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Abstract: (1) Background: The exact anatomic localization of the accessory pathway (AP) in patients
with Wolff–Parkinson–White (WPW) syndrome still relies on an invasive electrophysiologic study,
which has its own inherent risks. Determining the AP localization using a 12-lead ECG circumvents
this risk but is of limited diagnostic accuracy. We developed and validated an artificial intelligence-
based algorithm (location of accessory pathway artificial intelligence (locAP AI)) using a neural
network to identify the AP location in WPW syndrome patients based on the delta-wave polarity in
the 12-lead ECG. (2) Methods: The study included 357 consecutive WPW syndrome patients who
underwent successful catheter ablation at our institution. Delta-wave polarity was assessed by four
independent electrophysiologists, unaware of the site of successful catheter ablation. LocAP AI was
trained and internally validated in 357 patients to identify the correct AP location among 14 possible
locations. The AP location was also determined using three established tree-based, ECG-based
algorithms (Arruda, Milstein, and Fitzpatrick), which provide limited resolutions of 10, 5, and 8 AP
locations, respectively. (3) Results: LocAP AI identified the correct AP location with an accuracy of
85.7% (95% CI 79.6–90.5, p < 0.0001). The algorithms by Arruda, Milstein, and Fitzpatrick yielded a
predictive accuracy of 53.2%, 65.6%, and 44.7%, respectively. At comparable resolutions, the locAP
AI achieved a predictive accuracy of 95.0%, 94.9%, and 95.6%, respectively (p < 0.001 for differences).
(4) Conclusions: Our AI-based algorithm provided excellent accuracy in predicting the correct AP
location. Remarkably, this accuracy is achieved at an even higher resolution of possible anatomical
locations compared to established tree-based algorithms.

Keywords: Wolff–Parkinson–White syndrome; catheter ablation; artificial intelligence; accessory
pathways; algorithms; cardiac electrophysiology

1. Introduction

Catheter ablation is an established treatment method for accessory pathways (APs)
in Wolff–Parkinson–White (WPW) syndrome [1–3]. Anatomic localization of the AP prior
to catheter ablation is important for pre-procedure planning regarding the access site of
the catheter as well as for gauging the risk associated with invasive catheter ablation
(especially if the AP is localized in close proximity to the atrioventricular node). Currently,
the standard approach for the localization of the AP is the clinician’s interpretation of the
12-lead ECG. However, this method has several limitations, and the localization may differ
among clinicians. Thus, the gold standard for localization of the AP in patients with WPW
syndrome is the invasive electrophysiologic study (EPS), which has its own inherent risks.
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Over time, many surface ECG algorithms for the anatomic localization of the AP
have been proposed with varying degrees of accuracy. Three different algorithms have
previously been described by Arruda et al. [4], Milstein et al. [5], and Fitzpatrick et al. [6]
for determining the localization of the AP based on the pre-excitation pattern during sinus
rhythm in the standard surface ECG. However, these algorithms are complicated, time
consuming, and only differentiate a limited number of possible anatomic locations. For
example, the algorithm by Arruda differentiates between 10 locations, the algorithm by
Milstein differentiates between 5 locations, and the algorithm by Fitzpatrick differentiates
between 8 locations.

An accurate, rapid, and non-invasive assessment of the correct AP location would
therefore be of great clinical value for planning the optimal treatment strategy for the
individual patient. Here, we report on an artificial intelligence-based algorithm (locAP AI)
using neural networks, which we designed and validated in order to improve and simplify
the non-invasive identification of the location of an accessory pathway by means of the
12-lead ECG.

2. Materials and Methods
2.1. Study Design and Participants

This retrospective cohort study included 357 consecutive patients with WPW syn-
drome who underwent a successful catheter ablation at the Medical University of Innsbruck,
Austria, from July 1997 to March 2018. The ethics committee of the Medical University of
Innsbruck waved the requirement for informed consent in a general statement concerning
retrospective studies. Written informed consent for the catheter ablation procedure was
obtained from all patients. Patients with concealed WPW syndrome, those having a recur-
rence of pre-excitation on the ECG following an initial catheter ablation, and patients with
multiple APs or recurrent symptoms were excluded from the analysis (Figure 1).
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Figure 1. Flow chart of patients included in the present analysis.

Four independent electrophysiologists, who were unaware of the results of the elec-
trophysiologic study (EPS), i.e., the successful ablation site, assessed the polarity of the
delta wave in all 12 leads of a standard resting ECG registered prior to catheter ablation.
The anatomic location of the accessory pathway was defined as the site of successful
catheter ablation.

In addition, the AP location was determined using three established tree-based algo-
rithms (Arruda et al. [4], Milstein et al. [5], and Fitzpatrick et al. [6]).
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2.2. Statistical Analysis

The predictive accuracy of locAP AI in predicting 1 of the 14 possible AP locations
as defined by the EHRA [7] was assessed by sensitivity analysis (sensitivity, specificity,
and balanced accuracy) and receiver operating characteristic (ROC) analysis in the total
of 357 patients. The predictive accuracy of locAP AI was then compared with the three
algorithms proposed by Arruda [4], Milstein [5], and Fitzpatrick [6], as assessed by the
chi-square test. Quantitative variables are expressed as means ± standard deviation (SD).
Categorical variables are expressed as absolute values and percentages. Statistical analyses
were performed by R (version 3.6.3; the R Project, Vienna, Austria).

2.3. LocAP AI

For the neural network, a classical network with backpropagation was used. For the
activation function, a classical logistic or sigmoidal function with 1/(1-eˆ-z) was used. We
also used a rectified linear unit (ReLU) with less success compared to the logistic function.
The maximal number of steps, if the system does not converge, was set to 10e+7 steps.
The system consists of 16 input channels, 18 output channels that hold the value with the
probability of the location, and 3 hidden layers. The hidden layers have 21 nodes in the
first hidden layer, 13 in the middle-hidden layer, and 9 in the third layer. The usage of more
than 3 hidden layers did not improve the overall outcome, while a reduction in the hidden
layers made the system less efficient in terms of prediction. With a learning rate of 0.2, we
achieved the best results among the rates we tested in the system. The tested values were
0.1, 0.2, 0.5, and 0.01.

Hyperparameters have a great impact on the training of a neural network. Especially
computing time, memory consumption, and net accuracy can be influenced. In our case,
the training needed about a day until convergence. By training runs with different con-
figurations, an optimal selection of hyper parameters could be found. With this approach
that is widely used in the artificial intelligence community, a good setting for our problem
could be found.

2.4. Validation

The dataset consisting of 357 patients undergoing a catheter ablation from July 1997
to March 2018 was divided in a 70% to 30% fashion. Then, 70% of the dataset was used to
train the neural network, while 30% of the dataset, which was never seen by the neural
network, was used for an internal validation.

After the training and validation of the neural network, we introduced the locAP AI
algorithm into our clinical routine and continued to compare the predicted localization of
an AP with the site of its successful ablation.

In a future step, locAP AI will be available as a mobile app in order to broaden
its clinical application. The data input from users—pre-excitation pattern and site of
successful catheter ablation—will enable us to perform a robust, large-scale, prospective,
external validation.

3. Results

Table 1 shows the baseline characteristics of the 357 study patients.

Table 1. Baseline characteristics of the study population.

Variables Study Population (n = 357)

Male, n (%) 228 (63.9)
Age, y, mean ± SD 34.3 ± 15

QRS duration, ms, mean ± SD 121 ± 21
PR interval, ms, mean ± SD 114 ± 21
Patients < 18 y of age, n (%) 55 (15.4)

QRS duration ≥ 120 ms and PR interval ≤ 120 ms, n (%) 140 (39.2)
MS: milliseconds; SD: standard deviation; Y: years.
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The mean age at ablation was 34.3 ± 15 years (range 7–78 years), and 63.9% of patients
were male. The mean QRS width was 121 ± 21 ms, while the mean PR interval was
114 ± 21 ms. The study population included 15.4% patients younger than 18 years of age.
In total, 39.2% of patients had a QRS width ≥ 120 ms and a PR interval ≤ 120 ms. Among
these patients, 19.3% were below the age of 18 at the time of ablation. Table 2 depicts the
abbreviations used in this report to describe the various AP locations.

Table 2. Abbreviations used in this report to describe the different bypass tract locations.

Abbreviation Attitudinally Correct Attitudinally Incorrect

RS Right superior Right anterior

RSA Right superoanterior Right anterolateral

RA Right anterior Right lateral

RIA Right inferoanterior Right posterolateral

RI Right inferior Right posterior

LS Left superior Left anterior

LSP Left superoposterior Left anterolateral

LP Left posterior Left lateral

LIP Left inferoposterior Left posterolateral

LI Left inferior Left posterior

SPS Superoparaseptal Anteroseptal

IPS Inferoparaseptal Posteroseptal

S Septal Midseptal

PH Parahisian

The frequency (the number of observed cases) of each AP location is shown in Table 3.

Table 3. The frequency and percentage of each bypass tract location (n = 357).

Location Frequency Percentage (%)

IPS 81 22.70

LSP 71 19.89

LP 70 19.61

S 32 8.96

LIP 26 7.28

LI 23 6.44

SPS 15 4.20

RI 8 2.24

RA 8 2.24

RS 7 1.96

RSA 5 1.40

PH 4 1.12

LS 4 1.12

RIA 3 0.84

Total 357 100.00

The most frequent AP locations were, in descending frequency, inferoparaseptal, left
superoposterior, and left posterior (Table 3).

LocAP AI achieved a predictive accuracy of correctly identifying the AP location of
85.7% (95% CI 79.6–90.5, p < 0.0001) (Table 4).
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Table 4. Sensitivity analysis for the accurate prediction of the accessory pathway by the locAP AI algorithm for each of the
14 different pathways.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

AP IPS LSP LP S LIP LI SPS RI RA RS RSA PH LS RIA

Total 81 71 70 32 26 23 15 8 8 7 5 4 4 3

Sensitivity 0.9706 1.0000 0.9714 1.0000 0.69231 1.00000 0.85714 0.00000 1.00000 1.00000 0.00000 0.00000 0.00000 0.0000

Specificity 1.0000 0.9933 0.9929 1.0000 0.98765 0.99394 1.00000 1.00000 0.88304 1.00000 1.00000 1.00000 1.00000 1.0000

Prevalence 0.1943 0.1429 0.2000 0.1200 0.07429 0.05714 0.04000 0.02857 0.02286 0.01714 0.01143 0.01714 0.01143 0.0000

Balanced Accuracy 0.9853 0.9967 0.9821 1.0000 0.83998 0.99697 0.92857 0.50000 0.94152 1.00000 0.50000 0.50000 0.50000 0.5000

A ROC analysis yielded an area under the curve of 0.847 (Figure 2).
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The established algorithms proposed by Arruda [4], Milstein [5], and Fitzpatrick [6]
achieved predictive accuracies of 53.2%, 65.6%, and 44.7%, respectively. At lower anatom-
ical resolutions identical with these three algorithms, locAP AI achieved a predictive
accuracy of 95.0%, 94.9%, and 95.6%, respectively (p < 0.001 for all).

As shown in Table 4, the predictive accuracy of locAP AI was high for frequent AP
locations but only modest for rare AP locations.

4. Discussion
4.1. Artificial Intelligence—Neural Network

Artificial intelligence (AI) refers to the attempt to mimic certain human decision-
making structures. Furthermore, when using the term artificial intelligence, two types
are defined and used. Firstly, strong AI tries to generate a human-like, acting intelligent
system, which is still very visionary. Secondly, weak AI is used to solve concrete application
problems with high accuracy. For our specific problem, a classical neural network consisting
of several linked neurons with implemented state transition functions was used. The
neurons are also called units or nodes. These elements collect information from the
environment (input parameters) or from other neurons (hidden layers) and are connected
to each other by edges. The strength of the connection between two neurons is expressed
by a weight. The greater the absolute value of the weight, the greater the influence of one
unit on another unit.
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A positive weight indicates that one neuron exerts an excitatory influence on another
neuron. A negative weight means that the influence is inhibitory. A weight of zero means
that one neuron currently has no influence on another neuron. Therefore, the complete
knowledge of a neural network is stored in its weights. Learning is usually defined in such
a system as weight changes between units. Furthermore, so-called bias units with no input
but having an activity level of one are commonly used. If the input from the units is very
low, then the bias unit guarantees that the positive weight remains active.

With neural networks, a differentiation between the training phase and the propaga-
tion phase is made. In the training phase, the neural network learns by means of the given
learning material. Accordingly, the weights between the individual neurons are changed
according to the used learning rules.

4.2. LocAP AI

Our study demonstrates that locAP AI provides excellent accuracy in predicting the
anatomic correct AP location. Remarkably, this accuracy is achieved at an even higher reso-
lution with 14 anatomical locations compared to the classical tree-based algorithms [4–6],
which are most commonly used in clinical practice. The aforementioned algorithms use a
tree-based algorithm and, as such, have their limitations in a clinical setting, as they are
potentially complicated and time consuming to apply. To overcome these limitations, in
2012, our group developed an algorithm called locAP, which is based on a score [8]. The
inventive step of the algorithm described in this paper is the application of AI by using a
self-learning neural network.

Even though WPW ablation has generally been viewed to be safe and effective,
approximately 6% of ablations are still unsuccessful [9]. The exact localization of the AP is
crucial for the success of catheter ablation. The exact localization of the AP prior to catheter
ablation using an inexpensive, widely available, point-of-care test—the ECG—provides the
electrophysiologist with important information regarding the proximity of the AP to the
normal conduction system and the subsequent risk of AV block associated with an ablation
attempt, as well as the need for left heart catheterization and transseptal atrial access and
their potential complications. Furthermore, it may help in the planning of the ablation
procedure, such as the use of cryoablation for septal APs in close vicinity to the AV node.
Therefore, a non-invasive assessment of AP localization might be most advantageous in
cases of high-risk AP locations.

Tree-based algorithms, such as those we applied in our study population in order to
compare the performance of the locAP AI algorithm, have several limitations. They are
unstable, meaning that a small change in the data can lead to a large change in the structure
of the optimal decision tree. Furthermore, for data including categorical variables with
different number of levels, information gain in decision trees is biased in favor of those
attributes with more levels [10]. In studies that tested these algorithms, their accuracy
was even lower than that previously reported by their designers (predictive accuracy of
around 70%) [11]. Therefore, these algorithms can be regarded as orientation only prior to
catheter ablation. These limitations can be overcome using AI-based algorithms, which
are not as susceptible to small changes as tree-based algorithms are. Furthermore, AI-
based algorithms, especially in the context of machine learning, are capable of automatic
improvement through experience without the help of a human [12].

After the training and validation of the neural network, we have introduced the locAP
AI algorithm into our clinical routine and continuously compared the predicted localization
of an AP with the site of its successful ablation. Due to the limited number of cases in our
clinical routine to date, at this point in time, we are not able to perform a robust prospective
validation. However, observation of our clinical routine revealed an accuracy of 77%. We
observed failures either at the right free wall, an area where APs are less frequent, or in the
septum. In all cases where locAP AI failed, it still located the AP to a site directly next to
the site of successful catheter ablation.



J. Clin. Med. 2021, 10, 4394 7 of 8

We will make locAP AI available as a mobile app in order to broaden its clinical
application. The data input from users—pre-excitation pattern and site of successful
catheter ablation—will enable us to perform a large-scale, prospective, external validation.

4.3. Limitations

Even an algorithm such as the locAP AI algorithm is limited by variability in anatomy
(e.g., rotation of the heart within the thorax), variable degree of pre-excitation and QRS
fusion, the presence of more than one manifest accessory pathway, intrinsic ECG abnormal-
ities (such as prior myocardial infarction or ventricular hypertrophy), patient body habitus,
and technical variability in ECG acquisition and electrode positioning [13]. Although we
have made every effort to reduce bias, such as blinding of ECG analyses and internal
validation, the algorithm still needs to be validated in independent cohorts.

In our analysis, some locations had a reduced accuracy of the locAP AI algorithm,
such as PH, which is a critical AP location with respect to potential damage to the AV node
during ablation. This limitation might reduce the aim of risk stratification prior to catheter
ablation. Furthermore, most AP locations with reduced accuracy are located on the right
side, which is a location known to be the most difficult to be ablated effectively.

5. Conclusions

Our AI-enabled ECG algorithm for the prediction of the location of the AP in WPW
syndrome is able to correctly identify the AP location with high accuracy. The locAP AI
algorithm has important implications for the management of such patients regarding the
planning of the ablation as well as in preoperative risk prediction.
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