rep. 6:34820. doi: 10.1038/srep34820

Devuyst, O. (2015). The 1000 genomes project: welcome to a new World. Perit.
Dial. Int. 35, 676–677. doi: 10.3747/pdi.2015.00261

Engin, A. (2017). The pathogenesis of obesity-associated adipose tissue
inflammation. Adv. Exp. Med. Biol. 960, 221–245. doi: 10.1007/978-3-319-
48382-5_9

Frayling, T. M., Timpson, N. J., Weedon, M. N., Zeggini, E., Freathy, R. M.,
Lindgren, C. M., et al. (2007). A common variant in the FTO gene is associated
with body mass index and predisposes to childhood and adult obesity. Science
316, 889–894. doi: 10.1126/science.1141634

Ganz, M. L., Wintfeld, N., Li, Q., Alas, V., Langer, J., and Hammer, M. (2014).
The association of body mass index with the risk of type 2 diabetes: a case-
control study nested in an electronic health records system in the United States.
Diabetol. Metab. Syndr. 6:50. doi: 10.1186/1758-5996-6-50

Herder, C., Rathmann, W., Strassburger, K., Finner, H., Grallert, H., Huth, C., et al.
(2008). Variants of the PPARG, IGF2BP2, CDKAL1, HHEX, and TCF7L2 genes
confer risk of type 2 diabetes independently of BMI in the German KORA
studies. Horm. Metab. Res. 40, 722–726. doi: 10.1055/s-2008-1078730

Hu, Y., Zhao, T., Zhang, N., Zang, T., Zhang, J., and Cheng, L. (2018). Identifying
diseases-related metabolites using random walk. BMC Bioinformatics 19:116.
doi: 10.1186/s12859-018-2098-1

Lee, S. H., Wray, N. R., Goddard, M. E., and Visscher, P. M. (2011). Estimating
missing heritability for disease from genome-wide association studies. Am. J.
Hum. Genet. 88, 294–305. doi: 10.1016/j.ajhg.2011.02.002

Legry, V., Cottel, D., Ferrieres, J., Arveiler, D., Andrieux, N., Bingham, A., et al.
(2009). Effect of an FTO polymorphism on fat mass, obesity, and type 2 diabetes
mellitus in the french monica study. Metabolism 58, 971–975. doi: 10.1016/j.
metabol.2009.02.019

Liu, Y., Zeng, X., He, Z., and Zou, Q. (2017). Inferring microRNA-disease
associations by random walk on a heterogeneous network with multiple data
sources. IEEE-ACM Trans. Comput. Biol. Bioinform. 14, 905–915.

Locke, A. E., Kahali, B., Berndt, S. I., Justice, A. E., Pers, T. H., Day, F. R., et al.
(2015). Genetic studies of body mass index yield new insights for obesity
biology. Nature 518, 197–206. doi: 10.1038/nature14177

Milic, S., Lulic, D., and Stimac, D. (2014). Non-alcoholic fatty liver disease
and obesity: biochemical, metabolic and clinical presentations. World J.
Gastroenterol. 20, 9330–9337. doi: 10.3748/wjg.v20.i28.9330

Morris, A. P., Voight, B. F., Teslovich, T. M., Ferreira, T., Segre, A. V.,
Steinthorsdottir, V., et al. (2012). Large-scale association analysis provides
insights into the genetic architecture and pathophysiology of type 2 diabetes.
Nat. Genet. 44, 981–990. doi: 10.1038/ng.2383

Nordestgaard, L. T., Tybjaerg-Hansen, A., Nordestgaard, B. G., and Frikke-
Schmidt, R. (2017). Body mass index and risk of Alzheimer disease: a mendelian
randomization study of 399,536 individuals. J. Clin. Endocrinol. Metab. 102,
2310–2320. doi: 10.1210/jc.2017-00195

Noyce, A. J., Kia, D. A., Hemani, G., Nicolas, A., Price, T. R., De Pablo-
Fernandez, E., et al. (2017). Estimating the causal influence of body mass index
on risk of Parkinson disease: a mendelian randomisation study. PLoS Med.
14:e1002314. doi: 10.1371/journal.pmed.1002314

Olokoba, A. B., Obateru, O. A., and Olokoba, L. B. (2012). Type 2 diabetes mellitus:
a review of current trends. OmanMed. J. 27, 269–273. doi: 10.5001/omj.2012.68

Pan, A., Sun, Q., Manson, J. E., Willett, W. C., and Hu, F. B. (2013). Walnut
consumption is associated with lower risk of type 2 diabetes in women. J. Nutr.
143, 512–518. doi: 10.3945/jn.112.172171

Peng, J., Hui, W. W., and Shang, X. Q. (2018a). Measuring phenotype-phenotype
similarity through the interactome. BMC Bioinformatics 19:114. doi: 10.1186/
s12859-018-2102-9

Peng, J., Zhang, X., Hui, W., Lu, J., Li, Q., Liu, S., et al. (2018b). Improving
the measurement of semantic similarity by combining gene ontology and co-
functional network: a random walk based approach. BMC Syst. Biol. 12:18.
doi: 10.1186/s12918-018-0539-0

Peng, J. J., Xue, H. S., Shao, Y. K., Shang, X. Q., Wang, Y. D., and Chen, J. (2017).
A novel method to measure the semantic similarity of HPO terms. Int. J. Data
Min. Bioinform. 17, 173–188. doi: 10.1504/IJDMB.2017.084268

Ramalho, R., and Guimaraes, C. (2008). [The role of adipose tissue and
macrophages in chronic inflammation associated with obesity: clinical
implications]. Acta Med. Port. 21, 489–496.

Rao, W. S., Shan, C. X., Zhang, W., Jiang, D. Z., and Qiu, M. (2015). A meta-analysis
of short-term outcomes of patients with type 2 diabetes mellitus and BMI < /
= 35 kg/m2 undergoing Roux-en-Y gastric bypass. World J. Surg. 39, 223–230.
doi: 10.1007/s00268-014-2751-4

Richmond, R. C., Timpson, N. J., Felix, J. F., Palmer, T., Gaillard, R., McMahon, G.,
et al. (2017). Using genetic variation to explore the causal effect of maternal
pregnancy adiposity on future offspring adiposity: a mendelian randomisation
study. PLoS Med. 14:e1002221. doi: 10.1371/journal.pmed.1002221

Rodriguez-Broadbent, H., Law, P. J., Sud, A., Palin, K., Tuupanen, S., Gylfe, A., et al.
(2017). Mendelian randomisation implicates hyperlipidaemia as a risk factor for
colorectal cancer. Int. J. Cancer 140, 2701–2708. doi: 10.1002/ijc.30709

Sanada, H., Yokokawa, H., Yoneda, M., Yatabe, J., Sasaki Yatabe, M., Williams,
S. M., et al. (2012). High body mass index is an important risk factor for
the development of type 2 diabetes. Intern. Med. 51, 1821–1826. doi: 10.2169/
internalmedicine.51.7410

Shi, Y., and Hu, F. B. (2014). The global implications of diabetes and cancer. Lancet
383, 1947–1948. doi: 10.1016/S0140-6736(14)60886-2

Song, Y., You, N. C., Hsu, Y. H., Howard, B. V., Langer, R. D., Manson, J. A. E.,
et al. (2012). FTO polymorphisms are associated with obesity but not diabetes
risk in postmenopausal women. Obesity 16, 2472–2480. doi: 10.1038/oby.
2008.408

Su, R., Wu, H., Xu, B., Liu, X., and Wei, L. (2018). Developing a multi-dose
computational model for drug-induced hepatotoxicity prediction based on
toxicogenomics data. IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/
TCBB.2018.2858756

Voight, B. F., Kang, H. M., Ding, J., Palmer, C. D., Sidore, C., Chines, P. S.,
et al. (2012). The metabochip, a custom genotyping array for genetic studies of
metabolic, cardiovascular, and anthropometric traits. PLoS Genet. 8:e1002793.
doi: 10.1371/journal.pgen.1002793

Frontiers in Genetics | www.frontiersin.org 9 February 2019 | Volume 10 | Article 94

https://doi.org/10.2337/db07-0910
https://doi.org/10.1136/bmj.j1648
https://doi.org/10.1093/ije/dyv080
https://doi.org/10.1109/TNB.2017.2762580
https://doi.org/10.1109/TNB.2017.2762580
https://doi.org/10.1007/s00109-009-0451-6
https://doi.org/10.3760/cma.j.issn.0254-6450.2016.10.003
https://doi.org/10.1093/bioinformatics/bty002
https://doi.org/10.1093/bioinformatics/bty002
https://doi.org/10.1186/s12864-017-4338-6
https://doi.org/10.1093/nar/gky1051
https://doi.org/10.1093/nar/gky1051
https://doi.org/10.1038/srep34820
https://doi.org/10.3747/pdi.2015.00261
https://doi.org/10.1007/978-3-319-48382-5_9
https://doi.org/10.1007/978-3-319-48382-5_9
https://doi.org/10.1126/science.1141634
https://doi.org/10.1186/1758-5996-6-50
https://doi.org/10.1055/s-2008-1078730
https://doi.org/10.1186/s12859-018-2098-1
https://doi.org/10.1016/j.ajhg.2011.02.002
https://doi.org/10.1016/j.metabol.2009.02.019
https://doi.org/10.1016/j.metabol.2009.02.019
https://doi.org/10.1038/nature14177
https://doi.org/10.3748/wjg.v20.i28.9330
https://doi.org/10.1038/ng.2383
https://doi.org/10.1210/jc.2017-00195
https://doi.org/10.1371/journal.pmed.1002314
https://doi.org/10.5001/omj.2012.68
https://doi.org/10.3945/jn.112.172171
https://doi.org/10.1186/s12859-018-2102-9
https://doi.org/10.1186/s12859-018-2102-9
https://doi.org/10.1186/s12918-018-0539-0
https://doi.org/10.1504/IJDMB.2017.084268
https://doi.org/10.1007/s00268-014-2751-4
https://doi.org/10.1371/journal.pmed.1002221
https://doi.org/10.1002/ijc.30709
https://doi.org/10.2169/internalmedicine.51.7410
https://doi.org/10.2169/internalmedicine.51.7410
https://doi.org/10.1016/S0140-6736(14)60886-2
https://doi.org/10.1038/oby.2008.408
https://doi.org/10.1038/oby.2008.408
https://doi.org/10.1109/TCBB.2018.2858756
https://doi.org/10.1109/TCBB.2018.2858756
https://doi.org/10.1371/journal.pgen.1002793
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00094 February 12, 2019 Time: 18:58 # 10

Cheng et al. Causal Effect of BMI on the Risk of T2DM

Webster, R. J., Warrington, N. M., Beilby, J. P., Frayling, T. M., and Palmer, L. J.
(2010). The longitudinal association of common susceptibility variants for type
2 diabetes and obesity with fasting glucose level and BMI. BMC Med. Genet.
11:140. doi: 10.1186/1471-2350-11-140

Wei, L., Chen, H., and Su, R. (2018a). M6APred-EL: a sequence-based predictor
for identifying N6-methyladenosine sites using ensemble learning. Mol. Ther.
Nucleic Acids 12, 635–644. doi: 10.1016/j.omtn.2018.07.004

Wei, L., Ding, Y., Su, R., Tang, J., and Zou, Q. (2018b). Prediction of human protein
subcellular localization using deep learning. J. Parallel Distrib. Comput. 117,
212–217. doi: 10.2174/1566523218666180913110949

Wei, L., Zhou, C., Chen, H., Song, J., and Su, R. (2018c). ACPred-FL: a sequence-
based predictor based on effective feature representation to improve the
prediction of anti-cancer peptides. Bioinformatics 34, 4007–4016. doi: 10.1093/
bioinformatics/bty451

Wei, L., Xing, P., Shi, G., Ji, Z., and Zou, Q. (2017). Fast prediction of methylation
sites using sequence-based feature selection technique. IEEE/ACM Trans.
Comput. Biol. Bioinform. doi: 10.1109/TCBB.2017.2670558 [Epub ahead of
print].

Went, M., Sud, A., Law, P. J., Johnson, D. C., Weinhold, N., Forsti, A., et al.
(2017). Assessing the effect of obesity-related traits on multiple myeloma using
a Mendelian randomisation approach. Blood Cancer J. 7:e573. doi: 10.1038/bcj.
2017.48

Xi, B., Takeuchi, F., Meirhaeghe, A., Kato, N., Chambers, J. C., Morris, A. P., et al.
(2014). Associations of genetic variants in/near body mass index-associated
genes with type 2 diabetes: a systematic meta-analysis. Clin. Endocrinol. 81,
702–710. doi: 10.1111/cen.12428

Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R.,
et al. (2010). Common SNPs explain a large proportion of the heritability for
human height. Nat. Genet. 42, 565–569. doi: 10.1038/ng.608

Yavorska, O. O., and Burgess, S. (2017). Mendelian randomization: an R package
for performing mendelian randomization analyses using summarized data. Int.
J. Epidemiol. 46, 1734–1739. doi: 10.1093/ije/dyx034

Zeng, X., Liao, Y., Liu, Y., and Zou, Q. (2017). Prediction and validation of disease
genes using hetesim scores. IEEE-ACM Trans. Comput. Biol. Bioinform. 14,
687–695. doi: 10.1109/TCBB.2016.2520947

Zeng, X., Zhang, X., and Zou, Q. (2016). Integrative approaches for predicting
microRNA function and prioritizing disease-related microRNA using biologi-
cal interaction networks. Brief. Bioinform. 17, 193–203. doi: 10.1093/bib/
bbv033

Zeng, X. X., Liu, L., Lu, L. Y., and Zou, Q. (2018). Prediction of potential disease-
associated microRNAs using structural perturbation method. Bioinformatics 34,
2425–2432. doi: 10.1093/bioinformatics/bty112

Zhang, S., Zhang, D., Jiang, Y., Wu, L., Shang, H., Liu, J., et al. (2015). CLU
rs2279590 polymorphism contributes to Alzheimer’s disease susceptibility in
Caucasian and Asian populations. J. Neural Transm. 122, 433–439. doi: 10.1007/
s00702-014-1260-9

Zhang, X., Zou, Q., Rodruguez-Paton, A., and Zeng, X. (2017). Meta-
path methods for prioritizing candidate disease miRNAs. IEEE/ACM
Trans. Comput. Biol. Bioinform. 16, 283–291. doi: 10.1109/TCBB.2017.
2776280

Zhao, Q., Laukkanen, J. A., Li, Q., and Li, G. (2017). Body mass index is associated
with type 2 diabetes mellitus in chinese elderly. Clin. Interv. Aging 12, 745–752.
doi: 10.2147/CIA.S130014

Zhou, Y., Zhang, Y., Shi, K., and Wang, C. (2017). Body mass index and risk of
diabetic retinopathy: a meta-analysis and systematic review. Medicine 96:e6754.
doi: 10.1097/MD.0000000000006754

Zou, Q., Li, J., Song, L., Zeng, X., and Wang, G. (2016). Similarity computation
strategies in the microRNA-disease network: a survey. Brief. Funct. Genomics
15, 55–64. doi: 10.1093/bfgp/elv024

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Cheng, Zhuang, Ju, Yang, Han, Tan and Hu. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 10 February 2019 | Volume 10 | Article 94

https://doi.org/10.1186/1471-2350-11-140
https://doi.org/10.1016/j.omtn.2018.07.004
https://doi.org/10.2174/1566523218666180913110949
https://doi.org/10.1093/bioinformatics/bty451
https://doi.org/10.1093/bioinformatics/bty451
https://doi.org/10.1109/TCBB.2017.2670558
https://doi.org/10.1038/bcj.2017.48
https://doi.org/10.1038/bcj.2017.48
https://doi.org/10.1111/cen.12428
https://doi.org/10.1038/ng.608
https://doi.org/10.1093/ije/dyx034
https://doi.org/10.1109/TCBB.2016.2520947
https://doi.org/10.1093/bib/bbv033
https://doi.org/10.1093/bib/bbv033
https://doi.org/10.1093/bioinformatics/bty112
https://doi.org/10.1007/s00702-014-1260-9
https://doi.org/10.1007/s00702-014-1260-9
https://doi.org/10.1109/TCBB.2017.2776280
https://doi.org/10.1109/TCBB.2017.2776280
https://doi.org/10.2147/CIA.S130014
https://doi.org/10.1097/MD.0000000000006754
https://doi.org/10.1093/bfgp/elv024
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Exposing the Causal Effect of Body Mass Index on the Risk of Type 2 Diabetes Mellitus: A Mendelian Randomization Study
	Introduction
	Materials and Methods
	Summary-Level Data for Associations Between Genetic Variants and BMI
	Summary-Level Data for Associations Between Genetic Variants and T2DM
	Data Processing and Analysis

	Results
	The Influence of BMI on theRisk of T2DM
	Sensitivity Analysis
	Pleiotropic Effect Analysis

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


